Britt C, Johnston M. Trees in Towns II: a new survey of urban trees in England and their condition and management (executive summary). Technical report. London: Department of Communities and Local Government, London; 2008.
Google Scholar
Armson D, Stringer P, Ennos AR. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For Urban Green. 2012;11:245–55. https://doi.org/10.1016/j.ufug.2012.05.002.
Article
Google Scholar
Goddard MA, Dougill AJ, Benton TG. Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol Evol. 2010;25(2):90–8. https://doi.org/10.1016/j.tree.2009.07.016.
Article
Google Scholar
Baró F, Chaparro L, Gómez-Baggethun E, Langemeyer J, Nowak DJ, Terradas J. Contribution of ecosystem services to air quality and climate change mitigation policies: the case of urban forests in Barcelona, Spain. Ambio. 2014;43:466–79. https://doi.org/10.1007/s13280-014-0507-x.
Article
CAS
Google Scholar
Abhijith KV, Kumar P, Gallagher J, Mcnabola A, Baldauf R, Pilla F, Broderick B, Sabatino SD, Pulvirenti B. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments—a review. Atmos Environ. 2017. https://doi.org/10.1016/j.atmosenv.2017.05.014.
Article
Google Scholar
Kardan O, Gozdyra P, Misic B, Moola F, Palmer LJ, Paus T, Berman MG. Neighborhood greenspace and health in a large urban center. london: Nature Publishing Group; 2015. https://doi.org/10.1038/srep11610.
Book
Google Scholar
Endreny T, Santagata R, Perna A, Stefano CD, Rallo RF, Ulgiati S. Implementing and managing urban forests: a much needed conservation strategy to increase ecosystem services and urban wellbeing. Ecol Model. 2017;360:328–35. https://doi.org/10.1016/j.ecolmodel.2017.07.016.
Article
Google Scholar
Paul Wood. London’s street trees. London: Safe Haven; 2017. p. 184.
Google Scholar
Nowak DJ. Atmospheric carbon dioxide reduction by Chicago’s urban forest. In: Mcpherson EG, Nowak DJ, Rowntree RA, editors. Chicago’s urban forest ecosystem: results of the Chicago urban forest climate project. Radnor: USDA Forest Service General Technical Report NE-18; 1994. p. 83–94.
Google Scholar
Rogers K, Sacre K, Goodenough J, Doick K. Valuing London’s urban forest. Results of the London i-Tree eco project. London: Treeconomics. 2015. p. 82. https://www.itreetools.org/resources/reports/Valuing-Londons-Urban-Forest.pdf.
Nowak DJ, Crane DE. Carbon storage and sequestration by urban trees in the USA. Thousand Oaks: Sage Publications; 2002.
Google Scholar
Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, Coomes DA, Lines ER, Morris WK, Rüger N, Lvarez E, Blundo C. Rate of tree carbon accumulation increases continuously with tree size. Nature. 2014;507:90. https://doi.org/10.1038/nature12914.
Article
CAS
Google Scholar
Churkina G. The role of urbanization in the global carbon cycle. Front Ecol Evol. 2016;3:1–9. https://doi.org/10.3389/fevo.2015.00144.
Article
Google Scholar
Seto KC, Guneralp B, Hutyra LR. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci. 2012;109(40):16083–8. https://doi.org/10.1073/pnas.1211658109.
Article
Google Scholar
Hutyra LR, Duren R, Gurney KR, Grimm N, Kort EA, Larson E, Shrestha G. Urbanization and the carbon cycle: current capabilities and research outlook from the natural sciences perspective. Earth’s Future. 2014;2(10):473–95. https://doi.org/10.1002/2014EF000255.
Article
Google Scholar
Tigges J, Churkina G, Lakes T. Modeling above-ground carbon storage: a remote sensing approach to derive individual tree species information in urban settings. Urban Ecosyst. 2017;20(1):97–111. https://doi.org/10.1007/s11252-016-0585-6.
