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Abstract 

Background:  Forest ecosystems play an important role in carbon sequestration, climate change mitigation, and 
achieving China’s target to become carbon (C) neutral by 2060. However, changes in C storage and net primary pro-
duction (NPP) in natural secondary forests stemming from tree growth and future climate change have not yet been 
investigated in subtropical areas in China. Here, we used data from 290 inventory plots in four secondary forests [ever-
green broad-leaved forest (EBF), deciduous and evergreen broad-leaved mixed forest (DEF), deciduous broad-leaved 
forest (DBF), and coniferous and broad-leaved mixed forest (CDF)] at different restoration stages and run a hybrid 
model (TRIPLEX 1.6) to predict changes in stand carbon storage and NPP under two future climate change scenarios 
(RCP4.5 and RCP8.5).

Results:  The runs of the hybrid model calibrated and validated by using the data from the inventory plots suggest 
significant increase in the carbon storage by 2060 under the current climate conditions, and even higher increase 
under the RCP4.5 and RCP8.5 climate change scenarios. In contrast to the carbon storage, the simulated EBF and DEF 
NPP declines slightly over the period from 2014 to 2060.

Conclusions:  The obtained results lead to conclusion that proper management of China’s subtropical secondary 
forests could be considered as one of the steps towards achieving China’s target to become carbon neutral by 2060.
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Background
Forests cover 4.03  billion hectares worldwide, which is 
about 30% of the terrestrial surface of our planet, and 
account for 45% of terrestrial C and 75% of terrestrial 
gross primary production (GPP) [1, 2]. Forests play an 
important role in the global C cycle [3, 4]. Vegetation 
NPP measures the direct production capacity of for-
est ecosystems and C sequestration efficiency in the 

terrestrial C cycle [5, 6]. Attaining net zero emissions by 
mid-century will require all nations to comply with the 
objectives and principles laid out in the UN Framework 
Convention on Climate Change (UNFCCC) and its Paris 
Agreement. Accurate estimation of forest C storage and 
potential capacity is essential for achieving this goal. The 
current rate of change in global ecosystems is unprec-
edented. Forests can sequester C in ecosystems [3], and 
this is a safe and affordable strategy for mitigating the 
effects of climate change [7]. Recently, the Chinese gov-
ernment officially announced its goal to peak CO2 emis-
sions before 2030 and achieve C neutrality in 2060. There 
is thus an urgent need to determine how the NPP and 
C sequestration capability of forests might change in 
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the future (especially in 2030 and 2060) under climate 
change.

Natural forest restoration is an effective approach for 
storing C [7, 8]. On average, natural forests have 6 times 
and 40 times C storage capacity of agroforests and plan-
tations, respectively (sequestering 12, 1.9, and 0.3  Pg C 
per 100 M ha by 2100, respectively) [7]. Therefore, natu-
ral forest restoration on disturbed lands should be pri-
oritized [7]. The most effective places for natural forest 
restoration for C storage are in the tropics and subtrop-
ics. Subtropical forests cover 11% of the land surface and 
store significant amounts of C [9]. There are also large 
areas of naturally restored young forest on bare land in 
mountainous areas [10]. Some EBF (the climax veg-
etation) have been converted into secondary forests via 
anthropogenic disturbance [7, 10]. Thus, subtropical sec-
ondary forests have become one of the most common 
types of natural forests that have a complex floristic com-
position and structure [11]. The C sequestration ability of 
plantations and some natural forests has been well char-
acterized, but our understanding of the role of secondary 
forests in sequestering C and mitigating climate change is 
limited [12].

Previous studies have shown that the C sequestration 
ability of forest ecosystems is affected by the interac-
tion of various factors, such as forest origin, forest type, 
stand age, geography, and soil conditions [13, 14]. The 
C sequestration capacity varies greatly among forest 
types [3]. C storage and NPP were significantly higher 
in broad-leaved forest than in CDF in a subtropical area 
[15]. Stand age affects forest C storage and is an impor-
tant variable for predicting future C sequestration [14, 
16]. The growth of forests typically changes with for-
est age, and C stocks tend to be higher in old, complex 
forests [12, 14, 17, 18]. Global climate change will affect 
the structure and functions of forest ecosystems [19, 
20]. According to the IPPC5, surface mean tempera-
ture is projected to increase in the subtropical region, 
and precipitation is projected to decrease (RCPs) [21]. 
The warming tendency from 2011 to 2100 is 0.06  °C/10 
a for RCP2.6, 0.24  °C/10 a for RCP4.5, and 0.63  °C/10 a 
for RCP8.5 [22]. Precipitation will decrease by about 10% 
in subtropical China over the next century. Climate fac-
tors, such as temperature and precipitation, affect forest 
productivity, plant physiology, and community compo-
sition through the specific climatic constraints associ-
ated with different forests [23, 24]. Consequently, there 
is much uncertainty in the direction and magnitude of 
these effects on different forests [20, 25, 26]. More work 
is needed to investigate the ecosystem production and C 
storage capacity in subtropical secondary forests with dif-
ferent stand age and predict changes under future climate 
change conditions [26, 27]. The stabilization scenario that 

