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Abstract 

Background:  Forests provide the largest terrestrial sink of carbon (C). However, these C stocks are threatened by 
forest land conversion. Land use change has global impacts and is a critical component when studying C fluxes, but it 
is not always fully considered in C accounting despite being a major contributor to emissions. An urgent need exists 
among decision-makers to identify the likelihood of forest conversion to other land uses and factors affecting C loss. 
To help address this issue, we conducted our research in California, Colorado, Georgia, New York, Texas, and Wisconsin. 
The objectives were to (1) model the probability of forest conversion and C stocks dynamics using USDA Forest Ser-
vice Forest Inventory and Analysis (FIA) data and (2) create wall-to-wall maps showing estimates of the risk of areas to 
convert from forest to non-forest. We used two modeling approaches: a machine learning algorithm (random forest) 
and generalized mixed-effects models. Explanatory variables for the models included ecological attributes, topogra-
phy, census data, forest disturbances, and forest conditions. Model predictions and Landsat spectral information were 
used to produce wall-to-wall probability maps of forest change using Google Earth Engine.

Results:  During the study period (2000–2017), 3.4% of the analyzed FIA plots transitioned from forest to mixed 
or non-forested conditions. Results indicate that the change in land use from forests is more likely with increasing 
human population and housing growth rates. Furthermore, non-public forests showed a higher probability of forest 
change compared to public forests. Areas closer to cities and coastal areas showed a higher risk of transition to non-
forests. Out of the six states analyzed, Colorado had the highest risk of conversion and the largest amount of above-
ground C lost. Natural forest disturbances were not a major predictor of land use change.

Conclusions:  Land use change is accelerating globally, causing a large increase in C emissions. Our results will help 
policy-makers prioritize forest management activities and land use planning by providing a quantitative framework 
that can enhance forest health and productivity. This work will also inform climate change mitigation strategies by 
understanding the role that land use change plays in C emissions.

Keywords:  Ecosystem services, Carbon dynamics, Forest loss drivers, Forest inventory, Remote sensing, USDA Forest 
Inventory and Analysis (FIA) data
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Background
Forests, as part of their ecosystem services, serve as the 
world’s largest terrestrial sink of carbon (C) by stor-
ing it in biomass and soil [1–3]. This C cycles through 
the ecosystem via biogeochemical processes causing it 
to move between different pools, (i.e., aboveground and 
belowground biomass, dead wood, litter, organic soil, 
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and harvested wood products) or back to the atmosphere 
depending on the ecosystem’s dynamics and distur-
bances. These processes include photosynthesis, respi-
ration, decomposition, and natural and anthropogenic 
disturbances [4]. Studies of C stocks in forests are key 
to informing changes in greenhouse gas emission and 
removal accounts under climate change scenarios [3] and 
can be estimated at different scales.

When quantifying C at a large geographic scale, land 
use and land cover change and disturbance history are 
essential components to consider [3, 5, 6]. In this matter, 
land use dynamics [2, 6–8], including land use legacies 
[7, 9], are major factors affecting terrestrial C fluxes. For 
example, C accumulation in forests of the eastern United 
States has been credited to historical changes in land use, 
especially to forest regrowth after agricultural abandon-
ment [9]. However, when quantifying C at a stand-level 
scale, land use change is rarely incorporated [10], creat-
ing uncertainties in C accounting.

Carbon emissions due to land use change can be quan-
tified by separating the different C fluxes into its indi-
vidual components. The Intergovernmental Panel on 
Climate Change (IPCC) provides guidelines for the esti-
mation of national greenhouse gas (GHG) inventories 
[11], including C, which are consistent with reporting 
requirements in the United Nations Framework Conven-
tion on Climate Change (UNFCCC). These guidelines 
specifically include operational models to estimate fluxes 
(emissions and removals) using a process for each C pool. 
The fluxes are estimated for each land use category and 
differentiate the categories remaining the same from 
those that were converted to another land use.

However, much uncertainty exists when quantify-
ing how much land use and land cover change actu-
ally contributes to C flux [2, 12], due, in part, to a lack 
of confidence in separating these fluxes into individual 
components [12]. In addition, C dioxide emissions or 
transfers resulting from land use change may be under-
estimated as some processes (e.g., tree harvesting and 
land clearing from shifting cultivation) are not consid-
ered [9, 12–14] or data is limited. Similarly, there are too 
few global-scale observational constraints to exclusively 
estimate anthropogenic land use and land cover C emis-
sions [12]. Different methods have been used to estimate 
changes in C density caused by land use change. Three of 
the most common approaches include: inventory-based 
estimates, satellite-based estimates, and process-based 
vegetation models [14]. In the US, estimates of GHG 
emissions and removals are estimated with data from the 
Forest Inventory and Analysis (FIA) program, which is in 
charge of conducting the US national forest inventory [4].

