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Variability and uncertainty in forest biomass 
estimates from the tree to landscape scale: 
the role of allometric equations
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Abstract 

Background:  Biomass maps are valuable tools for estimating forest carbon and forest planning. Individual-tree bio-
mass estimates made using allometric equations are the foundation for these maps, yet the potentially-high uncer-
tainty and bias associated with individual-tree estimates is commonly ignored in biomass map error. We developed 
allometric equations for lodgepole pine (Pinus contorta), ponderosa pine (P. ponderosa), and Douglas-fir (Pseudotsuga 
menziesii) in northern Colorado. Plot-level biomass estimates were combined with Landsat imagery and geomorpho-
metric and climate layers to map aboveground tree biomass. We compared biomass estimates for individual trees, 
plots, and at the landscape-scale using our locally-developed allometric equations, nationwide equations applied 
across the U.S., and the Forest Inventory and Analysis Component Ratio Method (FIA-CRM). Total biomass map uncer-
tainty was calculated by propagating errors from allometric equations and remote sensing model predictions. Two 
evaluation methods for the allometric equations were compared in the error propagation—errors calculated from the 
equation fit (equation-derived) and errors from an independent dataset of destructively-sampled trees (n = 285).

Results:  Tree-scale error and bias of allometric equations varied dramatically between species, but local equations 
were generally most accurate. Depending on allometric equation and evaluation method, allometric uncertainty con-
tributed 30–75% of total uncertainty, while remote sensing model prediction uncertainty contributed 25–70%. When 
using equation-derived allometric error, local equations had the lowest total uncertainty (root mean square error 
percent of the mean [% RMSE] = 50%). This is likely due to low-sample size (10–20 trees sampled per species) allomet-
ric equations and evaluation not representing true variability in tree growth forms. When independently evaluated, 
allometric uncertainty outsized remote sensing model prediction uncertainty. Biomass across the 1.56 million ha 
study area and uncertainties were similar for local (2.1 billion Mg; % RMSE = 97%) and nationwide (2.2 billion Mg;  % 
RMSE = 94%) equations, while FIA-CRM estimates were lower and more uncertain (1.5 billion Mg;  % RMSE = 165%).

Conclusions:  Allometric equations should be selected carefully since they drive substantial differences in bias and 
uncertainty. Biomass quantification efforts should consider contributions of allometric uncertainty to total uncer-
tainty, at a minimum, and independently evaluate allometric equations when suitable data are available.
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Background
Spatially explicit aboveground biomass estimates are crit-
ical for monitoring forest carbon storage and for strategic 
forest planning [1–3]. They provide baseline inventories 
that capture the legacy of past land use and disturbance 
while also serving as a reference point for studying the 
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impacts of subsequent disturbances [4]. Forest biomass 
maps are also a critical tool for measuring, reporting, 
and verifying forest carbon stocks [5]. Programs such as 
Reducing Emissions from Deforestation and forest Deg-
radation (REDD+) and California cap-and-trade seek to 
mitigate rising greenhouse gas concentrations by storing 
carbon in forests. The financial incentives tied to forest 
carbon in these programs have lead countries and forest 
landowners to closely track their forest carbon. Individ-
ual-tree biomass calculated from allometric equations 
are the foundation for these estimates, but can have high 
uncertainty and bias that propagate to biomass/carbon 
estimates [6, 7]. Widely-used allometric equations must 
be independently evaluated using tree biomass datasets 
to identify error and bias [8].

Allometric equations provide biomass estimates from 
tree measurements such as diameter at breast height 
(DBH), height, and/or wood density. These equations 
capture the scaling relationships between tree form and 
function to predict total and component (e.g., branch, 
needle, bark, bole, root) biomass [9]. Allometric relation-
ships are commonly developed from trees sampled across 
large areas [10–12]. In the United States (U.S.), two 
widely-applied allometric equations are the Forest Inven-
tory and Analysis Component Ratio Method (FIA-CRM) 
[13, 14] and Jenkins et al. [11]. The FIA-CRM is used to 
calculate forest carbon for the U.S. Environmental Pro-
tection Agency’s (EPA) annual greenhouse gas inventory 
[15] and for California cap-and-trade projects. The Jen-
kins et  al. [11] equations were used for the EPA annual 
greenhouse gas inventory in the past, are part of the FIA-
CRM, and are an option in the Fire and Fuels Extension 
of the Forest Vegetation Simulator [16].

