[AAFC] Agriculture and Agri-Food Canada. Soil Landscapes of Canada Working Group, Soil Landscapes of Canada, version 3.2 (digital map and database at 1:1 million scale). 2010. https://sis.agr.gc.ca/cansis/nsdb/slc/v3.2/index.html. Accessed 15 Dec 2020.
Ahlström A, Schurgers G, Smith B. The large influence of climate model bias on terrestrial carbon cycle simulations. Environmental Research Letters. 2017;12(1):014004.
Arora VK, Peng Y, Kurz WA, Fyfe JC, Hawkins B, Werner AT. 2016. Potential near‐future carbon uptake overcomes losses from a large insect outbreak in British Columbia, Canada. Geophysical Research Letters. 2016;43(6):2590–2598.
Balshi MS, McGuire AD, Duffy P, Flannigan M, Kicklighter DW, Melillo J. Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century. Glob Change Biol. 2009;15(6):1491–510.
Article
Google Scholar
Balshi MS, McGuire AD, Duffy P, Flannigan M, Walsh J, Melillo J. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Glob Change Biol. 2009;15(3):578–600.
Article
Google Scholar
Bernier PY, Gauthier S, Jean PO, Manka F, Boulanger Y, Beaudoin A, Guindon L. Mapping local effects of forest properties on fire risk across Canada. Forests. 2016;7(8):157.
Article
Google Scholar
Boulanger Y, Gauthier S, Gray DR, Le Goff H, Lefort P, Morissette J. Fire regime zonation under current and future climate over eastern Canada. Ecol Appl. 2013;23(4):904–23.
Article
Google Scholar
Caspersen JP, Pacala SW, Jenkins JC, Hurtt GC, Moorcroft PR, Birdsey RA. Contributions of land-use history to carbon accumulation in US forests. Science. 2000;290(5494):1148–51.
Article
CAS
Google Scholar
Chen J, Colombo SJ, Ter-Mikaelian MT, Heath LS. Carbon budget of Ontario’s managed forests and harvested wood products, 2001–2100. For Ecol Manage. 2010;259(8):1385–98.
Article
Google Scholar
Chen JM, Ju W, Cihlar J, Price D, Liu J, Chen W, Pan J, Black A, Barr A. Spatial distribution of carbon sources and sinks in Canada’s forests. Tellus B Chem Phys Meteorol. 2003;55(2):622–41.
Google Scholar
Chen J, Ter-Mikaelian MT, Ng PQ, Colombo SJ. Ontario’s managed forests and harvested wood products contribute to greenhouse gas mitigation from 2020 to 2100. For Chron. 2018;43(3):269–82.
Google Scholar
Chen W, Chen J, Cihlar J. An integrated terrestrial ecosystem carbon-budget model based on changes in disturbance, climate, and atmospheric chemistry. Ecol Model. 2000;135(1):55–79.
Article
CAS
Google Scholar
Cleve KV, Oliver L, Schlentner R, Viereck LA, Dyrness CT. Productivity and nutrient cycling in taiga forest ecosystems. Can J For Res. 1983;13(5):747–66.
Article
Google Scholar
Colombo SJ, Gray PA, Partington PJ, Pearson D. Beyond 450 parts per million: Climate change hazards in a 4°C warmer world and how Ontario can help avoid them. Ontario Centre for Climate Impacts and Adaptation Resources, Sudbury, ON/Ontario Ministry of Natural Resources and Forestry, Peterborough, ON. 2015. https://www.academia.edu/21191364/Beyond_450_parts_per_million_Climate_change_hazards_in_a_4_C_warmer_world_and_how_Ontario_can_help_avoid_them. Accessed 15 Dec 2020.
Crowther TW, Todd-Brown KE, Rowe CW, Wieder WR, Carey JC, Machmuller MB, Snoek BL, Fang S, Zhou G, Allison SD, Blair JM. Quantifying global soil carbon losses in response to warming. Nature. 2016;540(7631):104–8.
Article
CAS
Google Scholar
De Vos B, Cools N, Ilvesniemi H, Vesterdal L, Vanguelova E, Carnicelli S. Benchmark values for forest soil carbon stocks in Europe: Results from a large scale forest soil survey. Geoderma. 2015;251:33–46.
Article
CAS
Google Scholar
Domke G, Williams CA, Birdsey R, Coulston J, Finzi A, Gough C, Haight B, Hicke J, Janowiak M, de Jong B, Kurz WA. Forests. In Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report. Cavallaro, N.; Shrestha, G.; Birdsey, R.; Mayes, MA; Najjar, RG; Reed, SC; Romero-Lankao, P.; Zhu, Z., eds. Washington, DC, USA: US Global Change Research Program. 2018:365–98.