Article
Google Scholar
Pretzsch H, Biber P, Uhl E, Dahlhausen J, Schütze G, Perkins D, Rötzer T, Caldentey J, Koike T, van Con T, Chavanne A, du Toit B, Foster K, Lefer B. Climate change accelerates growth of urban trees in metropolises worldwide. Sci Rep. 2017;7(1):15403. https://doi.org/10.1038/s41598-017-14831-w.
Article
CAS
Google Scholar
McHale MR, Burke I, Lefsky MA, Peper PJ, McPherson EG. Urban forest biomass estimates: is it important to use allometric relationships developed specifically for urban trees? Urban Ecosyst. 2009;12(1):95–113. https://doi.org/10.1007/s11252-009-0081-3.
Article
Google Scholar
CEOS land product validation subgroup. https://lpvs.gsfc.nasa.gov/Biomass/AGB_home.html. Accessed 4 June 2018.
Davies ZG, Edmondson JL, Heinemeyer A, Leake JR, Gaston KJ. Mapping an urban ecosystem service: quantifying above-ground carbon storage at a city-wide scale. J Appl Ecol. 2011;48(5):1125–34. https://doi.org/10.1111/j.1365-2664.2011.02021.x.
Article
CAS
Google Scholar
Baccini A, Laporte NTT, Goetz SJ, Sun M, Dong H. A first map of tropical Africa’s above-ground biomass derived from satellite imagery. Environ Res Lett. 2008;3(4):1–9. https://doi.org/10.1088/1748-9326/3/4/045011.
Article
Google Scholar
Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci. 2011;108(24):9899–904. https://doi.org/10.1073/pnas.1019576108.
Article
Google Scholar
Asner GP, Powell GV, Mascaro J, Knapp DE, Clark JK, Jacobson J, Kennedy-Bowdoin T, Balaji A, Paez-Acosta G, Victoria E, Secada L, Valqui M, Hughes RF. High-resolution forest carbon stocks and emissions in the Amazon. Proc Natl Acad Sci USA. 2010;107(38):16738–42. https://doi.org/10.1073/pnas.1004875107.
Article
Google Scholar
Lim K, Treitz P, Wulder MA, St-Onge B, Flood M. LiDAR remote sensing of forest structure. Progr Phys Geogr. 2003;27(1):88–106. https://doi.org/10.1191/0309133303pp360ra.
Article
Google Scholar
Wulder MA, White JC, Bater CW, Coops NC, Hopkinson C, Chen G. Lidar plots—a new large-area data collection option: context, concepts, and case study. Can J Remote Sens. 2012;38(05):600–18. https://doi.org/10.5589/m12-049.
Article
Google Scholar
Calders K, Newnham GJ, Burt A, Murphy S, Raumonen P, Herold M, Culvenor DS, Avitabile V, Disney MI, Armston JD, Kaasalainen M. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol Evol. 2015;6(2):198–208. https://doi.org/10.1111/2041-210X.12301.
Article
Google Scholar
Gonzalez de Tanago Menaca J, Lau A, Bartholomeusm H, Herold M, Avitabile V, Raumonen P, Martius C, Goodman R, Disney MI, Manuri S, Burt A, Calders K. Estimation of above-ground biomass of large tropical trees with terrestrial LiDAR. Methods Ecol Evol. 2017;12(10):3218–21. https://doi.org/10.1111/2041-210X.12904.
Article
Google Scholar
Disney MI, Boni Vicari M, Burt A, Calders K, Lewis SL, Raumonen P, Wilkes P. Weighing trees with lasers: advances, challenges and opportunities. Interface Focus. 2018;8(2):20170048. https://doi.org/10.1098/rsfs.2017.0048.
Article
CAS
Google Scholar
Ferraz A, Saatchi S, Mallet C, Meyer V. Lidar detection of individual tree size in tropical forests. Remote Sens Environ. 2016;183:318–33. https://doi.org/10.1016/j.rse.2016.05.028.
Article
Google Scholar
Coomes DA, Dalponte M, Jucker T, Asner GP, Banin LF, Burslem DFRP, Lewis SL, Nilus R, Phillips OL, Phua MH, Qie L. Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data. Remote Sens Environ. 2017;194:77–88. https://doi.org/10.1016/j.rse.2017.03.017.