assumed the imposition of emissions mitigation policies 
[28] (RCP4.5) and the high—greenhouse gas concentra-
tion scenario that does not include any specific climate 
mitigation target [29] (RCP8.5) will serve as representa-
tives [30], such work would aid the ability of forest man-
agers to manage forests under future climate change.

The C storage and NPP in forests can be estimated 
using conversion parameter estimation, remote sensing, 
and model simulation. The models for simulating C stor-
age and productivity are grouped into empirical statistical 
models based on inventory data of stand characteristics 
and site conditions [31, 32], mechanistic models based 
on the interaction between the physiological process of 
forest growth and environmental factors [33–35], and 
hybrid models based on statistical experience, environ-
mental change, and a combination of forest physiological 
and ecological processes [36]. The use of inventory, satel-
lite, and field data for initialization, parameterization, and 
validation in process-based hybrid models is a promising 
approach for regional estimation and prediction in future 
and climate change [37–39]. TRIPLEX1.6 is a hybrid 
model [36] with simple inputs and high simulation accu-
racy [40]. Compared with models that have been devel-
oped with a static climate or the classical assumption of 
stable site conditions, the TRIPLEX1.6 model can project 
the impact of climate change. Therefore, the TRIPLEX1.6 
model is a suitable method for simulating and predicting 
C storage and NPP in subtropical secondary forest under 
future climate change.

Hunan Province located the subtropical region of 
southern China and has various secondary forests [41]. 
We used national forest inventory plot data across Hunan 
Province and the TRIPLEX1.6 model to simulate stand 
C storage and NPP of subtropical secondary forests and 
predict the effects of two future climate change scenar-
ios (RCP4.5 and RCP8.5) on stand C storage and NPP in 
different forest types. Specifically, the objectives of this 
study were to (1) characterize differences in C storage 
and NPP among forest types; (2) predict stand C stor-
age and NPP in different forest types in 2030 and 2060; 
and (3) quantifying the impacts of stand age and climate 
change (RCP4.5 and RCP8.5) on C storage and NPP sec-
ondary forests in 2030 and 2060. The results of this study 
can provide a reliable data in C storage of natural second-
ary forest to help forest managers achieving the C neu-
trality target in 2060.

Results
TIPLEX1.6 model validation
We used 290 forest stands according to the proportion of 
different forest types to calibrate the TRIPLEX1.6 model, 
and the remainder stands were conducted to validate the 
prediction of stem density, DBH, C storage and NPP. The 
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simulated values were compared against the observations 
of all secondary forests to test the prediction accuracy of 
the model. There were high correlations between the sim-
ulated and observed values for stem density (R2 = 0.99, 
p < 0.01), stand average DBH (R2 = 0.96, p < 0.01), stand C 
storage (R2 = 0.87, p < 0.01), and NPP (R2 = 0.94, p < 0.01) 
in all forest stands (Fig. 1).

Dynamics of stand C storage and NPP with stand age 
among secondary forests
Simulations and predictions of TRIPLEX1.6 revealed the 
dynamics of stand C storage and NPP among secondary 
forest types over 100  years (Fig.  2). Overall, the results 
showed that there were significant differences in stand 
C storage and NPP between CDF and the three other 
subtropical secondary forests. Stand C storage gradually 

increased in all forests in 100 years, whereas the stand C 
storage of CDF was significantly lower than that of the 
other three forests. The dynamics of stand NPP revealed 
a difference in the growth rate of C storage among sec-
ondary forests. The NPP of three broad-leaved forests 
peaked in approximately 25  years and then decreased 
gradually over time, whereas the NPP of CDF increased 
for 50  years and then stabilized. The NPP was signifi-
cantly lower in CDF than in the other three forests.

As the forest develops, the age composition will change 
over time. Most forests gradually change from young to 
mature and over-mature. We then predicted the C stor-
age and NPP among secondary forests across the age 
groups from 2014 to 2060 (Figs.  3 and 4). C storage of 
over-mature forest was consistently the highest in all 
age groups among the different forest types, and the C 

Fig. 1  Comparison between the simulated and observed values of a DBH (cm); b stem density (stem ha−1); c C storage (t C ha−1), and d NPP 
(t ha−1 yr−1)
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storage across all age groups gradually increased. The 
NPP of young forest in the three broad-leaved forests 
was the highest in all age groups and then decreased over 
time (the young forest in DBF could not be well fitted); 
the NPP of mature forest in CDF was the highest and 
then increased over time.