[ECCC] Environment and Climate Change Canada, Canadian Air and Precipitation Monitoring Network. 2017. https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/canadian-air-precipitation.html. Accessed 15 Dec 2020.
Farquhar GD, von Caemmerer SV, Berry JA. A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species. Planta. 1980;149(1):78–90.
Article
CAS
Google Scholar
Flannigan MD, Logan KA, Amiro BD, Skinner WR, Stocks BJ. Future area burned in Canada. Clim Change. 2005;72(1–2):1–6.
Article
CAS
Google Scholar
Friedlingstein P, Jones M, O'sullivan M, Andrew R, Hauck J, Peters G, Peters W, Pongratz J, Sitch S, Le Quéré C, Bakker DCE. Global carbon budget 2019. Earth System Science Data. 2019;11(4):1783–838.
Frolking S, Talbot J, Jones MC, Treat CC, Kauffman JB, Tuittila ES, Roulet N. Peatlands in the Earth’s 21st century climate system. Environ Rev. 2011;19:371–96.
Article
CAS
Google Scholar
Genet H, He Y, Lyu Z, McGuire AD, Zhuang Q, Clein J, D’Amore D, Bennett A, Breen A, Biles F, Euskirchen ES. The role of driving factors in historical and projected carbon dynamics of upland ecosystems in Alaska. Ecol Appl. 2018;28(1):5–27.
Article
Google Scholar
Gidden M, Riahi K, Smith S, Fujimori S, Luderer G, Kriegler E, van Vuuren DP, van den Berg M, Feng L, Klein D, Calvin K. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geoscientific Model Development Discussions. 2019;12(4):1443–75.
Article
CAS
Google Scholar
Girardin MP, Bouriaud O, Hogg EH, Kurz W, Zimmermann NE, Metsaranta JM, de Jong R, Frank DC, Esper J, Büntgen U, Guo XJ. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc Natl Acad Sci. 2016;113(52):E8406–14.
Article
CAS
Google Scholar
Gonsamo A, Chen JM, Colombo SJ, Ter-Mikaelian MT, Chen J. Global change induced biomass growth offsets carbon released via increased forest fire and respiration of the central Canadian boreal forest. J Geophys Res Biogeosci. 2017;122(5):1275–93.
Article
Google Scholar
Gonsamo A, Ter-Mikaelian MT, Chen JM, Chen J. Does earlier and increased spring plant growth lead to reduced summer soil moisture and plant growth on landscapes typical of Tundra-Taiga interface? Remote Sensing. 2019;11(17):1989.
Article
Google Scholar
Gower ST, Krankina O, Olson RJ, Apps M, Linder S, Wang C. Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol Appl. 2001;11(5):1395–411.
Article
Google Scholar
Harris I, Osborn TJ, Jones P, Lister D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data. 2020;7(1):1–8.
Article
Google Scholar
Johnstone JF, Hollingsworth TN, Chapin FS III, Mack MC. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob Change Biol. 2010;16(4):1281–95.
Article
Google Scholar
Ju W, Chen JM, Black TA, Barr AG, Liu J, Chen B. Modelling multi-year coupled carbon and water fluxes in a boreal aspen forest. Agric For Meteorol. 2006;140(1–4):136–51.
Article
Google Scholar
Kalinina O, Chertov O, Dolgikh AV, Goryachkin SV, Lyuri DI, Vormstein S, Giani L. Self-restoration of post-agrogenic Albeluvisols: Soil development, carbon stocks and dynamics of carbon pools. Geoderma. 2013;207:221–33.
Article
CAS
Google Scholar
Kalliokoski T, Mäkelä A, Fronzek S, Minunno F, Peltoniemi M. Decomposing sources of uncertainty in climate change projections of boreal forest primary production. Agric For Meteorol. 2018;262:192–205.
Article
Google Scholar
Kauppi PE, Posch M, Hänninen P, Henttonen HM, Ihalainen A, Lappalainen E, Starr M, Tamminen P. Carbon reservoirs in peatlands and forests in the boreal regions of Finland. https://helda.helsinki.fi/bitstream/handle/1975/8507/silva_1997_31_1_(2)_kauppi.p.pdf?sequence=3. Accessed 15 Dec 2020.
Kurz WA, Shaw CH, Boisvenue C, Stinson G, Metsaranta J, Leckie D, Dyk A, Smyth C, Neilson ET. Carbon in Canada’s boreal forest—a synthesis. Environ Rev. 2013;21(4):260–92.