Article
Google Scholar
Dalponte M, Coomes DA. Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data. Methods Ecol Evol. 2016;7(10):1236–45. https://doi.org/10.1111/2041-210X.12575.
Article
Google Scholar
Duncanson LI, Cook BD, Hurtt GC, Dubayah RO. An efficient, multi-layered crown delineation algorithm for mapping individual tree structure across multiple ecosystems. Remote Sens Environ. 2014;154:378–86. https://doi.org/10.1016/j.rse.2013.07.044.
Article
Google Scholar
Popescu SC, Wynne RH, Nelson RF, Popescu SC. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Can J Remote Sens. 2003;29(5):564–77.
Article
Google Scholar
Tigges J, Lakes T. High resolution remote sensing for reducing uncertainties in urban forest carbon offset life cycle assessments. Carbon Balance Manag. 2017;12(October):17. https://doi.org/10.1186/s13021-017-0085-x.
Article
Google Scholar
Zhang C, Zhou Y, Qiu F. Individual tree segmentation from LiDAR point clouds for urban forest inventory. Remote Sens. 2015;7(6):7892–913. https://doi.org/10.3390/rs70607892.
Article
Google Scholar
Liu L, Coops NC, Aven NW, Pang Y. Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data. Remote Sens Environ. 2017;200:170–82. https://doi.org/10.1016/j.rse.2017.08.010.
Article
Google Scholar
Alonzo M, Bookhagen B, Roberts DA. Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sens Environ. 2014;148:70–83. https://doi.org/10.1016/J.Rse.2014.03.018.
Article
Google Scholar
Alonzo M, Bookhagen B, Mcfadden JP, Sun A, Roberts DA. Mapping urban forest leaf area index with airborne lidar using penetration metrics and allometry. Remote Sens Environ. 2015;162:141–53. https://doi.org/10.1016/j.rse.2015.02.025.
Article
Google Scholar
Raciti SM, Hutyra LR, Newell JD. Mapping carbon storage in urban trees with multi-source remote sensing data: relationships between biomass, land use, and demographics in Boston neighborhoods. Sci Total Environ. 2014;500–501:72–83. https://doi.org/10.1016/j.scitotenv.2014.08.070.
Article
CAS
Google Scholar
Singh KK, Chen G, Mccarter JB, Meentemeyer RK. Effects of LiDAR point density and landscape context on estimates of urban forest biomass. ISPRS J Photogramm Remote Sens. 2015;101:310–22. https://doi.org/10.1016/j.isprsjprs.2014.12.021.
Article
Google Scholar
Fassnacht FE, Hartig F, Latifi H, Berger C, Hernández J, Corvalán P, Koch B. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens Environ. 2014;154:102–14. https://doi.org/10.1016/j.rse.2014.07.028.
Article
Google Scholar
Duncanson LI, Rourke O, Dubayah RO. Small sample sizes yield biased allometric equations in temperate forests. Sci Rep. 2015;5:17153. https://doi.org/10.1038/srep17153.
Article
CAS
Google Scholar
Vaz Monteiro M, Doick KJ, Handley P. Allometric relationships for urban trees in Great Britain. Urban For Urban Green. 2016;19:223–36. https://doi.org/10.1016/j.ufug.2016.07.009.
Article
Google Scholar
Lefsky MA, McHale MR. Volume estimates of trees with complex architecture from terrestrial laser scanning. J Appl Remote Sens. 2008;2(023521):1–19. https://doi.org/10.1117/1.2939008.
Article
Google Scholar
Raumonen P, Kaasalainen M, Åkerblom M, Kaasalainen S, Kaartinen H, Vastaranta M, Holopainen M, Disney MI, Lewis PE. Fast automatic precision tree models from terrestrial laser scanner data. Remote Sens. 2013;5(2):491–520. https://doi.org/10.3390/rs5020491.