Effects of climatic change on stand C storage and NPP 
in secondary forests
We predicted stand C storage and the difference in NPP 
between current and future climate scenarios (RCP4.5 
and RCP8.5) among secondary forests (Table  1). We 
found that future climate changes were predicted to 
result in increased stand C storage and NPP for all sub-
tropical forests. Overall, the response under RCP8.5 and 
RCP4.5 was the same. Under the same climate scenario, 
the response of NPP in forests in 2030 was stronger than 
that in 2060. The response of stand C storage and NPP of 
the four forest types under the climate scenarios differed. 
The difference in stand C storage for CDF was signifi-
cantly lower compared with that for the other three for-
ests (p < 0.001) (Table 1). The difference in NPP for EBF 
and CDF was significantly lower than that for DBF and 
DEF (p < 0.001) (Table 1).

Prediction of the stand C storage and NPP of secondary 
forests in 2030 and 2060
Overall, the average stand C storage of subtropical sec-
ondary forests is expected to reach 65.74 t C ha−1 in 2030 

and 113.71  t  C  ha−1 in 2060. To understand the role of 
the four subtropical secondary forests in reaching targets 
of having CO2 emissions peak in 2030 and achieving C 
neutrality in 2060, stand C storage and NPP of the four 
forest types under the three climate scenarios (current, 
RCP4.5, and RCP8.5) were predicted (Table 2). Under all 
climate scenarios, stand C storage was the highest in EBF 
and smallest in CDF. The growth rate of C storage was 
the fastest in DEF from 2014 to 2030 and in CDF from 
2030 to 2060. NPP was highest in DEF and lowest in CDF.

Discussion
C sequestration capacity of subtropical secondary forests
The C sequestration capacity of subtropical secondary 
forests varies at different restoration stages. Predictions 
of stand C storage in 2060 by the TRIPLEX1.6 model 
indicated that stand C storage of EBF was greater than 
that of other forest types. Similar results were obtained in 
Jiangxi and Hunan [15, 32]. Previous studies that meas-
ured the biomass of permanent forest plots in subtropi-
cal forest [42, 43] have suggested that the above-ground 
biomass of subtropical old-growth EBF in China is 210–
230  t  ha−1 [44]. This value is consistent with our simu-
lated values of C storage using a conversion coefficient 
of 0.5. These findings indicate that EBF plays an impor-
tant role in forest C storage and productivity capacity in 
subtropical areas. The key role of these late restoration 
stage forests in maintaining C stocks by preventing emis-
sions derived from deforestation, forest degradation, and 

Fig. 2  Changes in the predicted stand C storage (t C ha−1) and NPP (t ha−1 yr−1) by the TRIPLEX1.6 model among subtropical secondary forests 
over time (within 100 years). The markers (circle, square, diamond, and triangle) are the average values of simulated stand C storage and NPP at 
5 year interval for each forest type of all plots under current climate conditions. The lines are the change patterns fitted by the predicted values for 
each forest type over 100 years. EBF evergreen broad-leaved forest, DEF deciduous and evergreen broad-leaved mixed forest, DBF deciduous and 
evergreen broad-leaved forest, CDF coniferous and broad-leaved mixed forest
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future climate warming emphasizes the need for habitat 
protection and sustainable management of complex and 
heterogeneous subtropical secondary forests [3].

There were also differences in the rate of C produc-
tion among forest types. The increasing trend of NPP 
in CDF with stand age indicated that there were inter-
dependent or showed complementary environmental 
adaptations, leading to higher resource utilization effi-
ciency; improved use of their individual niches might 
also explain why the NPP in the forest increased [45, 46]. 
These findings indicate that CDF have the potential to 
support high C productivity. However, in most second-
ary forests, C stocks typically increase rapidly during the 
initial phase of regeneration, and then decelerate over 
subsequent decades and even centuries as primary forest 
species gradually colonize the area and grow to maturity 
[47]. The maximum NPP of EBF occurred earlier com-
pared with that of other forests because more productive 
forests show an earlier growth peak [48].