Article
CAS
Google Scholar
Lawrence K, Hutchinson M, McKenney D. Multi-scale digital elevation models for Canada. Frontline, Forestry Research Applications. 2008. https://cfs.nrcan.gc.ca/publications?id=31499. Accessed 15 Dec 2020.
Lemprière TC, Krcmar E, Rampley GJ, Beatch A, Smyth CE, Hafer M, Kurz WA. Cost of climate change mitigation in Canada’s forest sector. Can J For Res. 2017;47(5):604–14.
Article
Google Scholar
Liu J, Chen JM, Cihlar J, Chen W. Net primary productivity mapped for Canada at 1-km resolution. Glob Ecol Biogeogr. 2002;11(2):115–29.
Article
Google Scholar
Ma Z, Peng C, Zhu Q, Chen H, Yu G, Li W, Zhou X, Wang W, Zhang W. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc Natl Acad Sci. 2012;109(7):2423–7.
Article
CAS
Google Scholar
Maraun D. Bias correcting climate change simulations-a critical review. Current Climate Change Reports. 2016;2(4):211–20.
Article
Google Scholar
McGuire AD, Genet H, Lyu Z, Pastick N, Stackpoole S, Birdsey R, D’Amore D, He Y, Rupp TS, Striegl R, Wylie BK. Assessing historical and projected carbon balance of Alaska: A synthesis of results and policy/management implications. Ecol Appl. 2018;28(6):1396–412.
Article
Google Scholar
Meinshausen M, Nicholls ZR, Lewis J, Gidden MJ, Vogel E, Freund M, Beyerle U, Gessner C, Nauels A, Bauer N, Canadell JG. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Develop. 2020;13(8):3571–605.
Article
CAS
Google Scholar
Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L, Vario C. Soil warming, carbon–nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci. 2011;108(23):9508–12.
Article
CAS
Google Scholar
[MECP] Ministry of the Environment, Conservation and Parks. Preserving and protecting our environment for future generations: A made-in-Ontario environment plan. 2018. https://ero.ontario.ca/notice/013-4208. Accessed 15 Dec 2020.
Nelson R, Boudreau J, Gregoire TG, Margolis H, Næsset E, Gobakken T, Ståhl G. Estimating Quebec provincial forest resources using ICESat/GLAS. Can J For Res. 2009;39(4):862–81.
Article
Google Scholar
[OMNRF] Ontario Ministry of Natural Resources and Forestry. Far North Land Cover Data Specifications Version 1.4. 2014. https://geohub.lio.gov.on.ca/. Accessed 15 Dec 2020.
[OMNRF] Ontario Ministry of Natural Resources and Forestry. Forest Resources of Ontario. 2016. https://www.ontario.ca/document/forest-resources-ontario-2016. Accessed 15 Dec 2020.
[OMNRF] Ontario Ministry of Natural Resources and Forestry. Far North Land Use Strategy: Discussion paper. 2019. https://www.ontario.ca/page/far-north-land-use-strategy-discussion-paper. Accessed 15 Dec 2020.
[OMNRF] Ontario Ministry of Natural Resources and Forestry. Natural Resources Information Portal. 2020. https://nrip.mnr.gov.on.ca/s/fmp-online?language=en_US. Accessed 15 Dec 2020.
[OMNRF] Ontario Ministry of Natural Resources and Forestry. Sustainable Growth: Ontario’s Forest Sector Strategy. 2020. https://www.ontario.ca/page/sustainable-growth-ontarios-forest-sector-strategy#section-8. Accessed 14 Jun 2021.
Pan Y, Birdsey RA, Phillips OL, Jackson RB. The structure, distribution, and biomass of the world’s forests. Annu Rev Ecol Evol Syst. 2013;44:593–622.
Article
Google Scholar
Parton WJ, Scurlock JM, Ojima DS, Gilmanov TG, Scholes RJ, Schimel DS, Kirchner T, Menaut JC, Seastedt T, Garcia Moya E, Kamnalrut A. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochem Cycles. 1993;7(4):785–809.
Article
CAS
Google Scholar
Price DT, Alfaro RI, Brown KJ, Flannigan MD, Fleming RA, Hogg EH, Girardin MP, Lakusta T, Johnston M, McKenney DW, Pedlar JH. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ Rev. 2013;21(4):322–65.
Article
Google Scholar
Reyer C, Lasch-Born P, Suckow F, Gutsch M, Murawski A, Pilz T. Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Ann For Sci. 2014;71(2):211–25.