Allometric equations are frequently applied outside 
populations from which they were developed, potentially 
leading to significant biomass estimation errors [17]. 
Allometric relationships vary spatially with differences 
among trees (i.e., species and genetics) and growing con-
ditions (i.e., site productivity arising from nutrient avail-
ability, soil type, and climate, competition and tree age) 
[18–20]. Where available, locally-developed equations 
offer an alternative to more generic equations and can 
be better tuned to local species, growth forms, and envi-
ronments. However, locally-developed allometric equa-
tions are typically developed from small sample sizes, 
potentially rendering them biased, unreliable, and prone 
to measurement error [7, 17]. Some studies suggest 
locally-developed allometric equations are more accu-
rate [21–23], while other studies have found that generic 
allometric equations perform better [18, 24, 25]. Another 
method for developing more robust allometric equations 
is to tune generic allometric equations to better rep-
resent local growth forms. For example, the FIA-CRM 

uses regional stem volume equations to rescale biomass 
predictions made by generic allometric equations [13]. 
Ultimately, those conducting biomass inventories are left 
with the choice of selecting allometric equations, or must 
take on the time-consuming, expensive, and difficult task 
of building their own allometric equations. The choice of 
allometric equation can have significant impacts on bio-
mass estimates [22, 26].

To map biomass across landscapes, allometric bio-
mass equations are applied to individual tree meas-
urements, which are summed across forest inventory 
plots that calibrate larger-scale remote sensing datasets 
(e.g., [26]). Biomass and forest structure are frequently 
mapped using freely-available images from Landsat sat-
ellites [27–30]. Landsat satellites acquire moderate reso-
lution (30  m × 30  m pixel size) multispectral data that 
have an extensive historical record spanning 1972 to 
present, making these sensors ideal candidates for eco-
logical monitoring and estimating forest productivity 
[31]. Landsat spectral bands, vegetation indices, and tex-
ture metrics are useful predictors of forest biomass [27, 
32–35]. Since Landsat and other optical sensors rely on 
detectable changes in canopy closure, one issue is under-
estimation, or saturation, of predictions at high biomass 
values and in closed-canopy forests. Landsat-based bio-
mass mapping may, however, be aided in the western U.S. 
by the strong biophysical gradients of forest type and bio-
mass and the open canopies of some of the forests [28]. 
Biomass predictions can be improved by supplementing 
remote sensing imagery with other data sources to cap-
ture correlations between forest biomass and climate, 
topography, and landform [36]. Active sensors, such as 
LiDAR (Light Detection and Ranging), can also improve 
Landsat-based biomass estimates by providing accurate 
information about forest structure and height [37], but 
spatial and temporal data coverage is limited and collec-
tion is expensive.

There are many sources of uncertainty when mapping 
biomass—tree measurements, allometric models, plot 
representativeness, and remote sensing model fitting and 
prediction [7, 38]. Biomass maps are commonly evalu-
ated by comparing predicted pixel biomass to observed 
plot biomass values, treating the plot biomass as “truth.” 
This approach only captures one source of error: variabil-
ity or errors in the remote sensing model. While this is 
certainly a major error source, failing to propagate other 
error sources underlying tree and thus plot-level bio-
mass calculations under-estimates uncertainty [6, 38]. 
Allometric model uncertainty has been found to account 
for the majority of the tree-level uncertainty, and can 
be biased [7, 39]. Tree measurement errors of attributes 
such as DBH and height can also be significant [38]. Since 
allometric error is generally calculated from the same 



Page 3 of 20Vorster et al. Carbon Balance Manage            (2020) 15:8 	

trees used to develop the equations (i.e. lacking inde-
pendent validation), issues such as sampling bias may not 
be captured in uncertainty measures. Although it is rare 
to have an independent dataset of destructively sampled 
trees, allometric error and bias are best captured by com-
paring predictions to trees within the study area that are 
independent of the allometric equation generation.