Article
Google Scholar
Camden Council. About Camden’s trees. 2018. https://opendata.camden.gov.uk/stories/s/Camden-Tree-Statistics/ad58-u6q7/. Accessed 4 June 2018.
Wilkes P, Lau A, Disney MI, Calders K, Burt A. Data acquisition considerations for terrestrial laser scanning of forest plots. Remote Sens Environ. 2017;196:140–53. https://doi.org/10.1016/j.rse.2017.04.030.
Article
Google Scholar
Burt A. New 3D measurements of forest structure. Ph.D. thesis, University College London; 2017.
Zanne A, Lopez-Gonzalez G, Coomes D, Ilic J, Jansen S, Lewis S, Miller R, Swenson N, Wiemann M, Chave J. Data from: towards a worldwide wood economics spectrum. Dryad Digit Repos. 2009. https://doi.org/10.5061/dryad.234.
Article
Google Scholar
UK Environment Agency. Survey open sata. http://environment.data.gov.uk/ds/survey/#/survey. Accessed 4 June 2018.
Enviromental Agency. Environment agency LIDAR data: technical note (version 5). Technical report. 2016. http://environment.data.gov.uk/ds/survey/docs/Environment_Agency_LIDAR_Open_Data_FAQ_v5.pdf. Accessed 4 June 2018.
Isenburg M. LAStools—efficient tools for LiDAR processing. 2015. http://rapidlasso.com/LAStools.
Yan WY, Morsy S, Shaker A, Tulloch M. Automatic extraction of highway light poles and towers from mobile LiDAR data. Opt Laser Technol. 2016;77:162–8. https://doi.org/10.1016/j.optlastec.2015.09.017.
Article
Google Scholar
Morsdorf F, Meier E, Kötz B, Itten KI, Dobbertin M, Allgöwer B. LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sens Environ. 2004;92(3):353–62. https://doi.org/10.1016/j.rse.2004.05.013.
Article
Google Scholar
Ferraz A, Bretar F, Jacquemoud S, Gonçalves G, Pereira L, Tomé M, Soares P. 3-D mapping of a multi-layered Mediterranean forest using ALS data. Remote Sens Environ. 2012;121:210–23. https://doi.org/10.1016/j.rse.2012.01.020.
Article
Google Scholar
Vega C, Hamrouni A, Mokhtari SE, Morel J, Bock J, Renaud JP, Bouvier M, Durrieu S. PTrees: a point-based approach to forest tree extraction from lidar data. In J Appl Earth Obs Geoinformation. 2014;33:98–108. https://doi.org/10.1016/j.jag.2014.05.001.
Article
Google Scholar
American Society of Photogrammetry and Remote Sensing. LAS Specification 1.2; 2008.
Barber CB, Dobkin DP, Huhdanpaa H. The quickhull algorithm for convex hulls. ACM Trans Math Softw. 1996;22(4):469–83. https://doi.org/10.1145/235815.235821.
Article
Google Scholar
Singh KK, Vogler JB, Shoemaker DA, Meentemeyer RK. LiDAR-landsat data fusion for large-area assessment of urban land cover: Balancing spatial resolution, data volume and mapping accuracy. ISPRS J Photogramm Remote Sens. 2012;74:110–21. https://doi.org/10.1016/j.isprsjprs.2012.09.009.
Article
Google Scholar
Brennan R, Webster T. Object-oriented land cover classification of lidar-derived surfaces. Can J Remote Sens. 2006;32(2):162–72.
Article
Google Scholar
Ester M, Kriegel H-P, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis E, Han J, Fayyad U, editors. 2nd international conference on knowledge discovery and data mining, vol. 96. Portland: AAAI Press; 1996. p. 226–31.
Google Scholar
Zhang T, Ramakrishnan R, Livny M. BIRCH: an efficient data clustering databases method for very large. ACM SIGMOD Int Conf Manag Data. 1996;1:103–14. https://doi.org/10.1145/233269.233324.
Article
Google Scholar
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.