One of the common measures used in land use change 
research is land cover change, though this does not 

always accurately reflect actual land use change [15]. 
A crucial difference between these two concepts is that 
tree cover loss (in case of forest cover) does not always 
show the activities that actually happen on the ground. 
Different drivers affect land use and land cover change. 
On the one hand, global drivers of tree cover loss include 
deforestation (mostly in Southeast Asia and Latin Amer-
ica), shifting agriculture (Africa and Latin America), 
large-scale forestry operations (Europe, North America, 
Russia/China/Southeast Asia, and Australia/Oceania), 
wildfire (Russia/China/Southeast Asia, Australia/Oce-
ania, and North America), and urbanization (North 
America) [16]. On the other hand, land use change is 
caused by both human and climate drivers. Decisions 
on land use are often based on short-term economic 
factors and are influenced by globalization, technologi-
cal innovation, and policies at different levels (i.e. local, 
state or national) [17]. For forest lands, the risk of conver-
sion to other land uses is correlated with environmental, 
political, social, cultural, and economic factors [10, 17]. 
Key drivers of this conversion include changes in demo-
graphic variables [3], urban expansion [18], distance to 
the nearest road [10], and deforestation for commodity 
production [16]. Therefore, understanding the trends and 
long-term demographic context for population change 
could aid land managers and other stakeholders in miti-
gating the effects of residential development, especially 
near public lands, and anticipate future human popula-
tion changes [19].

While global projections on carbon are bleak, the cur-
rent situation in the US shows a better picture. Land use 
change at a global level is projected to contribute between 
11 and 110 billion metric tons of carbon to the atmos-
phere by 2050 due to economic, social, and demographic 
trends [8]. For forest land, global trends indicate a loss in 
the tropics and an increase in Europe, China, and North 
America [14]. Specifically in the US, this trend is due to 
better forest management practices, reforestation, and an 
improvement in natural resources management, which 
have contributed to 11–13% of the global ecosystem car-
bon removal [8]. However, even though these forests are 
expected to continue sequestering carbon, they would do 
so at declining rates mainly due to aging forests and land 
use dynamics [20].

The US’s future in C emissions might change accord-
ing to land use change projections. Some studies show 
that even though current estimates for the eastern US 
(2001 to 2012) indicate that forest land use has changed 
(positive or negative) less than 5%, large changes in land 
use are likely in the coming decades in a business-as-
usual scenario [3]. For this study, recent trends indicated 
increasing forest areas in the southern Plains and Great 
Lakes’ states and losses in forest areas in the central and 
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south-central states. Additional areas with high probabil-
ity of conversion to non-forest include the Great Plains, 
especially in poorly stocked areas and/or sites with small 
diameter trees [10]. Other studies estimate as high as 36% 
of the land area in the conterminous United States to 
change in land use between 2001 and 2051 in a business-
as-usual scenario [21]. According to this study, urban 
and forest land uses in the US are predicted to increase 
by 79% and 7%, respectively. On the other hand, cropland 
and pasture land uses are expected to decline by 16% and 
13%, respectively [21].

Overall, the study of land use change is critical in for-
est C dynamics and better land use planning is needed 
to secure ecosystem services provided by forests. Even 
though some C stocks are increasing due to forest 
regrowth, especially from agricultural abandonment 
[22, 23], it is critical that we address the issue of forest 
conversion due to its significant contribution on the C 
budget. For example, in the US, forest lands, harvested 
wood products, and urban trees together offset more 
than 11% of the total annual GHG emissions [24]. Here, 
C uptake estimates for forests remaining forests were 
−564.5 MMT CO2 equivalent (eq.) in 2018. On the other 
hand, C emission estimates for forests which transitioned 
to other land uses during the same year were 127.4 MMT 
CO2-eq  [24]. To help address these issues, our research 
focuses on modeling the relationships among distur-
bances, land use change, and aboveground C stocks in 
six US states over an 18-year period. The research objec-
tives are to (1) model the probability of forest conver-
sion and C stock’s dynamics using USDA Forest Service 
Forest Inventory and Analysis (FIA) data and (2) create 
wall-to-wall maps showing estimates of the risk of areas 
converting from forest to non-forest. We hypothesize 
that forests which are heterogeneous, accessible, close to 
urban areas, or affected by natural disturbances will have 
a higher rate of conversion. This research will allow us to 
better understand the impacts of land use change on the 
forest C cycle and be able to more effectively determine 
priority areas for management and land use planning.

Methods
Study area
This research includes six US states: California, Colorado, 
Georgia, New York, Texas and Wisconsin (Fig. 1). These 
six states were chosen because they are spread through-
out the country, they have very contrasting ecological 
and socioeconomic differences, and represent each of 
the US FIA work units [25]. This diversity in locations 
allowed us to represent different forest types, disturbance 
history, population dynamics and drivers that could 
influence our study variables. In addition, there were at 
least two plot measurements for all of those states, which 

allows for a temporal analysis of change. The study area 
was limited to areas with forest land cover at the start of 
the study. For this manuscript, we consider the FIA defi-
nition of forest land, defined as land at least 0.4 ha in size 
and 36.6 m wide that contains at least 10% canopy cover 
by live tally trees of any size or has had at least 10 percent 
canopy cover of live tally species in the past [25].