In this study, we estimate standing aboveground forest 
biomass using multiple allometric equations for mon-
tane and subalpine forests in the southern Rocky Moun-
tains. We develop local allometric biomass equations for 
lodgepole pine (Pinus contorta), ponderosa pine (P. pon-
derosa), and Douglas-fir (Pseudotsuga menziesii) and use 
them to estimate biomass in Forest Inventory and Analy-
sis (FIA) plots. With these plot-level biomass estimates, 
Landsat Enhanced Thematic Mapper Plus (ETM+) 
imagery, and geomorphometric and climate layers we use 
a machine learning algorithm to calibrate several biomass 
maps covering 1.56 million ha. We analyze the magni-
tude and patterns of biomass differences at the tree, plot, 
and landscape scale between locally-developed allomet-
ric equations and two widely-used allometric biomass 
equations: Jenkins et al. [11] and the FIA-CRM [13, 14]. 
Using an independent validation dataset [40], we evalu-
ate accuracy and bias of the three allometries. Finally, we 
propagate allometric error to the final remote sensing 
calibration model to quantify biomass map uncertainties 
and the relative importance each error source.

Methods
Study area
This study was conducted across the 1.56 million ha of 
forest in northern Colorado and southern Wyoming 
bound by Landsat scene path 34, row 32 (Fig.  1). Mean 
temperature and precipitation vary along an elevation 
gradient from 52  °C and 31 cm at lower elevation mon-
tane forests to − 3  °C and 180  cm at higher elevations 
subalpine forests [41]. Forest species composition also 
changes with elevation and aspect. Montane forests 
dominated by ponderosa pine start between 1540 m and 
1845 m above sea level (asl) and become more mixed with 
Douglas-fir and quaking aspen (Populus tremuloides) as 
elevation increases [42]. Douglas-fir is particularly com-
mon on north-facing slopes. Lodgepole pine and limber 
pine (Pinus flexilis) join the species mix at about 2460 m 
asl. Lodgepole pine is the dominant tree species above 
2770  m, mixed with quaking aspen, limber pine, subal-
pine fir (Abies lasiocarpa) and Engelmann spruce (Picea 
engelmannii). These lodgepole pine forests experienced 
extensive mountain pine beetle (Dendroctonus pondero-
sae Hopkins) induced tree mortality starting at low lev-
els in the early 2000s, peaking between 2006 and 2009, 
and declining in 2010 [43]. Subalpine fir and Engelmann 

spruce take over as the predominant tree species between 
3077 m and treeline (~ 3540 m asl) [42].

Allometric equations
Destructive sampling
The destructive biomass sampling required to build the 
local allometric biomass equations was conducted at two 
sites (Fig.  1). Lodgepole pine was sampled at the Colo-
rado State Forest and the ponderosa pine and Douglas-fir 
trees were sampled at the Ben Delatour Boy Scout Ranch. 
We selected trees free of deformities that represented 
the diameter range in each area: 20 lodgepole pine, 10 
ponderosa pine, and 10 Douglas-fir. The larger-diame-
ter lodgepole pine (n = 14) were sampled in a mature, 
even-aged stand at 2700  m asl that was impacted by a 
mountain pine beetle outbreak around 2007 which killed 
75% of the basal area, as measured by inventory plots 
around the destructively sampled trees. The smaller trees 
(< 14 cm; n = 6) were sampled near the mature lodgepole 
pine sampling site in a regenerating clearcut at 2800  m 
asl that was pre-commercially thinned a year prior to 
destructive sampling. Both stands were lodgepole pine-
dominated. The ponderosa pine trees were sampled from 
a mixed-age forest at 2300 m asl that had irregular struc-
ture consisting of patches of trees as well as open-grown 
trees. While ponderosa pine was the dominant tree in 
this area, Rocky Mountain juniper (Juniperus scopulo-
rum) were interspersed. The Douglas-fir were sampled 
from a Douglas-fir-dominated stand at 2300  m asl that 
also contained ponderosa pine and Rocky Mountain 
juniper.