Google Scholar
Ayrey E, Fraver S, Kershaw JA, Kenefic LS, Hayes D, Weiskittel AR, Roth BE. Layer stacking: a novel algorithm for individual forest tree segmentation from LiDAR point clouds. Can J Remote Sens. 2017;43(1):16–27. https://doi.org/10.1080/07038992.2017.1252907.
Article
Google Scholar
Gonzalez P, Asner GP, Battles JJ, Lefsky MA, Waring KM, Palace M. Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California. Remote Sens Environ. 2010;114:1561–75. https://doi.org/10.1016/j.rse.2010.02.011.
Article
Google Scholar
Sankey T, Shrestha R, Sankey JB, Hardegree S, Strand E. Lidar-derived estimate and uncertainty of carbon sink in successional phases of woody encroachment. J Geophys Res Biogeosci. 2013;118(3):1144–55. https://doi.org/10.1002/jgrg.20088.
Article
Google Scholar
Pillsbury N, Reimer JL, Thompson R. Tree volume equations for fifteen urban species in California. Technical Report No. 7. Technical report, Urban Forest Ecosystems Institute, California’s Polytech State University, San Luis Obsipo; 1998.
Réjou-Méchain M, Tanguy A, Piponiot C, Chave J, Hérault B. biomass: an r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol Evol. 2017;8:1163–7. https://doi.org/10.1111/2041-210X.12753.
Article
Google Scholar
Rogers K, Hansford D, Sunderland T, Brunt A, Coish N. Measuring the ecosystem services of Torbay i-trees: the Torbay i-Tree Eco pilot project. Technical report. https://www.forestry.gov.uk/pdf/Trees-people-and-the-buit-environment_Rogers.pdf/$FILE/Trees-people-and-the-buit-environment_Rogers.pdf.
Doick KJ, Handley P, Ashwood F, Vaz Monteiro M, Frediani K, Rogers K. Valuing urban trees in Edinburgh. Technical report, Forest Research. 2017. https://www.forestry/fr/itree.
Chaparro L, Terrasdas J. Ecological services of urban forest in Barcelona, 103; 2009.
Nowak DJ, Greenfield EJ, Hoehn RE, Lapoint E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ Pollut. 2013;178:229–36. https://doi.org/10.1016/j.envpol.2013.03.019.
Article
CAS
Google Scholar
Chen WY. The role of urban green infrastructure in offsetting carbon emissions in 35 major Chinese cities: a nationwide estimate. Cities. 2015;44:112–20. https://doi.org/10.1016/j.cities.2015.01.005.
Article
Google Scholar
Broadmeadow M, Matthews R. Forests, carbon and climate change: the UK contribution. Technical report, UK Forestry Commission. 2003. https://www.forestry.gov.uk/pdf/fcin048.pdf/$file/fcin048.pdf.
Hutyra LR, Yoon B, Alberti M. Terrestrial carbon stocks across a gradient of urbanization: a study of the Seattle, WA region. Glob Change Biol. 2011;17(2):783–97. https://doi.org/10.1111/j.1365-2486.2010.02238.x.
Article
Google Scholar
Birdsey RA, Heath LS Carbon changes in US forests. In: Joyce L, editor. Climate change and the productivity of America’s forests. USDA forest service general Technical Report RM-271. USDA Forest Service General, Fort Collins, CO (1995). p. 56–70. https://www.fs.fed.us/ne/durham/4104/papers/Birdsey-Heath-1995.pdf.
Strohbach MW, Haase D. Above-ground carbon storage by urban trees in Leipzig, Germany: analysis of patterns in a European city. Landsc Urban Plann. 2011;104:95–104. https://doi.org/10.1016/j.landurbplan.2011.10.001.
Article
Google Scholar
Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBCC, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol. 2014;20(10):3177–90. https://doi.org/10.1111/gcb.12629.
Article
Google Scholar
West GB, Brown JH, Enquist BJ. A general model for the structure and allometry of plant vascular systems. Nature. 1999;400(6745):664–7. https://doi.org/10.1038/23251.