Forests in the US cover more than one-third of its land-
scape and comprise more than 28 billion cubic meters 
of wood volume. Even though overall forest area has 
remained stable, there have been changes at regional and 
local scales that are not reflected by aggregated num-
bers. In addition, the road network in the country has 
expanded, making forest lands more accessible to people 
[26]. This easier access to forests would likely encour-
age land use changes. Major natural forest disturbances 
nationally include wildfire, insects, and disease [26]. 
These and other disturbances, as well as changing for-
est conditions, cause changes in tree species composi-
tion and distribution. Climate in the study region varies 
widely.

Data collection
Ground data used in this study were collected and organ-
ized into a database by the USDA Forest Inventory and 
Analysis (FIA) program from 2000 to 2017. This database 
includes different phases and tables depending on the 
scale and level of detail of the information contained in 
each. For this research, we worked with ground-sampled 
FIA plots that were remeasured approximately every five 
years for eastern states and 10  years for western states, 
which allowed for a spatiotemporal analysis. These plots 
covered a 0.4 hectare sample area and were divided into 
four fixed-radius (7.32 m) subplots. Within each subplot, 
a microplot (2.07 m radius) was nested. Here, trees with 
a diameter at breast height (d.b.h.) less than 12.7 cm but 
greater than 2.54  cm were measured. Forest and non-
forest conditions were assigned by the field crew in each 
remeasurement, which allowed us to track any land use 
changes that occurred. To obtain human population and 
housing information, we used the United States’ 2010 
National Census [19]. For obtaining spectral informa-
tion, we used a mosaic of Landsat 8 surface reflectance 
imagery (30 m spatial resolution) from the period 2018-
05-01 to 2018-09-30 (which corresponded to the summer 
months) obtained from the Google Earth Engine plat-
form (LANDSAT/LC08/C01/T1_SR). The initial image 
collection consisted of 4093 Landsat images that covered 
the study region during the summer months.

Data analysis
Information at the subplot and microplot levels was gath-
ered for the different time periods available (initial time ti 
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and final time tf) and scaled-up using the FIA expansion 
factors to a plot level (minimum modeling unit). The ini-
tial data set was divided into training and test data sets 
to fit and validate the models. The total number of plots 
with complete observations was 11,262, which where 
subdivided into the training and test data through prob-
ability samples with replacement in R (using a probability 
value of 0.7 for the training data and 0.3 for the test data) 
[27].

Our goal was to build one model per variable of inter-
est (response variable). Therefore, model comparisons 
were performed to select the model which yielded the 
optimal fit statistics. Because our end goal was to build 
a replicable model applicable across the continental US, 
we included the variables state and forest type in both 
the LUC and the C change models. This allowed us to 
account for and capture the differences between the six 
states that were not captured with the rest of the explana-
tory variables.

The response variable for the logistic model was the 
probability of forested areas being converted to mixed 
or non-forested areas. For the purposes of this study, we 
will refer to forested plots which transitioned to mixed 
(partial forest/non-forest plot, e.g., one forest plus one 
non-forest condition) or non-forest conditions as plots 
that changed in land use. The response variable for the C 
model was C stock change in the total aboveground live 
biomass (defined as the sum of dry biomass located in the 
merchantable bole, top and limbs, stump, woodland tree 
species and saplings).

Model building
To explore the performance of different modeling 
approaches, we compared two main methods: a statisti-
cal model (parametric approach) and a machine learning 
algorithm (non-parametric approach). We compared the 
performance of these two main approaches to select the 
best performing model for each variable of interest. For 

Fig. 1  Study area across the United States displaying state boundaries. Highlighted areas show the states selected for this study. Green areas show 
forested areas in those states
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both models, parametric methods were superior in pre-
dicting our response variable (See Additional file 1 for the 
Random Forests results and background). For the statisti-
cal models, we used mixed effects modeling because we 
worked with ecological data that had nested data, as well 
as temporal and spatial correlation structures. To select 
which type of mixed effects models to use, we looked at 
the characteristics of our variables of interest, especially 
the response variable. For the land use change model, the 
response variable had a binary behavior (0: no change 
and 1: change). Therefore, we chose a logistic model, 
which would give us the probability (or odds) of the 
response variable. In addition, for the C change model, 
the response variable was quantitative and had a linear 
relationship with the predictor variables. Therefore, we 
selected a linear regression model that accounted for cor-
related data, a linear mixed effects model with a random 
intercept.

Generalized linear mixed effects models  The generalized 
linear mixed effects models encompass several different 
types of regression models (i.e. general linear models, 
logistic regression, Poisson regression) while account-
ing for spatial and temporal correlations and nested data. 
This family of models has two main components: fixed 
effects (which includes the variables we are interested in) 
and random effects (which acknowledge the effect of the 
variables included here with a variation that is normally 
distributed with a certain variance) [28, 29].