The destructive sampling procedure [44, 45] was 
designed to measure dry biomass of the bole, bark, 
branch, and foliage components, as well as total above-
ground biomass of each tree. The bole is the main stem 
(without bark) between the 1-foot stump and where 
the bole reaches a 10.2  cm (4 inch) diameter, hereafter 
referred to as the 10.2 cm top. The bark component is all 
bark on this same portion of the main stem. Foliage is all 
foliage on the tree. Branch biomass includes wood and 
bark of the main stem above the 10.2 cm top and all other 
branches. In our destructive sampling procedure, the 
wet mass of the whole tree was weighed as components 
in the field and then subsamples were retained to deter-
mine moisture contents. These methods are described in 
detail in Stovall et al. [44] and Additional file 1. Methods 
for calculating the biomass of each component are also 
detailed in Additional file 1.

Allometric equation calculation
Allometric biomass equations for the components of 
each tree were generated using nonlinear seemingly 
unrelated regression. Seemingly unrelated regression is 
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well-suited for allometric biomass equations because it 
allows for dependencies between error terms of the com-
ponent equations and the equations can be constrained 
to ensure tree components sum to total aboveground 
biomass [45–48]. We used the logarithmic model form,

which is commonly used for tree biomass estimation [11, 
47, 49] and appeared to fit scatterplots of our biomass 
data for all three species. We implemented the nonlinear 
model form rather than the log–log transformed linear 
model to avoid back-transformations and to allow for the 

(1)Biomass = exp(a11 + a12 ∗ ln (DBH))

inclusion of component zero values for trees too small to 
have bole and bark biomass under our component defi-
nitions. Nonlinear seemingly unrelated regression was 
implemented in SAS OnDemand software [50] to esti-
mate parameters for the following set of equations for 
lodgepole pine, ponderosa pine, and Douglas-fir:

(2)Bole = exp(a11 + a12X)

(3)Bark = exp(a21 + a22X)

(4)Foliage = exp(a31 + a32X)

Fig. 1  Study area map showing the destructive sampling sites, the approximate locations of Forest Inventory and Analysis (FIA) plots, and the forest 
extent within Landsat scene path 34, row 32
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where aij are the regression parameters (j = 1, 2) to be 
estimated for each component (i = 1, 2, 3, 4) and X is the 
natural logarithm of DBH in cm. Biomass values are in 
kg. Parameter start values were estimated by solving the 
linear version of each component model using ordinary 
least squares [46].

Allometric equation comparison
We estimate aboveground biomass for trees in FIA plots 
within the study area using three sets of allometric equa-
tions. The three sets of allometric equations tested are: 
(1) the equations presented in Jenkins et al. [11], (2) the 
FIA-CRM and (3) a local set of equations. The allomet-
ric biomass equations presented by Jenkins et al. [11] for 
U.S. tree species were developed using pseudodata gen-
erated from published allometric equations. These equa-
tions predict total aboveground biomass and component 
biomass (i.e., foliage, coarse roots, stem bark, stem wood, 
and branches) as a proportion of aboveground biomass 
for species groups (e.g., pine, spruce, true fir/hemlock, 
etc.) from tree diameter at breast height. The FIA-CRM 
method estimates biomass using a fusion of Jenkins et al. 
[11] equations and regional stem volume equations com-
piled in Woodall et al. [14]. Regional equations are used 
to estimate volume of the merchantable stem, which is 
then converted to biomass using specific gravity values 
found in Miles and Smith [51]. Volume estimates account 
for species, diameter, height, and atypical tree form to 
deduct missing or rotten bole mass [13]. The FIA-CRM 
equations do not estimate foliage biomass. Additional 
information about how biomass is calculated using FIA-
CRM can be found in Additional file 1.

Local biomass estimates were made from a variety of 
allometric equations depending on species. As described 
above, we developed equations for three dominant tree 
species in our study area: lodgepole pine, ponderosa 
pine, and Douglas-fir. For other species, we used equa-
tions from the literature that were developed as near as 
we could find to the study area. We applied equations 
from Landis and Mogren [52] for Engelmann spruce and 
Johnston and Bartos [53] for aspen. Species covered by 
the allometry presented in this paper and local equations 
from the literature accounted for 77% of the basal area 
in the FIA plots used in this study. We estimated bio-
mass for all other species (23% of plot basal area) using 
the FIA-CRM biomass since the FIA-CRM estimates are 
designed to be more tuned to local conditions.