The study of C sequestration in secondary forests is 
particularly important given that the proportion of 
secondary subtropical forests is projected to continue 
to increase because of increases in anthropogenic and 
environmental disturbances [7, 47]. Previous research 
has shown that the greater amount of C in primary 
forest compared with secondary forest stems in large 
part to the difference in the number of large trees [47]. 
Hence, the natural regeneration of forests is the cheap-
est and technically easiest option for achieving targets 
of having CO2 emissions peak in 2030 and reaching C 
neutrality in 2060. Protecting woodland from fire and 
other human disturbances allows trees to return and 
forests to flourish; it also allows C stocks to build rap-
idly and reach the level of C storage of a mature forest 
in roughly 70  years [7]. The protection of subtropical 
natural secondary forest not only involves restoring 
it to the state of mature forest but also altering forest 

Fig. 3  Changes in predicted stand C storage (t C ha−1) for different age-groups of subtropical secondary forests from 2014 to 2060: a evergreen 
broad-leaved forest; b deciduous and evergreen broad-leaved mixed forests; c deciduous broad-leaved forest; and d coniferous and broad-leaved 
mixed forest. The markers are the average values of predicted stand C storage at one year interval for each age-group of four forest types of all plots 
from 2014 to 2060. The lines are the change patterns fitted by the predicted values for each age-group of four forest types
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Fig. 4  Change in predicted NPP (t ha−1 yr−1) for different age-groups of subtropical secondary forests from 2014 to 2060: a evergreen broad-leaved 
forest; b deciduous and evergreen broad-leaved mixed forests; c deciduous broad-leaved forest; and d coniferous and broad-leaved mixed forest. 
The markers are the average values of predicted NPP for each age-group of four forest types of all plots from 2014 to 2060. Solid regression lines 
are the significant relationship fitted by the predicted values for each age-group of four forest types, with 95% confidence intervals indicated by 
shading

Table 1  The differences in C storage (t C ha−1) and NPP (t ha−1 yr−1) (mean ± standard deviation) of four subtropical secondary forests 
calculated in 2030 and 2060 between current and the future climate scenarios (RCP4.5 and RCP8.5, p < 0.001)

Different letters in the same column indicate significant differences (p < 0.001), and the same letters indicate no significant differences

EBF evergreen broad-leaved forest, DEF deciduous and evergreen broad-leaved mixed forest, DBF deciduous broad-leaved forest, CDF coniferous and broad-leaved 
mixed forest

Forest type C storage in 2030 C storage in 2060 NPP in 2030 NPP in 2060

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

EBF 4.33 ± 0.45a 4.33 ± 0.45a 5.87 ± 0.57a 6.41 ± 0.63a 0.13 ± 0.02b 0.14 ± 0.02b 0.09 ± 0.01b 0.10 ± 0.01b

DEF 4.47 ± 0.78a 4.47 ± 0.78a 6.81 ± 0.97a 7.54 ± 0.99a 0.20 ± 0.01a 0.22 ± 0.01a 0.15 ± 0.01a 0.17 ± 0.01a

DBF 4.62 ± 0.32a 4.62 ± 0.32a 7.31 ± 0.54a 8.13 ± 0.92a 0.20 ± 0.01a 0.22 ± 0.01a 0.17 ± 0.01a 0.18 ± 0.05a

CDF 2.11 ± 0.11b 2.11 ± 0.11b 3.71 ± 0.15b 4.15 ± 0.16b 0.10 ± 0.01b 0.12 ± 0.01b 0.10 ± 0.00b 0.11 ± 0.00b
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structure and composition so that it has a more stable 
C sequestration capacity similar to evergreen broad-
leaved forest.

The influence of stand age on stand C storage and NPP
Forest age was an important factor in modulating the 
vegetation C storage. Owing to nutrient limitation, sto-
matal constraint, declines in photosynthesis during the 
stand development, stand NPP decreased with stand 
age [14, 49]. Previous studies indicate that NPP gener-
ally decreases in old forests to about half or one-third 
of its maximum value; other researchers have found old 
forests to be as productive as young forest stands [15]. 
In our study, the predicted NPP of old forests (100 years) 
decreased by 7.77–16.50% from its peak for all for-
est types except for CDF. The continual recruitment of 
younger trees and rapid leaf area replacement, the com-
pensatory growth of remaining vegetation, and canopy 
structural heterogeneity may offset this decrease in NPP 
in the moderately disturbed forests in this study [12]. 
These results indicate that subtropical secondary for-
ests in China still have high potential for C sequestration 
compared with other forests, and make C storage will 
continue to increase with stand growth. Particularly, C 
storage is related to changes in the age composition [15]. 
These indicate that forest managers should pay more 

attention to the C sequestration contribution of old-
growth forests.