For both the LUC and C change models, the train-
ing data were used to create a generalized mixed-effects 
model for each of the response variables. Explanatory 
variables (covariates) for both models were divided into 
the following categories: (1) forest attributes (ecological 
variables such as trees per hectare, basal area, and ecore-
gion), (2) plot attributes, (3) topography, (4) census data, 
(5) forest disturbances, and (6) number of conditions pre-
sent in a plot (e.g., number of forest and non-forest types 
differentiated by reserved status, owner group, forest 
type, and stand density). The number of conditions pre-
sent in a plot gave us a good representation of heteroge-
neity in a plot and allowed us to work with single- and 
multiple-condition plots. We regrouped the ecological 
classification codes into broader ecoregions due to the 
large number of categories, which would have compli-
cated the model. See Additional files 2 and 3 for an exten-
sive list of the variables used and metadata.

Variable selection techniques were applied in two 
stages. The first stage included dividing the variables into 
the categories defined above. Within each category, Pear-
son correlation coefficients were calculated to quantify 
relationships between quantitative variables. Variables 
with a coefficient of 0.5 or higher were marked to later 

verify that no correlated pair were kept in the final model. 
Categorical variables were visually assessed through scat-
terplot matrices. No variables were discarded in this step. 
In addition, for the logistic model we used the informa-
tion value (IV) indicator to see how strong of a predictor 
each variable was and in which order to include the vari-
ables in the model (Additional file 2). The IV is used to 
select important variables in a logistic predictive model 
by ranking them based on their importance. We calcu-
lated the IV with the create_infotables and IV functions 
in R [30].

Variables were added to the model one at a time in 
descending order of their IV level of importance. For 
the regression model, variables were incorporated into 
the model according to the variable importance rank-
ing obtained from the random forest model (Additional 
file  1). For both models, the Akaike information crite-
rion (AIC) was used for model comparison. If an added 
variable increased the AIC value, it was removed. After 
this first variable selection stage, variables kept in each 
category were merged back to proceed with the variable 
selection.

We compared outputs of three variable selection 
approaches in R software using the car [31] and MASS 
[32] packages: forward selection, backward selection and 
stepwise selection. Finally, we used the variance infla-
tion factor (VIF) to verify there was no multicollinear-
ity (VIF > 10) present in the model. A logistic regression 
model with the remaining variables was created for the 
land use change model using the glmmPQL function in 
R with the cloglog link [32]. In contrast, a linear mixed-
effects model was implemented for the C model using the 
glmer function [33]. For both models, different combina-
tions of the retained variables plus state and forest types 
or ecoregion (independently and nested within each 
other) in the fixed or random section of the model were 
validated with the test dataset. This was done to account 
for correlated data points in our spatiotemporal analy-
sis. In addition, interactions between potentially related 
covariates were examined. A complete workflow of the 
process can be observed in Fig. 2.

Model comparison
For both generalized mixed-effects models (logistic and 
linear models), a comparison between these techniques 
and the random forest approach was done to identify 
the best performing model. The criteria used to select 
the model was to look at the percentage of omission and 
commission errors, the overall accuracy, precision, and 
recall values. While we used the AIC values to compare 
models at the initial stage (to filter out preliminary mod-
els, Fig.  2), once we incorporated random effects in the 
models, AIC values were no longer estimated. Since we 
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used the glmmPQL function in R to compute the mod-
els, no quasi-likelihood can be estimated for these mixed-
effects models [34]. In the case of the C model, the root 
mean square error (RMSE) was used for model selection.

Creating predicted wall‑to‑wall likelihood of forest change
We created a spatially continuous map that covered 
the entire area of the six states of interest in a pixel by 
pixel format (i.e., a wall-to-wall map). This wall-to-wall 
map used the FIA data and the logistic model equation 
(See "Model building" section) to predict the likelihood 
of conversion of forested areas for every pixel. We used 
only the explanatory variables from the logistic model 
that had information available at a wall-to-wall scale to 
build the maps (See Fig. 3 for variables kept in the map 
and Additional File 2 for the complete list of variables). 
These variables were obtained through Google Earth 
Engine (GEE) and ArcMap 10.8 using original FIA coor-
dinates, mosaic Landsat 8 images, and digital elevation 
data [35]. The variables used were: Normalized difference 
vegetation index -NDVI- (obtained from the Landsat 8 
mosaic) as an estimate of basal area, ownership code [36], 
aspect [35], remeasurement period (Mean value per state 
from the FIA plot data), percentage of protected area 
in a county [19], and natural increase of the population 

(between 2000 and 2010) [19]. State and county bounda-
ries were obtained from the United States Census Bureau 
[37]. All layers were converted to a raster format and 
transformed to the same projection (WGS84).

The NDVI variable was calculated in the GEE plat-
form. Bands 5 and 4 from the imported Landsat 8 Surface 
Reflectance images for the summer months of 2018 for 
each state were used to generate a maximum NDVI for 
each pixel. This was done to obtain a mosaic of pixels dis-
playing the maximum NDVI value for the period selected 
which would avoid clouds and ensure a value where 
hardwood trees had leaves. To extract NDVI and aspect 
values for each pixel, we used true FIA plot coordinates. 
If more than one plot measurement was available over 
time, means for plot coordinates values were calculated 
to account for variability and errors in each coordinate 
measurement. A buffer of 180 feet was used around the 
plot center to replicate the extent of a plot and calculate 
mean values for each pixel through zonal statistics.

