Brown S, Sathaye J, Cannell M, Kauppi P. Management of forests for mitigation of greenhouse gas emissions. Cambridge: Cambridge University Press; 1995.
Google Scholar
Gates DM. Climate change and forests. Tree Physiol. 1990;7(1–4):1–5.
Article
Google Scholar
Girardin MP, Bouriaud O, Hogg EH, Kurz W, Zimmermann NE, Metsaranta JM, et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc Natl Acad Sci USA. 2016;113(52):E8406–14.
Article
CAS
Google Scholar
Mäkinen H, Yue CF, Kohnle U. Site index changes of Scots pine, Norway spruce and larch stands in southern and central Finland. Agric For Meteorol. 2017;237:95–104.
Article
Google Scholar
Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lloyd J, et al. Long-term decline of the Amazon carbon sink. Nature. 2015;519(7543):344.
Article
CAS
Google Scholar
Makinen H, Henttonen HM, Kohnle U, Kuehne C, Nojd P, Yue CF, et al. Site carrying capacity of Norway spruce and Scots pine stands has increased in Germany and northern Europe. For Ecol Manag. 2021;492:119214.
Article
Google Scholar
Aakala T, Berninger F, Starr M. The roles of competition and climate in tree growth variation in northern boreal old-growth forests. J Veg Sci. 2018;29(6):1040–51.
Article
Google Scholar
Pearl JK, Anchukaitis KJ, Pederson N, Donnelly JP. Reconstructing Northeastern United States temperatures using Atlantic white cedar tree rings. Environ Res Lett. 2017;12(11):114012.
Article
Google Scholar
Clark DA, Clark DB, Oberbauer SF. Field-quantified responses of tropical rainforest aboveground productivity to increasing CO2 and climatic stress, 1997–2009. J Geophys Res-Biogeosci. 2013;118(2):783–94.
Article
Google Scholar
Babst F, Bouriaud O, Poulter B, Trouet V, Girardin MP, Frank DC. Twentieth century redistribution in climatic drivers of global tree growth. Sci Adv. 2019;5(1):eaat4313.
Article
Google Scholar
Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, et al. Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci USA. 2011;108(23):9508–12.
Article
CAS
Google Scholar
Slot M, Winter K. High tolerance of tropical sapling growth and gas exchange to moderate warming. Funct Ecol. 2018;32(3):599–611.
Article
Google Scholar
Gora EM, Esquivel-Muelbert A. Implications of size-dependent tree mortality for tropical forest carbon dynamics. Nat Plants. 2021;7:384–91.
Article
CAS
Google Scholar
Lewis SL, Lopez-Gonzalez G, Sonke B, Affum-Baffoe K, Baker TR, Ojo LO, et al. Increasing carbon storage in intact African tropical forests. Nature. 2009;457(7232):1003-U3.
Article
CAS
Google Scholar
Qie L, Lewis SL, Sullivan MJP, Lopez-Gonzalez G, Pickavance GC, Sunderland T, et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat Commun. 2017;8:1–11.
Article
CAS
Google Scholar
Cushman KC, Muller-Landau HC, Condit RS, Hubbell SP. Improving estimates of biomass change in buttressed trees using tree taper models. Methods Ecol Evol. 2014;5(6):573–82.
Article
Google Scholar
Muller-Landau HC, Cushman KC, Arroyo EE, Cano IM, Anderson-Teixeira KJ, Backiel B. Patterns and mechanisms of spatial variation in tropical forest productivity, woody residence time, and biomass. New Phytol. 2021;229:3065–87.
Article
Google Scholar
Chambers JQ, Negron-Juarez RI, Marra DM, Di Vittorio A, Tews J, Roberts D, et al. The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape. Proc Natl Acad Sci USA. 2013;110(10):3949–54.
Article
CAS
Google Scholar
Sandel B, Goldstein LJ, Kraft NJ, Okie JG, Shuldman MI, Ackerly DD, et al. Contrasting trait responses in plant communities to experimental and geographic variation in precipitation. New Phytol. 2010;188(2):565–75.
Article
Google Scholar
McDowell NG, Beerling DJ, Breshears DD, Fisher RA, Raffa KF, Stitt M. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol Evol. 2011;26(10):523–32.
Article
Google Scholar
Liu YC, Yu GR, Wang QF, Zhang YJ. How temperature, precipitation and stand age control the biomass carbon density of global mature forests. Glob Ecol Biogeogr. 2014;23(3):323–33.