(5)Branch = exp(a41 + a42X)

(6)
Total = exp (a11 + a12X)+ exp(a21 + a22X)

+ exp (a31 + a32X)+ exp(a41 + a42X)

Biomass estimation
Forest inventory data
We used FIA plot data to evaluate biomass variability 
between allometric equations at the plot scale and to map 
standing aboveground tree biomass. The FIA program 
is responsible for systematically monitoring U.S. forests 
on a 5–10 year cycle [54]. Each FIA plot consists of four 
7.3 m radius circular subplots where trees with a diam-
eter at breast height of 12.70 cm or greater are measured. 
Saplings, defined as having a diameter at breast height 
between 2.54 and 12.70 cm, are measured in 2.1 m radius 
microplots nested within the subplots. Sapling biomass 
was included in this analysis, but biomass of trees less 
than 2.54 cm diameter was excluded. We calculated and 
compared standing aboveground tree biomass at FIA 
plots measured between 2002 and 2015 (n = 418) using 
Jenkins et al. [11], FIA-CRM and the local set of allomet-
ric equations. FIA remeasures plots in Colorado about 
every 10 years—only data from the measurement closest 
to the satellite imagery capture date (2001) were used. 
We also only used plots designated as a single condition 
(i.e., forest or land cover type) to avoid spectral confusion 
that could be caused by heterogeneous plots [55].

Plots sampled between 2002 and 2015 and satellite 
imagery from 2001 were used to map total aboveground 
standing biomass before the mountain pine beetle epi-
demic caused widespread lodgepole pine mortality in 
our study area. Plot measurements captured tree mortal-
ity not reflected by the 2001 imagery, especially for plots 
sampled at the latter end of this sampling timeframe. We 
mitigated differences between image and sampling con-
ditions by including all standing trees, both living and 
dead, in plot biomass estimates. While some localized 
areas may have had significant treefall by 2015, a study 
in this same area found no change in downed woody 
material 7 years after this outbreak [56]. Most plots were 
measured towards the beginning of this sample period 
when dead trees were likely to still be standing. Between 
35 and 46 plots were sampled annually between 2002 
and 2011 for a total of 393 plots, while only 25 total plots 
were sampled between 2012 and 2015. Another dis-
crepancy between plot data and the imagery is that the 
plots continued to grow between image capture and the 
date-of-sampling. This discrepancy was minor consider-
ing the relatively slow growth in this region (e.g., average 
of 0.94  cm decade−1 diameter increment for lodgepole 
pine) [Bagdon, B., Nguyen, T., Vorster, A.G., Paustian, K., 
Field, J., unpublished observations] and the other, larger 
sources of uncertainty. Errors resulting from the tempo-
ral mismatch between imagery and plot measurement 
were deemed worth the tradeoff for more plots to train 
the remote sensing models.
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Mapping Aboveground Forest Biomass
We used a combination of geomorphometric, topo-
graphic, climatic, and spectral predictor variable lay-
ers to map biomass. Spectral bands, vegetation indices, 
and image textures were all generated from a Level 1 
Terrain-corrected (L1T) Landsat 7 ETM + image cap-
tured on September 24, 2001. The image was accurately 
geometrically registered (Root Mean Square Error 
[RMSE] = 3.2  m). Areas flagged by the C Function of 
Mask (CFMask) algorithm as water, cloud shadow, snow, 
or cloud overlapped with 0.04% of the forested area and 
were removed from the study. We used digital number 
for the ETM + bands, texture, and most vegetation indi-
ces since the study encompassed a single scene and point 
in time [57]. Some vegetation indices required top-of-
atmosphere reflectance (second modified soil-adjusted 
vegetation index, Tasseled Caps, soil-adjusted vegeta-
tion index) or surface reflectance (enhanced vegetation 
index). For these indices, the top-of-atmosphere reflec-
tance and Landsat Climate Data Record surface reflec-
tance products were used. We used the least processed 
imagery necessary for each predictor variable [57]. In 
addition to ETM + bands, vegetation indices, and texture 
[27, 33–35], we also generated topographic, geomorpho-
metric, and climatic predictor variables that have been 
shown to correlate with tree species and biomass distri-
butions [36, 58]. See Additional file 1 for more informa-
tion about how these predictor variables were generated 
and Additional file  1: Table  S4 for a list of all predictor 
variables generated. We had 302 total predictor variables 
between all band (n = 7), index (n = 16), texture (n = 240), 
climate (n = 16), and topography and geomorphology 
layers (n = 23). Values of each predictor variable were 
extracted for FIA plots using a 3 × 3 pixel mean since the 
four FIA subplots cover an area roughly this size [55].