With this wall-to-wall information, a multiple linear 
regression model was fit in R (with the predicted proba-
bility of change previously calculated as a response varia-
ble, see “Model building” section), obtaining an equation 
for the linear model. This equation (see Additional file 2) 
was used with the raster calculator tool in the ArcGIS 

Fig. 2  Workflow for the variable selection process to determine the probability of forests becoming non-forested (logistic model) and aboveground 
C stock changes (linear mixed-effects model)
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environment. The maps generated here were clipped with 
the National Land Cover Database (NLCD) to display 
only forested areas. This new raster layer displayed the 
probability of conversion from forest to another land use 
(See Fig. 3 for a visual workflow).

For interpretation of the results shown in the maps, we 
overlapped ownership [36], protected areas [38], digital 
elevation models (DEM) [35], and major cities’ shapefiles 
[37] to our maps.

Results
The initial exploration of the FIA data for the six states 
revealed some important foundational knowledge. From 
2000 until 2017, California, Colorado, New York, and 
Wisconsin had an increase in mean aboveground live 
biomass, while Georgia and Texas had a mean reduc-
tion in live biomass. On the other hand, mean biomass 
for standing dead trees increased in California, Georgia, 
New York, and Wisconsin (Table  1). We also observed 
that 3.4% of forested plots transitioned to mixed or non-
forested conditions and 0.7% of the plots underwent a 

Fig. 3  Step-by-step workflow for calculating the wall-to-wall likelihood of forest land use change for the study area showing processes in both 
ArcGIS and R environments and data layers used in each

Table 1  Estimates for aboveground biomass and change from forest land use, FIA data

Mean estimates (± standard deviation) and plot information for the variables of interest across six states in the US, 2000–2017

State Change in 
aboveground live 
biomass (Mg/ha)

Change in 
aboveground dead 
biomass (Mg/ha)

Number 
of plots 
evaluated

Percentage of 
forested area 
(%)

Number of plots that 
transitioned from 
forest to mix or non-
forest condition

Percentage of plots 
that transitioned per 
state

California 0.36 ± 2.71 0.72 ± 5.14 954 21.38 79 8.28

Colorado 0.72 ± 2.44 − 0.98 ± 3.20 646 28.49 7 1.08

Georgia − 0.02 ± 1.18 0.54 ± 7.88 3139 58.81 100 3.19

New York 0.05 ± 1.13 0.78 ± 4.19 1887 56.34 47 2.49

Texas − 0.05 ± 1.16 − 0.26 ± 7.65 2067 12.99 98 4.74

Wisconsin 0.06 ± 0.98 0.49 ± 3.93 5632 42.18 149 2.65

All states 0.38 ± 5.73 0.08 ± 1.35 14,325 26.94 480 3.35
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complete land use change (to non-forest). California had 
the highest percentage of plots that changed in land use, 
followed by Texas (Table 1 and Fig. 4).

Logistic regression model—forest change
Out of the 32 initial variables (Additional file  2), nine 
were retained after the selection process for fixed effects: 
basal area live, basal area dead, remeasurement period, 
ownership code, percentage of protected area per county, 
natural increment per county, number of forested con-
ditions in a plot, number of non-forested conditions in 
a plot, and aspect. For random-effects, forest type was a 
stronger predictor than ecoregion (IV of 0.52 compared 
to 0.35 for ecoregion) (Additional file 2).

Results from the validation of the logistic model show 
that class 0 (no forest land use change) had a very low 
omission and commission error (between [0.05–0.02] and 
[3.26–3.33], respectively)  (Table 2). However, for class 1 
(change from forest to other land use), the omission error 
was high (around 98%). This might have been due to the 
model having difficulty capturing class 1 change because 
there was a higher proportion of FIA plots that did not 
change in forest land use between ti and tf, compared to 
the number of plots that did change. Overall accuracy 
was over 96%, which should be interpreted with caution 

as it might be driven by the greater proportion of cor-
rectly classified 0  s. Comparing all these indicator vari-
ables, the logistic regression was selected with forest type 
nested within state as random effects. Coefficients and 
equations for the final model can be observed in Addi-
tional file 2 and predictions in Fig. 5.

Colorado had the highest probability of forest conver-
sion compared to the other five states followed by Cali-
fornia. Areas with high population natural increment and 
the lowest percentage of protected area had a higher pre-
dicted probability of conversion. In addition, non-public 
areas had a higher probability of conversion to non-for-
ested areas (Fig. 5).

Mixed‑effects linear model—aboveground live carbon 
change
Out of the 36 initial variables (Additional file 3), after the 
selection process for fixed effects, nine variables were 
kept: basal area live, basal area dead, trees per hectare 
live, distance to roads, disturbances (simple/compound), 
percentage of protected area per county, number of for-
ested conditions in a plot, condition at tf, and change 
from forest to other land use. Different combinations of 
linear models with these variables plus state and forest 
types or ecoregion in the fixed or random section of the 

Fig. 4  Percent of FIA plots across six US states that have transitioned to and from forested conditions in the study area between 2000 and 2017
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model were validated with the test dataset. Forest type 
was a stronger predictor than ecoregion when comparing 
AIC; hence, forest type nested within state was used as 
the random effect.