Responses of stand C storage and NPP in subtropical 
forests to climate change
We compared the stand C storage and NPP between 
future climate change (RCP4.5 and 8.5) and the current 
state in 2030 and 2060. Climate change had a positive 
effect on forest C storage, and this might be explained 
by the fact that higher water availability (precipitation) 
and heat (temperature) can promote vegetation pro-
ductivity [20, 50]. Nevertheless, the C sequestration 
potential under future climate change was still lim-
ited in the short and medium-term. This response of 
C storage to climate change is consistent with previous 
studies [51–53]. Stand C storage and NPP significantly 
differed across forest types (p < 0.001). Climate change 
responses of forests were more sensitive in the middle 
of recovery, and this result is consistent with Wu et al. 
[53]. This might be driven by species-specific physi-
ological characteristics and site conditions [41, 54]. 
Under disturbances or environmental changes, species 
asynchrony, facilitation, and species interactions might 
be the main drivers of ecosystem stability [11, 55]. Dif-
ferences in the response of forest types and species to 
climate change contribute to forest community compo-
sition. Hence, understanding these differences would 
aid the development of measures for mitigating the 

Table 2  C storage (t C ha−1), C storage growth rate (%), and NPP (t ha−1  yr−1) in the four subtropical secondary forests predicted 
under current and future climate scenarios (RCP4.5 and RCP8.5) in 2014, 2030, and 2060

EBF evergreen broad-leaved forest, DEF deciduous and evergreen broad-leaved mixed forest, DBF deciduous broad-leaved forest, CDF coniferous and broad-leaved 
mixed forest

Forest type Climate scenario 2014 2030 2060

C storage NPP C storage C storage 
growth rate 
(%)

NPP C storage C storage 
growth rate 
(%)

NPP

EBF Current 55.50 ± 41.57 3.86 ± 1.36 85.22 ± 44.47 53.55 3.83 ± 1.23 135.76 ± 51.01 59.31 3.59 ± 0.80

DEF 41.09 ± 32.69 4.09 ± 1.87 77.34 ± 25.16 88.22 3.95 ± 0.25 129.57 ± 24.95 67.53 3.81 ± 0.24

DBF 40.37 ± 27.41 3.87 ± 1.47 69.21 ± 34.58 71.44 3.78 ± 1.06 119.05 ± 46.53 72.01 3.75 ± 0.91

CDF 28.14 ± 15.60 2.36 ± 0.97 50.57 ± 21.24 79.71 3.04 ± 0.91 93.54 ± 29.35 84.97 3.25 ± 0.66

Average 37.12 ± 28.56 3.29 ± 1.29 65.74 ± 31.21 77.10 3.54 ± 0.97 113.71 ± 38.70 72.97 3.54 ± 0.69

EBF RCP4.5 – – 88.56 ± 47.29 59.57 3.91 ± 1.13 138.63 ± 54.15 62.67 3.68 ± 0.81

DEF – – 81.81 ± 25.50 99.10 4.15 ± 0.24 136.38 ± 25.32 76.34 3.96 ± 0.24

DBF – – 74.88 ± 38.21 85.48 4.03 ± 1.41 129.36 ± 51.54 86.91 3.92 ± 1.00

CDF – – 52.69 ± 22.96 87.24 3.15 ± 0.97 97.40 ± 31.71 92.60 3.35 ± 0.69

Average – – 69.26 ± 33.40 86.58 3.69 ± 1.05 119.27 ± 41.62 81.43 3.67 ± 0.73

EBF RCP8.5 – – 88.57 ± 47.57 59.59 3.92 ± 1.14 139.17 ± 54.46 63.31 3.69 ± 0.81

DEF – – 82.31 ± 25.76 100.32 4.16 ± 0.24 137.11 ± 25.62 77.28 3.98 ± 0.24

DBF – – 75.41 ± 38.63 86.80 4.05 ± 1.42 130.19 ± 52.11 88.11 3.90 ± 1.01

CDF – – 52.94 ± 23.11 88.13 3.16 ± 0.97 97.84 ± 31.90 93.47 3.36 ± 0.69

Average – – 69.65 ± 33.67 87.63 3.70 ± 1.05 119.87 ± 41.97 82.34 3.68 ± 0.74
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negative effects of climate change, such as changes in 
stand structural attributes [53].

Model evaluation, limitations, and uncertainty
We calibrated and validated the TRIPLEX1.6 model with 
875 permanent forest plot records in 2014 to obtain the 
optimal parameters for EBF, DEF, DBF, and CDF, which 
are four types of subtropical natural secondary forests in 
southern China. Our focus in adjusting model parame-
ters was on the initial value of soil parameters. Soil fer-
tility is an important initial input variable [20]. The soil 
fertility should be set based on the growth of the forest, 
the thickness of the humus layer observed in the field, 
and the degree of stress that the soil has experienced in 
the past. The value of soil fertility in same area are pro-
vided in previous studies, however, subtropical ecosys-
tems are vulnerable to extreme climate events caused by 
global warming [56]. For example, the heavy snow/ice 
event that occurred in 2008 in southern China severely 
damaged forest ecosystems and resulted in decreased soil 
fertility. Therefore, the effect of historical natural disas-
ters should be considered when setting the initial value of 
soil fertility. High consistency between the observed and 
simulated data from the model was achieved via model 
parameterization and repetitious adjustments.