We mapped biomass only within forested pixels in the 
study area, as defined by a forest mask developed for this 
area [59]. This mask only includes pixels with greater 
than or equal to ten percent canopy cover as defined by 
the LANDFIRE Existing Vegetation Cover [60] product. 
This aligns with the ten percent canopy cover require-
ment component of the FIA forest definition.

We mapped standing aboveground tree biomass using 
a random forest model which is commonly used for 
remote sensing applications and biomass mapping [28, 
61, 62]. Random forest models are efficient, non-para-
metric, have strong prediction accuracy, can handle large 
numbers of predictor variables, and are robust to noise 
and outliers [63]. In this approach, a regression tree is 
trained with a random subset of training data and with 
a random selection of predictor variables at each node. 
This process is repeated many times to build a “forest” 
of unpruned decision trees. Predictions are made as the 

average of the predictions from all trees [64]. Users define 
the number of trees (ntree) and number of parameters 
considered at each node (mtry), although the models are 
relatively stable to parameter adjustments. Data withheld 
from each tree (out-of-bag data) are used to calculate reli-
able estimates of error and variable importance, reduc-
ing the need to withhold test data [63]. We evaluate the 
random forest models using pseudo R2, RMSE, and bias. 
These three evaluation metrics are indicative of model 
fit: pseudo R2 indicates the proportion of the variability 
explained by the model, RMSE reflects the magnitude of 
errors between predicted and observed values, and bias 
shows the degree to which models tend to over- (positive 
bias) or under-predict (negative bias). Bias and RMSE are 
also reported as percentages of the observed mean.

We had a large number of predictor variables, so we 
implemented a data-driven variable selection tech-
nique suitable for applications such as this study where 
prediction is the goal (Additional file  1: Table  S5) [65]. 
This method, Variable Selection Using Random For-
est (VSURF) [65], is described in Additional file 1. After 
implementing VSURF, we removed variables from vari-
able pairs correlated by 0.7 or more, keeping the variable 
with the higher variable importance from a random for-
est model run with all variables in the VSURF predic-
tion set. We measured predictor variable importance by 
the average decrease in the mean squared error attribut-
able to a particular variable across all trees [64]. Several 
variables correlated by up to 0.75 were retained if the 
correlated variables contained unique information and 
retaining both improved model performance.

We repeated this variable selection routine for each 
set of biomass values (local, Jenkins et al. [11] and FIA-
CRM) and used the selected predictor variables in the 
randomForest package [64]. We tested a range of mtry 
(1-# of predictors) and ntree (500, 1000, 1500, 2000, 
3000, 4000, 5000) values in 10 iterations and selected the 
parameters that most frequently lead to the smallest out-
of-bag errors.

Biomass variability and uncertainty
Biomass variability across tree, plot, and landscape scales
At the tree, plot, and landscape scales, we compared the 
magnitude and patterns of differences in biomass esti-
mates between the three sets of allometric equations. 
At the tree scale, component biomass and total bio-
mass excluding foliage were compared for the species 
we destructively sampled: lodgepole pine, ponderosa 
pine, and Douglas-fir. Only total biomass excluding foli-
age was compared for Engelmann spruce, subalpine fir, 
and aspen. At the plot and landscape scale, we compared 
aboveground biomass for all species.
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Some component definitions differed between the 
three sets of allometric equations so we made the neces-
sary adjustments. Jenkins et al. [11] and local equations 
estimated biomass for the same components: bole, bark, 
branch, and foliage. When comparing local to Jenkins 
et al. [11] component biomass estimates, the only adjust-
ment needed was to subtract stump biomass as calculated 
by FIA-CRM [66] from the Jenkins et al. [11] branch bio-
mass estimates. This branch component aligned with the 
FIA-CRM branch biomass definition (sometimes called 
the top component). The FIA-CRM bole component 
spanned the same portion of the tree as our local and Jen-
kins equations but included the bark. So, bole and bark 
together were compared across all three sets of allometric 
equations at the tree scale. Another difference in compo-
nents between estimation methods is that FIA-CRM does 
not calculate foliage biomass. For tree-scale total biomass 
comparisons, foliage biomass is excluded from both local 
biomass estimates and Jenkins et al. [11] estimates. How-
ever, foliage is included for local and Jenkins et  al. [11] 
estimates, but not FIA-CRM estimates, in plot and land-
scape-scale comparisons. For the subset of tree species 
where local biomass estimates were generated from FIA-
CRM equations, foliage biomass as estimated by Jenkins 
et al. [11] was added to each tree for plot and landscape-
scale local biomass estimates. Aboveground biomass 
included the stump for FIA-CRM and Jenkins et al. [11] 
estimates, but not for our local equations. We remedied 
this by adding stump biomass as estimated by FIA-CRM 
[66] to each tree when calculating local total biomass for 
tree, plot, and landscape scale analyses.