Coefficients and the equation for the final model can 
be observed in Additional file 3. The mixed-effects model 
had a lower root mean square error (RMSE) compared to 
the random forest model (12.06 compared to 13.56 Mg/
ha); hence, the mixed-effects model was the one selected 
to predict change in aboveground live C stocks. The bias 
for this model was − 0.899 Mg/ha.

Colorado and California had a more negative change in 
aboveground live C compared to the other states (Fig. 6). 
Areas with the lowest percentage of protected area had 
a more negative change in C. In addition, disturbances 
had an effect on the aboveground C stocks. We observed 
that plots with more than one disturbance in between 
remeasurements (compound disturbance) had a more 
negative change in C than plots being affected by one 
(simple) disturbance.

Creating predicted wall‑to‑wall likelihood of change
Public areas (e.g., forests managed by federal and state 
agencies) and protected areas within the six states  have 
a lower probability of conversion to non-forest (Fig.  7). 
Second, we see that areas closer to big cities and coastal 
areas tend to have a mid to high probability of conver-
sion. Third, topography plays an important role, in that 
higher elevation areas where accessibility is difficult 
are represented by areas that have a low probability of 

conversion to non-forested areas (e.g., mountain ranges). 
Fourth, in most of the states, areas closer to rivers tend to 
have greater risk to convert to non-forested areas (mod-
erately high to high probability).

From the wall-to-wall maps, we observe that Califor-
nia had a mean probability value for forest conversion of 
0.05 ± 0.02. California’s natural protected areas such as 
federally-managed forest lands (e.g., Six Rivers, Shasta 
Trinity, Sierra National Forests, and Yosemite National 
Park) displayed a low probability of conversion (mean: 
0.0445 ± standard deviation: 0.0135).1 The Sequoia 
National Forest (0.0575 ± 0.0055) had a moderately high 
probability of conversion to non-forest. This area has had 
a very high natural increment in its population. In addi-
tion, coastal areas exhibited a moderately high probabil-
ity of conversion, while mountain areas a low probability.

The mean probability value for forest conversion for 
Colorado was 0.039 ± 0.012. Compared to other states, 
areas surrounding rivers in Colorado showed a low 
probability of conversion. This area is characterized 
by an abrupt topography, similar to mountain ranges, 
which also have a lower probability of conversion. Col-
orado’s natural protected areas such as Rio Grande 
National Forest, which has very few small towns in its 
surroundings, presented a low probability of conver-
sion (0.0299 ± 0.0095). However, the Colorado Springs 
area had a moderately high probability of conversion to 
non-forest (0.0598 ± 0.0083). This area had a high natu-
ral increment in its population. Costilla and Las Ani-
mas counties displayed a high probability of conversion 
(0.0726 ± 0.0067 and 0.0635 ± 0.0008 respectively). There 

Table 2  Model comparison between random forest and the final candidates for the logistic regression models  (Land use change 
model)

Bold text indicates the selected model. Category 0 indicates no change from forest land use, while class 1 indicates a change from forest land use

Model Accuracy % Omission % Commission Class Precision Recall

Random forest 96.589 0.05 3.37 0 0 0

100 100 1 100 1

Logistic model

 State as a fixed 
effect

96.68 0.02 3.3 0 71.43 1.48

98.52 28.57 1 28.57 1

 Forest type as a 
fixed effect

96.7 0.03 3.27 0 72.73 2.37

97.63 27.27 1 27.27 1

 State as a random 
effect

96.68 0.02 3.3 0 71.43 1.48

98.52 28.57 1 28.57 1

 Forest type as a 
random effect

96.69 0.03 3.28 0 70 2.08

97.92 30 1 30 1

 Forest type nested 
within state as a 
random effect

96.71 0.03 3.26 0 75 2.67
97.33 25 1 25 1

1  For the rest of this section, numbers in brackets will represent 
mean ± standard deviation of the probability value.
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was a low percentage of protected area in these counties 
as well as more private than public forest lands. Con-
cerning modeled C stocks, both California and Colorado 
showed separation from the rest of the states (following 
the same trend as the logistic model of forest conversion) 
and showed a more negative net change in aboveground 
C stocks.

Georgia had a mean probability value for forest con-
version of 0.042 ± 0.012. In Georgia, areas around the 
Appalachian Mountains represented a low probability of 
conversion, as well as protected areas such as the Okefe-
nokee National Wildlife Refuge (0.0185 ± 0.0071). Areas 
surrounding the city of Atlanta had a moderate to high 
probability of conversion, as well as areas surrounding 
rivers. The state is characterized by a low percentage of 

protected area per county and a high natural increment 
of its population in most counties.

New York had a mean probability value for forest con-
version of 0.029 ± 0.015. Forest ownership in New York 
is similarly distributed between private and public areas, 
making this an important variable that drives forest con-
version in the state. Protected areas such as the West 
Canada Lake Wilderness and the High Peaks Wilderness 
presented a low probability of conversion (0.00 ± 0.0083 
and 0.0106 ± 0.0093 respectively). In addition, areas like 
the Big Indian Wilderness and Allegany State Park had 
a low probability of conversion as well (0.0250 ± 0.0093 
and 0.0218 ± 0.0119), similar to areas federally owned. In 
general, there was a low percentage of protected area in 
the state.