Our prediction of C storage indicates that it will accu-
mulate gradually with forest growth in medium-term, 
and changes in NPP among subtropical secondary forests 
were consistent with those reported in previous studies 
[15, 57]. All stand variables had R2 values of 0.87–0.99, 
which indicated that they could be used to predict 
growth C dynamics across various stand ages. These find-
ings of model performance are consistent with previous 
studies showing that the TRIPLEX1.6 model is robust 
and can be used to predict the growth of subtropical 
natural secondary forests and artificial forests, including 
C. lanceolata and P. massoniana in southern and south-
east China with R2 values of 0.94 for total biomass C [38] 
and 0.91 for total biomass [39]. Combined with previous 
simulation results of coniferous forests, the TRIPLEX1.6 
model could simulate forest growth with a high level of 
accuracy for all forest types in subtropical China.

The high biophysical heterogeneity and large amount 
of young age group subtropical secondary forests in sub-
tropical China have increased the difficulty of evaluating 
the role of stand C storage and NPP in subtropical for-
ests [57, 58]. Because of data limitations, the renewal of 
natural forest and under story regeneration in second-
ary forests was not considered in this study, which might 
reduce the robustness of our simulation results. Subtrop-
ical secondary forest has a high C sequestration capac-
ity. In this study, the existing area of vegetation was not 
considered. Accurate prediction of spatial distributions is 

a major challenge and an important topic that should be 
examined in future studies. TRIPLEX1.6 simulations do 
not consider several variables related to contingency fac-
tors (i.e., anthropogenic disturbances, infestations, and 
extreme weather), which decreases their accuracy [37]. 
Despite these uncertainties, the TRIPLEX1.6 model sug-
gests that the secondary forests in subtropical China have 
a high capacity for C sequestration and storage, but the 
effects of climate change (RCP4.5 and RCP8.5) on stand 
C storage and NPP differ among forest types.

Conclusions
We used inventory plots data at different restoration 
stages and hybrid model of TRIPLEX 1.6 to predict 
changes in stand C storage and NPP under the two cli-
mate change scenarios (RCP4.5 and RCP8.5). Stand C 
storage of EBF was predicted to be the largest, and the 
NPP of DEF was predicted to be the highest. The NPP in 
CBF increased gradually over time and showed strong C 
storage potential capacity. Old-growth forests (mature 
and over-mature forests) have an important role in for-
est C sequestration. We not only considered the impact 
of stand age and forest types on C storage and NPP, but 
also made predictions about the impact of climate change 
under carbon neutrality in 2060. There was a significant 
difference in the effects of climate change (RCP4.5 and 
RCP8.5) on stand C storage between CDF and the other 
three forest types, but these changes were still limited in 
short and medium-term. These results indicate that the 
role of the floristic composition and tree growth of exist-
ing forests should be considered by forest managers for 
increasing C sequestration in secondary forests.

Methods
Study area
This study was carried out in Hunan Province (24°38′–
30°08′ N and 108°47′–114°15′ E, Fig.  5) in central sub-
tropical China. This province features mountains in the 
east, south, and west with elevations ranging from 21.60 
to 2115.20 m (Fig. 5), hills in the east-central region, and 
plains in the northeast region surrounding Dongting 
Lake. The topography is heterogeneous, with slopes 
between 0° and 70°. The total land area is 21.18  mil-
lion  ha, including 12.53  million  ha of forests, 3.92  mil-
lion ha of arable land, 1.20 million ha of land covered by 
water bodies, and 1.00 million ha of developed land.

This region has a continental and subtropical humid 
monsoon climate that is rich in light, heat, and water 
resources (Fig. 6). The mean annual rainfall is 1500 mm, 
with 75% falling between March and August. The mean 
annual temperature is 14.10  °C. Annual climate changes 
are large: summers are hot, and winters are short and 
cold. The soil types include red soil, yellow soil, and 
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red-yellow soil, with small areas of calcareous soil, pur-
ple soil, moisture soil, and mountain meadow soil (Fig. 6), 
which are mainly developed from granite, limestone, and 
shale.