At all scales (tree, plot, and landscape), we measured 
variability between biomass estimates by calculating the 
mean difference and mean relative difference. The dif-
ference between each set of allometric equations was 
calculated at each scale: (1) local—Jenkins et al. [11], (2) 
local—FIA-CRM, and (3) Jenkins et al. [11]—FIA-CRM. 
We calculated relative differences by dividing differences 
by the minuend. We analyzed tree, plot, and landscape 
scale differences by calculating the mean and relative dif-
ferences across all trees in the FIA plots, FIA plots (i.e., 
the sum of trees within each plot), and pixels. To better 
understand patterns in variability between allometric 
equations at the tree scale, we calculated biomass differ-
ences for each species we sampled (lodgepole pine, pon-
derosa pine, and Douglas-fir) for each component and in 
20 cm diameter bins.

At the plot scale, we identified the stand characteris-
tics most correlated with biomass estimate differences 
between different sets of allometric equations. This was 
done using a random forest model to predict the plot 
biomass difference between allometric equations using 
stand structure and composition predictor variables. 

Details about this analysis can be found in Additional 
file  1. At the landscape scale, we evaluated patterns in 
allometric equation differences by summarizing biomass 
differences and relative differences by forest type in 2001 
as defined by LANDFIRE version 1.0.5 Existing Vegeta-
tion Type [67].

Allometric error
Allometric biomass error is not reported in some cases 
(e.g., FIA-CRM) and, when it is reported, the error is 
simply the error or variability in the model fit (e.g., Jen-
kins et al. [11] and our local equations). To better under-
stand the representativeness of allometric equations in 
our study area, we evaluated all three equations using 
an independent dataset of destructively sampled lodge-
pole pine, ponderosa pine, and Douglas-fir trees from 
the Legacy Tree Database [40]. Calculating precision and 
bias with an independent set of trees allowed us to com-
pare allometric model performance in our study region, 
while also enabling error estimates for the FIA-CRM 
predictions.

We used 285 lodgepole pine, ponderosa pine, and 
Douglas-fir trees from the Legacy Tree Database to cal-
culate allometric errors (Additional file  1: Table  S6). 
Trees located in Colorado and Wyoming were consid-
ered, although no trees from Wyoming fit our criteria. 
We used dry weights of all above-stump bark and wood 
for 73 lodgepole and ponderosa pine trees from near Red 
Feather Lakes in northern Colorado [68, 69] which is 
within the study area and is near our ponderosa pine and 
Douglas-fir sampling sites (Table  1). Reid [68] destruc-
tively sampled 19 lodgepole pine trees at around 3000 m 
elevation. Tossey [69] sampled seedlings and saplings 
across a range of site qualities, topographic positions, 
and habitat types between elevations of 1700  m and 
3700 m. The other 212 Legacy trees used were sampled in 
National Forests within and just outside of the study area, 
but only green mass was reported [70]. For these trees, 
we converted above-stump green mass to dry mass using 
the steps described in Additional file 1. Comparing biotic 
and abiotic growth conditions (e.g., trees ha−1, basal area, 
site index, precipitation) between our sites and Legacy 
Tree sites could help explain differences between biomass 
observations and predictions, but comparable informa-
tion was not available across studies.