Fig. 5  Predictions from the logistic regression model. Response variable is the probability of forest land use change to mixed or non-forest 
conditions. The four horizontal panels show different land ownership classes. a The probability of land use conversion for the six states analyzed. b 
The effects of population natural increment. c The effects of the percentage of protected area in a county

Fig. 6  Predictions showing the change in aboveground (AG) live C stocks. The three horizontal panels show different disturbances classes. a Shows 
the change in C for the six states analyzed. b Shows the effects of the percentage of protected area in a county

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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Texas had a mean probability value for forest conver-
sion of 0.042 ± 0.011. Coastal areas in Texas and areas 
close to major cities like Austin, Dallas, Houston and San 
Antonio had a higher risk of conversion. The Big Thicket 

National Preserve Area (0.0281 ± 0.0019) and the Sabine 
National Forest (0.00 ± 0.0050) area presented a low 
probability of conversion. The eastern border of the state 
(where pine forests are located) was predicted to remain 

Fig. 7  Wall-to-wall maps of the probability of forest areas to convert to non-forest. Greener areas show less probability of conversion, while yellow 
areas represent a moderately low probability (< 0.05), orange areas represent a moderately high probability (0.05–0.075), and dark orange-red colors 
show a higher probability of conversion (0.075–0.1). Probability values range from 0 to 0.1

Table 3  Summary table from the wall-to-wall map predictions showing the area and percentage that each probability bin represents 
per state

Probability Bin 0–0.025 0.025–0.05 0.05–0.075 0.075–0.1 Total area (sq km)

State/Variable Area (sq km) (%) Area (sq km) (%) Area (sq km) (%) Area (sq km) (%)

California 20.797 2.66 355.441 45.44 330.452 42.24 75.579 9.66 782.269

Colorado 64.450 8.25 586.057 74.99 125.249 16.03 5.713 0.73 781.468

Georgia 87.175 10.54 526.238 63.65 213.359 25.81 0.000 0.00 826.772

New York 233.904 34.75 429.178 63.75 10.101 1.50 0.000 0.00 673.182

Texas 64.023 7.19 649.975 72.98 176.652 19.83 0.012 0.00 890.662

Wisconsin 429.514 60.86 275.060 38.98 1.155 0.16 0.000 0.00 705.729



Page 13 of 16Fitts et al. Carbon Balance Manage           (2021) 16:20 	

as forests. Areas that surrounded big lakes and cities 
showed a moderately high probability of conversion to 
non-forest.

In Wisconsin, the mean probability value for forest 
conversion was 0.019 ± 0.016. An important result that 
stands out in Fig.  7 is the dark green and well-defined 
area that makes up the Menominee Reservation. This 
area was predicted to remain as forest, as represented by 
its low probability of conversion (0.00 ± 0.0054). Moreo-
ver, protected areas such as the Black River State Forest 
(0.0090 ± 0.0060), the Apostle Islands (0.00 ± 0.0055), 
and the Chequamegon National Forest (0.0018 ± 0.0080) 
displayed a low probability of conversion. Similar to other 
states, areas close to the Great Lakes (e.g., Lake Michi-
gan), rivers (e.g., the Mississippi and the Wisconsin Riv-
ers), and major cities (e.g., Milwaukee) have a higher risk 
of conversion. Summary data for each state including the 
area predicted to convert per probability bin is displayed 
in Table 3.

Discussion
Our results show that land use change affects forested 
areas, especially due to growing populations and urban 
development. Urbanization is a main driver of the loss 
of forests in the US [16, 18], which also brings agricul-
tural expansion. Other studies specifically report demo-
graphic variables [3] and proximity of roads [10] or rivers 
as important urbanization variables that affect forests. 
River valleys tend to have a flat topography, provide bet-
ter accessibility, and have a higher population density 
that surrounds them. Given the increase in housing rela-
tive to population growth in the US [19], demographic 
variables are critical in estimating forest conversion and 
C emissions. Through the application of the C model, we 
observed that forest conversion affects C fluxes, espe-
cially at large scales. This relationship between land use 
change and C fluxes has been reported in other studies 
[2, 3, 5–7]. Therefore, it is critical to incorporate esti-
mates of land use change in C studies and C in land use 
change studies.

Although we observed that less than 4% of the FIA 
plots transitioned from forest to other land uses, prior 
studies [3] have shown that large changes are likely to 
occur in the coming decades in a business-as-usual sce-
nario in eastern US forests. Similarly, around 36% of the 
forested area in the conterminous US area is estimated 
to change in land use [21]. Other studies [10] provide 
regional mean values for forest conversion which are 
higher than the ones we obtained. For example, for the 
Lake States region, this study shows a 0.086 estimated 
probability compared to our value of 0.019 for Wisconsin; 
for the Southern region, 0.082 compared to the 0.042 that 
we obtained for Texas, for the Southeastern region 0.084 

compared to our value of 0.042 for Georgia, and finally, 
the Mid-Atlantic region had a value of 0.076 compared 
to our value of 0.029 for New York. Therefore, it is key to 
identify critical regions that have a higher probability of 
conversion, despite the actual probability being low rela-
tive to other risks.