Article
CAS
Google Scholar
Goodman RC, Phillips OL, Baker TR. The importance of crown dimensions to improve tropical tree biomass estimates. Ecol Appl. 2014;24(4):680–98. https://doi.org/10.1890/13-0070.1.
Article
Google Scholar
Garcia M, Saatchi S, Ferraz A, Silva CA, Ustin S, Koltunov A, Balzter H. Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR. Carbon Balance Manag. 2017;12:4. https://doi.org/10.1186/s13021-017-0073-1.
Article
Google Scholar
Vauhkonen J, Ene L, Gupta S, Heinzel J, Holmgren J, Pitkänen J, Solberg S, Wang Y, Weinacker H, Hauglin KM, Lien V, Packalén P, Gobakken T, Koch B, Næsset E, Tokola T, Maltamo M. Comparative testing of single-tree detection algorithms under different types of forest. Forestry. 2012;85(1):27–40. https://doi.org/10.1093/forestry/cpr051.
Article
Google Scholar
Kaartinen H, Hyyppä J, Yu X, Vastaranta M, Hyyppä H, Kukko A, Holopainen M, Heipke C, Hirschmugl M, Morsdorf F, Næsset E, Pitkänen J, Popescu S, Solberg S, Wolf BM, Wu JC. An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sens. 2012;4(12):950–74. https://doi.org/10.3390/rs4040950.
Article
Google Scholar
Eysn L, Hollaus M, Lindberg E, Berger F, Monnet JM, Dalponte M, Kobal M, Pellegrini M, Lingua E, Mongus D, Pfeifer N. A benchmark of lidar-based single tree detection methods using heterogeneous forest data from the alpine space. Forests. 2015;6(5):1721–47. https://doi.org/10.3390/f6051721.
Article
Google Scholar
Hofman J, Bartholomeus H, Calders K, Van Wittenberghe S, Wuyts K, Samson R. On the relation between tree crown morphology and particulate matter deposition on urban tree leaves: a ground-based LiDAR approach. Atmos Environ. 2014;99:130–9. https://doi.org/10.1016/j.atmosenv.2014.09.031.
Article
CAS
Google Scholar
Hancock S, Anderson K, Disney MI, Gaston KJ. Measurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: calibration and validation with voxelised terrestrial lidar. Remote Sens Environ. 2017;188:37–50. https://doi.org/10.1016/j.rse.2016.10.041.
Article
Google Scholar
Casalegno S, Anderson K, Hancock S. Improving models of urban greenspace: from vegetation surface cover to volumetric survey, using waveform laser scanning. Methods Ecol Evol. 2017. https://doi.org/10.1111/2041-210X.12794.
Article
Google Scholar
Holopainen M, Kankare V, Vastaranta M, Liang X, Lin Y, Vaaja M, Yu X, Hyyppä J, Hyyppä H, Kaartinen H, Kukko A, Tanhuanpää T, Alho P. Tree mapping using airborne, terrestrial and mobile laser scanning- case study in a heterogeneous urban forest. Urban For Urban Green. 2013;12:546–53. https://doi.org/10.1016/j.ufug.2013.06.002.
Article
Google Scholar
Li X, Zhang C, Li W, Ricard R, Meng Q, Zhang W. Assessing street-level urban greenery using Google Street View and a modified green view index. Urban For Urban Green. 2015;14:675–85. https://doi.org/10.1016/j.ufug.2015.06.006.
Article
Google Scholar
Seiferling I, Naik N, Ratti C, Proulx R. Green streets—quantifying and mapping urban trees with street-level imagery and computer vision. Landsc Urban Plann. 2017;165:93–101. https://doi.org/10.1016/j.landurbplan.2017.05.010.
Article
Google Scholar
USDA Forest Service. i-Tree Eco User’s Manual v.6.0. Technical report (2017). http://www.itreetools.org/resources/manuals/Ecov6_ManualsGuides/Ecov6_UsersManual.pdf.
Houghton R, Nassikas AA. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob Biogeochem Cycles. 2017;31(3):456–72. https://doi.org/10.1002/2016GB005546.
Article
CAS
Google Scholar