Forest types and stand age groups
The National Forest Inventory of China classified sub-
tropical forests into four forest types according to the 
dominant tree species: pine forest, fir forest, deciduous 
forest, and evergreen broad-leaved forest [59]. These 
forest types encompass most but not all wide spread 
tree species in Hunan. DEF are an important forest type 
in the restoration process that have not been examined 
extensively in previous studies because of the difficulty of 
determining the dominant tree species and stand struc-
ture. Thus, we divided subtropical secondary forest into 
four forest types: CDF, DBF, DEF, and EBF. Forest type 
identification was based on the technical regulations for 
continuous forest inventory: coniferous or broad-leaved 
species accounted for less than 70% of the species in 
CDF; the proportion of broad-leaved trees accounted for 
more than 70% of the species in broad-leaved forest; and 
the proportion of all broad-leaved species accounted for 
less than 70% of the species in DEF [60]. Among the nat-
ural secondary forests in Hunan, CDF are mainly domi-
nated by Pinus massoniana forests; the DBF are mainly 
dominated by Alniphyllum fortunei, Choerospondias 
axillaris, and Liquidambar formosana. Hance; and tree 
species in the EBF are mainly dominated by Cyclobalano-
psis glauca Thunb, Litsea coreana Levl. var. sinensis, and 
Schima superba Gardn.

The study area is composed of subtropical natural 
uneven-aged forest. Therefore, five of the largest trees 
outside each plot were selected for stem core sampling, 
and the ring counts of these five tree samples were aver-
aged to estimate stand age [13]. According to the forestry 
standards of China, the age composition of four forest 
types can be divided into young forest, middle-aged for-
est, premature forest, mature forest, and over-mature 
forest. The age group of the two mixed forests was deter-
mined by the age group of the dominant tree species and 
their growth condition [An additional table file shows 
this in more detail (see Additional file 1)].

TRIPLEX1.6 model description
TRIPLEX is a hybrid model [An additional table file 
shows this in more detail (see Additional file  2)] that 
integrates three well-established process-based sub-
models: the forest production sub-model 3-PG [61], the 
forest growth and yield sub-model TREEDYN3.0 [33], 
and the soil-C, soil-N (nitrogen) and soil–water-balance 
sub-model CENTURY4.0 [62]. The forest production 
sub-model estimates monthly GPP (including above- 
and below-ground biomass) from photosynthetic active 
radiation (PAR), mean air temperature, vapor pressure 
deficit (VPD), soil water, the percentage of frost days, 
and the leaf area index. The forest growth and yield sub-
model calculates tree growth and yield variables (height, 
DBH) using a function of the stem wood biomass incre-
ment [33]. The soil C, soil N, and soil–water balance 
sub-model simulate soil C and N dynamics between lit-
ter and soil pools, simulate water balances and dynamics, 

Fig. 5  The spatial distribution of 875 permanent sample plots (PSP) with 93 PSP in evergreen broad-leaved forest (EBF), 267 PSP in deciduous and 
evergreen broad-leaved mixed forest (DEF), 155 PSP in deciduous broad-leaved forest (DBF), and 360 PSP in conifer and broad-leaved mixed forest 
(CDF) in Hunan Province, southern China, respectively (modified in 2014)
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and calculate monthly water loss through transpiration, 
evaporation, soil water content, and snow water con-
tent [62]. TRIPLEX combines empirical and mechanistic 
components that can simulate various growth volumes 
in forest ecosystems using input data derived from site, 
soil, climate, and stand growth [36]. The hybrid model 
compensates for the inability of simplified growth mod-
els to take into account soil factors, feedback between 
the forest ground and underground, and climate impacts. 
The simulation of the TRIPLEX model involves key pro-
cesses and dynamics including PAR, GPP, forest growth, 
biomass, soil C, soil nitrogen, and soil water [40]. After 
the model was optimized to version 1.6, a reasonable and 
balanced parameter generalization procedure that did 
not lead to a significant reduction of model accuracy but 
increased model practicability was described [40].

The TRIPLEX1.6 simulation requires input data such as 
latitude, longitude, soil texture, monthly climate records, 

tree species physiological variables (such as maximum 
tree height and diameter), tree species process mediators, 
stand structure, and certain initial site conditions. Simu-
lation outputs include tree diameter, height, basal area, 
total volume, leaf area index, GPP, net ecosystem produc-
tion (NEP), biomass, soil C, and N and water dynamics. 
TRIPLEX1.6 has been tested and applied to forest growth 
and biomass production on a regional scale at Zhejiang 
Province, China [39, 63] and northeastern China [37] and 
has also been used to predict Cunninghamia lanceolata 
and P. massoniana stand production in Hunan Province, 
China [38]. Natural secondary forests in a subtropical 
region were examined in this paper, and the suitability 
of the model in the subtropical region has been demon-
strated by previous studies [38].