An important result of this research is that demo-
graphic variables (such as the population natural incre-
ment), ownership of the land, level of protection, and live 
and dead biomass (represented through basal area and 
trees per hectare) represent important factors driving 
forest conversion. With respect to ownership of the land, 
motivation to sell land or change its use might play an 
important role in private lands [39, 40], as well as short-
term economic factors and technological innovation [17]. 
These reasons could explain the differences in probability 
of conversion observed in this study among ownership 
groups.

Disturbances were not a major factor when modeling 
the probability of forest conversion for all the states 
together. Independently however, California and Colo-
rado had a stronger influence of the forest disturbances 
variable. This may be due to widespread insects, dis-
eases, and fire [41]. Even though the disturbance vari-
ables were not kept in the model, their influence in these 
states might be captured by the state coefficients (used 
as random effects). These disturbances might explain the 
difference observed in Fig. 5a, in which both states show 
a higher probability of conversion compared to other 
states. On the other hand, when estimating aboveground 
C stock changes, the presence of disturbances decreased 
C fluxes whether those disturbances were simple or 
compound.

Our logistic regression approach provided a straight-
forward prediction of land use change that assigned a 
land use change probability across our study region. 
Land use change is a stochastic process that is difficult 
to model because transitions are rare and independent 
from one another and depend largely on the time period 
observed between remeasurements. Zero inflated mod-
els may be useful in future applications; however a zero-
inflated model is used to account for an elevated number 
of zeros (more than we were to expect) [28], but this was 
not the case with our data. The FIA program evaluates 
plots on forested lands which are most likely going to 
remain forests where only a few would be expected to 
transition to another use. In addition, the binomial fam-
ily (which encompasses logistic regression) allows binary 
responses in the response variable [28]. The level of detail 
and scale of each covariate is also important as it will 
determine the detail of reporting. For example, due to 
the level of detail of the census variables included in the 
model, some of the county boundaries shown in Fig.  7 
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influence the pattern shown in the map. This is not nec-
essarily the case for the Menominee Reservation, which 
has conducted intense forest management [42–44] which 
is reflected in Fig.  7. When predicting carbon stock 
changes, parametric models do well in providing quanti-
tative predictions and can be modified to reflect changes 
in forest conditions, such as changes in forest types, spe-
cies composition, and climate.

It should be noted that our analysis began with using 
inventory data from forested plots. While understanding 
land use change in forestry was the primary motivation 
of this study, including additional data sources, such as 
other remote sensing data products [45, 46], could help 
us to better understand transitions across all land uses. 
Incorporating additional remote sensing products can 
help to build spatially continuous maps that can aid man-
agers and policymakers in identifying regions at risk 
of transition land use. Future analyses could integrate 
remote sensing with other modeling approaches to deter-
mine the spatial extent of land use changes. Relying on 
quality input data as obtained through national forest 
inventory data can help to better understand changes 
across forested landscapes.

Conclusions
Land use change and resulting contributions to the global 
C budget are accelerating. A better understanding of the 
drivers of land use change is needed to reduce the loss 
of forested areas and C emissions, as well as to increase 
the resistance and resilience of forests. From our study, 
we saw that the main drivers of forest conversion in FIA 
plots were the live and dead biomass present, the amount 
of protected land, the natural increment of the popula-
tion, and ownership of the land. An important finding 
was that disturbances were not a strong predictor of for-
est conversion, except in California and Colorado where 
disturbance effects might be captured through the state 
coefficients. Moreover, resiliency of aboveground C 
stocks mainly depended on the live and dead biomass 
present in the forest and its structure, the elevation of 
the area, the disturbance history, and the area under 
protection.

Our results will help policy-makers prioritize forest 
management activities and land use planning by pro-
viding tools and spatial information that will help them 
create forest management strategies that enhance forest 
health and productivity. Those strategies could include 
promoting extension programs that reinforce the value of 
forest, provide economic incentives towards forest man-
agement, and implement new technology for monitoring 
and harvesting resources. These programs should be spe-
cially targeted to landowners.

Moreover, to mitigate climate effects on forests, this 
research highlights priority areas where more interven-
tion is needed to keep these areas as forest despite the 
changing conditions and increase in disturbances. This 
research will directly assist six US states (CA, CO, GA, 
NY, TX, and WI) and if expanded, the benefits can be 
applied to the entire United States or even worldwide 
because of the scale at which land use change problems 
occur.

Overall, this study confirms that land use change is 
associated with C fluxes and that the zoning of urban 
and agricultural areas is key to avoid an increase of C 
emissions that contribute to climate change. Popula-
tion growth creates an inevitable need to dedicate more 
areas for residential and agricultural purposes. However, 
through more focused forest management that increases 
the resistance and resilience of ecosystems and prioritizes 
critical areas, forest health, and productivity, we can cre-
ate strategies to balance population and ecosystem needs.
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