Article
Google Scholar
Riahi K, Van Vuuren DP, Kriegler E, Edmonds J, Oneill BC, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environ Change. 2017;42:153–68.
Article
Google Scholar
Ruess RW, Hendrick RL, Burton AJ, Pregitzer KS, Sveinbjornssön B, Allen MF, Maurer GE. Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecol Monogr. 2003;73(4):643–62.
Article
Google Scholar
Rustad LE, Fernandez IJ. Soil warming: Consequences for foliar litter decay in a spruce‐fir forest in Maine, USA. Soil Science Society of America Journal. 1998:1072–80.
Schulze ED, Lloyd J, Kelliher FM, Wirth C, Rebmann C, Lühker B, Mund M, Knohl A, Milyukova IM, Schulze W, Ziegler W. Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink–-a synthesis. Glob Change Biol. 1999;5(6):703–22.
Article
Google Scholar
Shrestha M, Acharya SC, Shrestha PK. Bias correction of climate models for hydrological modelling–are simple methods still useful? Meteorol Appl. 2017;24(3):531–9.
Article
Google Scholar
Shvidenko A, Nilsson S. A synthesis of the impact of Russian forests on the global carbon budget for 1961–1998. Tellus B Chem Phys Meteorol. 2003;55(2):391–415.
Google Scholar
Slivinski LC, Compo GP, Whitaker JS, Sardeshmukh PD, Giese BS, McColl C, Allan R, Yin X, Vose R, Titchner H, Kennedy J. Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Q J R Meteorol Soc. 2019;145(724):2876–908.
Article
Google Scholar
Smith P, Bustamante M, Ahammad H, Clark H, Dong H, Elsiddig EA, Haberl H, Harper R, House J, Jafari M, Masera O. Agriculture, forestry and other land use (AFOLU). Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Chapter. 2014. 11:811–922.
Stocks BJ, Mason JA, Todd JB, Bosch EM, Wotton BM, Amiro BD, Flannigan MD, Hirsch KG, Logan KA, Martell DL, Skinner WR. Large forest fires in Canada, 1959–1997. Journal of Geophysical Research: Atmospheres. 2002;107(D1):FFR-5.
Taylor KE, Stouffer RJ, Meehl GA. An overview of CMIP5 and the experiment design. Bull Am Meteor Soc. 2012;93(4):485–98.
Article
Google Scholar
Todd-Brown KE, Randerson JT, Hopkins F, Arora V, Hajima T, Jones C, Shevliakova E, Tjiputra J, Volodin E, Wu T, Zhang Q. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences. 2014;11(8):2341–56.
Article
CAS
Google Scholar
Turetsky MR, Kane ES, Harden JW, Ottmar RD, Manies KL, Hoy E, Kasischke ES. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat Geosci. 2011;4(1):27–31.
Article
CAS
Google Scholar
Van Groenigen KJ, Qi X, Osenberg CW, Luo Y, Hungate BA. Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science. 2014;344(6183):508–9.
Article
CAS
Google Scholar
Van Vuuren DP, Carter TR. Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Clim Change. 2014;122(3):415–29.
Article
Google Scholar
Vogel JG, Bond-Lamberty BP, Schuur EA, Gower ST, Mack MC, O’Connell KE, Valentine DW, Ruess RW. Carbon allocation in boreal black spruce forests across regions varying in soil temperature and precipitation. Glob Change Biol. 2008;14(7):1503–16.
Article
Google Scholar
Walker XJ, Baltzer JL, Cumming SG, Day NJ, Ebert C, Goetz S, Johnstone JF, Potter S, Rogers BM, Schuur EA, Turetsky MR. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature. 2019;572(7770):520–3.
Article
CAS
Google Scholar
Walker XJ, Rogers BM, Baltzer JL, Cumming SG, Day NJ, Goetz SJ, Johnstone JF, Schuur EA, Turetsky MR, Mack MC. Cross-scale controls on carbon emissions from boreal forest megafires. Glob Change Biol. 2018;24(9):4251–65.
Article
Google Scholar
[WCRP] World Climate Research Programme, Coupled Model Intercomparison Project (Phase 6). 2019. https://esgf-node.llnl.gov/projects/cmip6/. Accessed 15 Dec 2020.
Wirth C, Schulze ED, Lühker B, Grigoriev S, Siry M, Hardes G, Ziegler W, Backor M, Bauer G, Vygodskaya NN. Fire and site type effects on the long-term carbon and nitrogen balance in pristine Siberian Scots pine forests. Plant Soil. 2002;242(1):41–63.
Article
CAS
Google Scholar