Fig. 6  Maps showing variation in elevation, annual precipitation, annual average temperature, and soil types in Hunan Province
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Model input data
There were five primary data sources: permanent forest-
plot (667  m2) records taken from the forest inventory, 
climate datasets, field observations, the literature, and 
assumptions. In Hunan Province, there were 875 per-
manent sample plots of natural secondary forest in 2014. 
The permanent forest plot database is a well-designed 
forest inventory program built from data acquired at 
5-year intervals beginning in 1973. Field investigations 
in the permanent forest plot database include records 
of location, site conditions, and DBH of each tree; aver-
age stand height [64]; and land use, site class, dominant 
tree species, stand density, age, average DBH, average 
tree height, and volume [65]. Plots included at least one 
of the four forest types and met the criteria for tree size 
(e.g., DBH ≥ 5.0  cm) and stage of stand development 
(with the exception of seedlings). Plots were required to 
meet various criteria regarding site, climate, and growth, 
and the initial data needed to be detailed and representa-
tive of the forest types, as well as of the study area as a 
whole [38]. According to the forest plot database, stand 
biomass can be estimated using allometric equations [46] 
[An additional table file shows this in more detail (see 
Additional file 3)] for the main subtropical tree species. 
The conversion parameter between biomass and C stor-
age was 0.5. Based on data collected in 2009 and 2014, we 
calculated average annual NPP (t  ha−1  year−1) using the 
following formula:

where Bt1 and Bt2 are the plot biomass in year t1 (2009) 
and t2 (2014), respectively. Climate data for each per-
manent plot were interpolated from data collected from 
meteorological stations [38]. The data recorded between 
2005 and 2014 were used as climate inputs for each plot. 
The climate inputs were monthly frost days, monthly 
average air temperature, monthly sum of precipitation, 
and the monthly average atmospheric VPD [36]. Atmos-
pheric N deposition was set to 18 kg N ha−1 year−1 [59]. 
Field observations were made at independent sampling 
plots in Hunan Province. The choice of reference litera-
ture and assumptions were based on indicator functions 
for the four forest types selected for this study [66–68].

Predictors for the TRIPLEX1.6 model were climate 
normal from the 96 automatic meteorological monitor-
ing stations in Hunan Province for current (2005–2014) 
and future (2015–2060) periods. The future climate 
change scenario data were derived from the WCRP’s 
CMIP5 multi-model dataset provided by the National 
Climate Center of China Meteorological Administra-
tion (http://​www.​clima​techa​nge-​data.​cn). According to 

(1)NPP =

Bt2 − Bt1

t2 − t1

the fifth report of the IPCC, we obtained data for cur-
rent scenarios, RCP4.5 (medium emissions scenario, 
assumes the imposition of emissions mitigation poli-
cies), and RCP8.5 (high emissions scenario, does not 
include any specific climate mitigation target) to simu-
late the responses of different forest types and age com-
position to future climate change. Because the CMIP5 
GCMs have different horizontal resolutions, future cli-
mate data were interpolated on a common 1° × 1° grid 
using the nearest neighbor interpolation method.

Model initialization, parameterization, and simulations
From the initial modelling, we examined the most sen-
sitive parameters through direct measurement, litera-
ture searches, default values, and statistical fitting. To 
simulate forest ecosystem processes and dynamics, 
TRIPLEX1.6 requires some initial values of stand vari-
ables describing conditions of forest stands and soils. 
There are three key variables (stand density, tree height, 
and DBH) related to initial conditions for forest growth 
and yield simulation [40]. To ensure the robustness of 
the TRIPLEX1.6 model, most of the general and non-
specific site parameters were derived from previous 
studies. These include PAR parameters; the minimum, 
maximum, and optimum temperature for tree growth; 
stomata and canopy conductance; initial N for tree 
growth; the lignin-nitrogen ratio and lignin fraction of 
leaf and fine and coarse roots; and the fraction of soil 
water flow [39]. Several new parameters such as wood 
C density, specific leaf area (SLA), mortality, the frac-
tion of leaf, branch, wood, and coarse and fine roots 
were used and adjusted from default model values to 
better represent the forest ecosystems of subtropical 
China for this study [An additional table file shows this 
in more detail (see Additional file 4 and 5)].

TRIPLEX1.6 was calibrated by randomly selecting 
one-third of each forest type and validated by remain-
der data before simulation runs. The simulation was 
executed for DBH, stem density, C storage, and NPP. 
We simulated each stand from its respective year of 
regeneration to 2014, at which point all simulations 
across all stands within the natural subtropical forest 
region were summed. The same procedure was fol-
lowed for all model runs by Zhou et al. [40].

Abbreviations
C: Carbon; N: Nitrogen; NPP: Net primary production; NEP: Net ecosystem 
production; GPP: Gross primary productivity; PAR: Photosynthetic active radia-
tion; VPD: Vapor pressure deficit; DBH: Diameter at breast height (1.3 cm); PSP: 
Permanent sample plots; EBF: Evergreen broad-leaved forest; DEF: Deciduous 
and evergreen broad-leaved mixed forest; DBF: Deciduous broad-leaved 
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convention on climate change.
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