Article
Google Scholar
Bennett AC, Penman TD, Arndt SK, Roxburgh SH, Bennett LT. Climate more important than soils for predicting forest biomass at the continental scale. Ecography. 2020;43(11):1692–705.
Article
Google Scholar
Wright SJ, Muller-Landau HC, Schipper J. The future of tropical species on a warmer planet. Conserv Biol. 2009;23(6):1418–26.
Article
Google Scholar
Larjavaara M, Muller-Landau HC. Temperature explains global variation in biomass among humid old-growth forests. Glob Ecol Biogeogr. 2012;21(10):998–1006.
Article
Google Scholar
Larjavaara M, Muller-Landau HC. Corrigendum on: Temperature explains global variation in biomass among humid old-growth forests (vol 21, pg 998, 2012). Glob Ecol Biogeogr. 2013;22(6):772.
Article
Google Scholar
Erb KH, Fetzel T, Plutzar C, Kastner T, Lauk C, Mayer A, et al. Biomass turnover time in terrestrial ecosystems halved by land use. Nat Geosci. 2016;9(9):674.
Article
CAS
Google Scholar
Malhi Y. The productivity, metabolism and carbon cycle of tropical forest vegetation. J Ecol. 2012;100(1):65–75.
Article
CAS
Google Scholar
Carvalhais N, Forkel M, Khomik M, Bellarby J, Jung M, Migliavacca M, et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature. 2014;514(7521):213.
Article
CAS
Google Scholar
Liu WJ, Schaefer D, Qiao L, Liu XB. What controls the variability of wood-decay rates? For Ecol Manage. 2013;310:623–31.
Article
Google Scholar
Allen AP, Gillooly JF, Brown JH. Linking the global carbon cycle to individual metabolism. Funct Ecol. 2005;19(2):202–13.
Article
Google Scholar
Henry M, Besnard A, Asante WA, Eshun J, Adu-Bredu S, Valentini R, et al. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For Ecol Manage. 2010;260(8):1375–88.
Article
Google Scholar
Anderson-Teixeira KJ, Herrmann V, Morgan RB, Bond-Lamberty B, Cook-Patton SC, Ferson AE, et al. Carbon cycling in mature and regrowth forests globally. Environ Res Lett. 2021;16:053009.
Article
CAS
Google Scholar
Mori S, Yamaji K, Ishida A, Prokushkin SG, Masyagina OV, Hagihara A, et al. Mixed-power scaling of whole-plant respiration from seedlings to giant trees. PNAS. 2010;107(4):1447–51.
Article
CAS
Google Scholar
Piao SL, Luyssaert S, Ciais P, Janssens IA, Chen AP, Cao C, et al. Forest annual carbon cost: a global-scale analysis of autotrophic respiration. Ecology. 2010;91(3):652–61.
Article
Google Scholar
Zhang ZQ, Evaristo J, Li Z, Si BC, McDonnell JJ. Tritium analysis shows apple trees may be transpiring water several decades old. Hydrol Process. 2017;31(5):1196–201.
Article
CAS
Google Scholar
Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 2014;37(1):153–61.
Article
CAS
Google Scholar
Sankaran M, Hanan NP, Scholes RJ, Ratnam J, Augustine DJ, Cade BS, et al. Determinants of woody cover in African savannas. Nature. 2005;438(7069):846–9.
Article
CAS
Google Scholar
Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;37(12):4302–15.
Article
Google Scholar
Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev. 2016;9(5):1937–58.
Article
Google Scholar
Fricko O, Havlik P, Rogelj J, Klimont Z, Gusti M, Johnson N, et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road scenario for the 21st century. Glob Environ Change-Hum Policy Dimens. 2017;42:251–67.
Article
Google Scholar
Alexandrov GA, Yamagata Y. A peaked function for modeling temperature dependence of plant productivity. Ecol Model. 2007;200(1–2):189–92.
Article
Google Scholar
Slot M, Winter K. In situ temperature response of photosynthesis of 42 tree and liana species in the canopy of two Panamanian lowland tropical forests with contrasting rainfall regimes. New Phytol. 2017;214(3):1103–17.
Article
CAS
Google Scholar
Krause GH, Winter K, Krause B, Jahns P, Garcia M, Aranda J, et al. High-temperature tolerance of a tropical tree, Ficus insipida: methodological reassessment and climate change considerations. Funct Plant Biol. 2010;37(9):890–900.
