Moss RH, et al. The next generation of scenarios for climate change research and assessment. Nature. 2010;463:747–56.
Article
CAS
Google Scholar
Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, et al. Climate change, mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2014;511–97.
Tilman D, Balzer C, Hill J, Befort BL. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA. 2011;108(50):20260–4.
Article
CAS
Google Scholar
Eshel G, Shepon A, Makov T, Milo R. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the united states. Proc Natl Acad Sci. 2014;111(33):11996–2001.
Article
CAS
Google Scholar
Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, et al. Greenhouse gas mitigation in agriculture. Philos Trans R Soci B Biol Sci. 2008;363(1492):789–813.
Rose SK, Kriegler E, Bibas R, Calvin K, Popp A, van Vuuren DP, Weyant J. Bioenergy in energy transformation and climate management. Clim Change. 2014;123(3–4):477–93.
Article
Google Scholar
Beringer T, Lucht W, Schapoff S. Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenerg. 2011;3:299–312.
Article
CAS
Google Scholar
Creutzig F. Economic and ecological views on climate change mitigation with bioenergy and negative emissions. GCB Bioenerg. 2014. doi:10.1111/gcbb.12235.
Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. Land clearing and the biofuel carbon debt. Science. 2008;319(5867):1235–8.
Article
CAS
Google Scholar
Orfield ND, Keoleian GA, Love NG. A GIS based national assessment of algal bio-oil production potential through flue gas and wastewater co-utilization. Biomass Bioenerg. 2014;63:76–85.
Article
CAS
Google Scholar
Slegers PM, Leduc S, Wijffels RH, van Straten G, van Boxtel AJB. Logistic analysis of algae cultivation. Bioresour Technol. 2015;179:314–22.
Article
CAS
Google Scholar
Cheng JJ, Timilsina GR. Status and barriers of advanced biofuel technologies: a review. Renew Energy. 2011;36(12):3541–9.
Article
CAS
Google Scholar
Clarens AF, Resurreccion EP, White MA, Colosi LM. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol. 2010;44(5):1813–9.
Article
CAS
Google Scholar
Duong VT, Ahmed F, Thomas-Hall SR, Quigley S, Nowak E, Schenk PM. High protein-and high lipid-producing microalgae from northern australia as potential feedstock for animal feed and biodiesel. Front Bioeng Biotechnol. 2015;3:53.
Article
Google Scholar
Becker EW. Micro-algae as a source of protein. Biotechnol Adv. 2007;100(1):178–81.
Google Scholar
Van Emon ML, Loy DD, Hansen SL. Determining the preference, in vitro digestibility, in situ disappearance, and grower period performance of steers fed a novel algae meal derived from heterotrophic microalgae. J Anim Sci. 2015;93:3121–9.
Article
Google Scholar
Belay A, Kato T, Ota Y. Spirulina (arthrospira): potential application as an animal feed supplement. J Appl Phycol. 1996;8:303–11.
Article
Google Scholar
Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006;101(2):87–96.
Article
CAS
Google Scholar
Becker W. Microalgae in human and animal nutrition. In: Richmond A, editor. Handbook of microalgal culture: biotechnology and applied phycology. Oxford: Blackwell; 2004. p. 312–51.
Google Scholar
Huntley ME, Johnson ZI, Brown SL, Sills DL, Gerber L, Archibald I, Machesky SC, Granados J, Beal C, Greene CH. Demonstrated large-scale production of marine microalgae for fuels and feed. Algal Res. 2015;10:249–65.
Article
Google Scholar
Walsh, B. The FeliX Model. 2015. http://www.felixmodel.org. Accessed 10 Oct 2015.
Rydzak F, Obersteiner M, Kraxner F, Fritz S, McCallum I. Felix3—Impact Assessment Model. Technical report, International Institute for Applied Systems Analysis (2013). Available for download at http://www.felixmodel.com.
Global Energy Assessment Toward a sustainable future. Technical report, IIASA, Laxenburg(2012)
Speedy AW. Overview of world feed protein needs and supply. Food and Agriculture Organization of the United Nations (FAO), Rome (2004) pp. 9–27.
Wise M, Dooley J, Luckow P, Calvin K, Kyle P. Agriculture, land use, energy and carbon emission impacts of global biofuel mandates to mid-century. Appl Energy. 2014;114:763–73.
Article
CAS
Google Scholar
Gerland P, et al. World population stabilization unlikely this century. Science. 2014;346(6206):234–7.
Article
CAS
Google Scholar
FAOSTAT Database. Food and Agriculture Organization of the United Nations, Rome 2015. http://faostat3.fao.org. Accessed 18 Oct 2015.
Vuuren DP, et al. The representative concentration pathways: an overview. Clim Change. 2011:109:5–31.
Herrero M, Havlik P, McIntire J, Palazzo A, Valin H. African livestock futures: realizing the potential of livestock for food security, poverty reduction and the environment in Sub-Saharan Africa (2014).
Smith P, Gregory PJ, Van Vuuren D, Obersteiner M, Havlík P, Rounsevell M, Woods J, Stehfest E, Bellarby J. Competition for land. Philos Trans R Soc B Biol Sci. 2010;365(1554):2941–57.
Article
Google Scholar
Gibbs HK, et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc Natl Acad Sci USA 2010; 107:16732–7.
Fuss S, et al. Betting on negative emissions. Nat Clim Change. 2014;4:850–3.
Liska AJ, et al. Biofuels from crop residue can reduce soil carbon and increase CO2 emissions. Nat Clim Change. 2014;4(5):398–401.
Article
CAS
Google Scholar
Schulze E-D, Körner C, Law BE, Haberl H, Luyssaert S. Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral. GCB Bioenerg. 2012;4(6):611–6.
Article
CAS
Google Scholar
World Energy Outlook Fossil Fuel Subsidy Database. International Energy Agency, Paris. 2014. http://www.worldenergyoutlook.org/resources/energysubsidies/fossilfuelsubsidydatabase/. Accessed 22 Oct 2015.
Commodity Price Data. The World Bank Group, Washington, DC. 2015. http://data.worldbank.org/data-catalog/commodity-price-data. Accessed 20 Oct 2015.
Newbold T, Hudson LN, Hill SL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, et al. Global effects of land use on local terrestrial biodiversity. Nature. 2015;520(7545):45–50.
Bathiany S, Claussen M, Brovkin V, Raddatz T, Gayler V. Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model. Biogeosciences. 2010;7(5):1383–99.
Article
CAS
Google Scholar
Key World Energy Statistics 2013. International Energy Agency, Paris. 2013. http://www.iea.org. Accessed 1 Oct 2015.
Boden TA, et al. Global, regional, and national fossil-fuel CO\(_2\) emissions. Technical report, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy (2013)