Article
Google Scholar
Corlett RT. Impacts of warming on tropical lowland rainforests. Trends Ecol Evol. 2011;26(11):606–13.
Article
Google Scholar
Thornthwaite C. An approach toward a rational classification of climate. Geogr Rev. 1948;38(1):55–94.
Article
Google Scholar
Danielson JJ, Gesch DB. Global multi-resolution terrain elevation data 2010 (GMTED2010): US Department of the Interior, US Geological Survey; 2011.
Friedlingstein P, Jones MW, O’Sullivan M, Andrew RM, Hauck J, Peters GP, et al. Global carbon budget 2019. Earth Syst Sci Data. 2019;11(4):1783–838.
Article
Google Scholar
Duffy KA, Schwalm CR, Arcus VL, Koch GW, Liang LYL, Schipper LA. How close are we to the temperature tipping point of the terrestrial biosphere? Sci Adv. 2021;7(3):eaay1052.
Article
CAS
Google Scholar
Anderegg WRL, Hicke JA, Fisher RA, Allen CD, Aukema J, Bentz B, et al. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 2015;208(3):674–83.
Article
Google Scholar
Yao YT, Piao SL, Wang T. Future biomass carbon sequestration capacity of Chinese forests. Sci Bull. 2018;63(17):1108–17.
Article
CAS
Google Scholar
Arora VK, Boer GJ, Friedlingstein P, Eby M, Jones CD, Christian JR, et al. Carbon-concentration and carbon-climate feedbacks in CMIP5 earth system models. J Clim. 2013;26(15):5289–314.
Article
Google Scholar
Cheesman AW, Winter K. Elevated night-time temperatures increase growth in seedlings of two tropical pioneer tree species. New Phytol. 2013;197(4):1185–92.
Article
CAS
Google Scholar
Cordova M, Celleri R, Shellito CJ, Orellana-Alvear J, Abril A, Carrillo-Rojas G. Near-surface air temperature lapse rate over complex terrain in the Southern Ecuadorian Andes: implications for temperature mapping. Arct Antarct Alp Res. 2016;48(4):673–84.
Article
Google Scholar
Larjavaara M. The world’s tallest trees grow in thermally similar climates. New Phytol. 2014;202(2):344–9.
Article
Google Scholar
Chave J, Condit R, Muller-Landau HC, Thomas SC, Ashton PS, Bunyavejchewin S, et al. Assessing evidence for a pervasive alteration in tropical tree communities. PLoS Biol. 2008;6(3):455–62.
Article
CAS
Google Scholar
Keith H, Mackey BG, Lindenmayer DB. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc Natl Acad Sci USA. 2009;106(28):11635–40.
Article
CAS
Google Scholar
Luyssaert S, Inglima I, Jung M, Richardson AD, Reichsteins M, Papale D, et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Change Biol. 2007;13(12):2509–37.
Article
Google Scholar
New M, Lister D, Hulme M, Makin I. A high-resolution data set of surface climate over global land areas. Clim Res. 2002;21(1):1–25.
Article
Google Scholar
Clark DA, Asao S, Fisher R, Reed S, Reich PB, Ryan MG, et al. Reviews and syntheses: field data to benchmark the carbon cycle models for tropical forests. Biogeosciences. 2017;14(20):4663–90.
Article
Google Scholar
Dai AG, Zhao TB, Chen J. Climate change and drought: a precipitation and evaporation perspective. Curr Clim Change Rep. 2018;4(3):301–12.
Article
Google Scholar
Drake JE, Tjoelker MG, Varhammar A, Medlyn BE, Reich PB, Leigh A, et al. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Glob Change Biol. 2018;24(6):2390–402.
Article
Google Scholar
Wotton BM, Nock CA, Flannigan MD. Forest fire occurrence and climate change in Canada. Int J Wildland Fire. 2010;19(3):253–71.
Article
Google Scholar
Harris NL, Gibbs DA, Baccini A, Birdsey RA, de Bruin S, Farina M, et al. Global maps of twenty-first century forest carbon fluxes. Nat Clim Change. 2021;11:234–40.
Article
Google Scholar
Keeling HC, Phillips OL. The global relationship between forest productivity and biomass. Glob Ecol Biogeogr. 2007;16(5):618–31.
Article
Google Scholar
Martin AR, Doraisami M, Thomas SC. Global patterns in wood carbon concentration across the world’s trees and forests. Nat Geosci. 2018;11(12):915.
Article
CAS
Google Scholar