For each Legacy tree, we estimated biomass using each 
set of allometric equations. We adjusted local, Jenkins 
et al. [11], and FIA-CRM estimates to match components 
measured for the Legacy trees by subtracting foliage 
mass from local and Jenkins et al. [11] estimates and by 
subtracting stump mass from Jenkins et al. [11] and FIA-
CRM estimates. For FIA-CRM, we did not have all infor-
mation needed to calculate biomass of Legacy trees so 
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we employed an alternative method. FIA-CRM biomass 
was estimated as the biomass of the tree in the FIA plot 
data most similar to the Legacy tree. We matched Legacy 
trees to a tree in the FIA plot data by extracting the 20 
FIA trees most similar in diameter at breast height to the 
Legacy tree and then selecting the tree closest in height 
to the Legacy tree from this list of 20. The diameter and 
height of trees for which the FIA-CRM biomass values 
were used matched Legacy trees within 0.1  cm diam-
eter at breast height on average (sd = 0.6 cm) and < 0.1 m 
height (sd = 0.5  m). We report relative and absolute 
RMSE and bias between Legacy tree biomass and predic-
tions from each set of allometric equations.

Uncertainty propagation
We propagated error from two important contribu-
tors to total biomass prediction uncertainty [7, 38, 39]: 
error from allometric biomass equations (hereafter 
“allometric error”) and from the remote sensing model 
predictions used to map biomass (hereafter “predic-
tion error”). We calculated uncertainty at the tree, plot, 
and pixel scale and compared the relative contributions 
of allometric error and prediction error using meth-
ods from Chen et al. [38] and Stovall and Shugart [39]. 
We do not account for errors in the predictor variable 
measurement (i.e., DBH or spectral, topographic, and 
climatic layers) or model parameters of the allometric 
and remote sensing models and, thus, underestimate 
total uncertainty. Past work has highlighted allometric 
and prediction errors as the primary sources of biomass 
prediction error [38]. Moreover, our primary goal was 
to better understand the relative contribution from 
each of these error sources, as opposed to quantify-
ing total uncertainty in each scenario. We hypothesize 
adding the additional sources of error would scale our 
overall results, increasing the total amount of uncer-
tainty, but relative contributions from allometry and 

remote sensing model-based predictions would likely 
remain similar.

We propagated allometric error from two scenar-
ios—one with the errors from the equation fit (equa-
tion-derived) and one using errors calculated from 
comparisons with the independent Legacy Tree Data. 
Both error scenarios were propagated for local and Jen-
kins et al. [11] allometric equations, but we only propa-
gate Legacy Tree Data allometric error for FIA-CRM 
since error is not reported for FIA-CRM equations. We 
only had error for our three focal species when propagat-
ing allometric error from Legacy Tree Data evaluations, 
so errors reported in Jenkins et  al. [11] were used for 
all other species across all three sets of allometric equa-
tions. For equation-derived evaluation of local biomass 
estimates, allometric error ( σtree ) for our three focal spe-
cies was the total tree biomass relative RMSE from our 
equations (Fig. 2). We used the standard error reported 
in Landis and Mogren [52] for Engelmann spruce in the 
local equation-derived evaluation. The aspen biomass 
equations used in our local estimates [53] only reported 
R2, so we utilized Jenkins et al. [11] uncertainty for these 
trees and for all other species. Jenkins et  al. [11] errors 
are reported as RMSE in natural log units. We calculated 
Jenkins et al. [11] allometric error ( σtree , kg) for each tree 
using the following equation.

where β0 , β1 , and RMSE are species group-specific 
regression parameters and errors from Table 4 of Jenkins 
et  al. [11]. Allometric uncertainty is propagated to the 
plot level ( σplot , Mg  ha−1) using the following equation 
[38, 39] 

(7)
σtree =

e(β0+β1 lnDBH)+1.96∗RMSE − e(β0+β1 lnDBH)−1.96∗RMSE

2 ∗ 1.96

Table 1  Destructively sampled trees used in  this study (Legacy Trees and  trees destructively sampled for  this study), 
the number of trees sampled for each species, location, and study and a summary of the diameter at breast height (DBH)

NF National Forest, CO Colorado

Species Study Location n Mean DBH (cm) Min DBH (cm) Max DBH (cm)

Lodgepole pine This study CO State Forest 20 16.3 2.5 29.9

Reid et al. (1974) Near Red Feather Lakes, CO 19 13.3 2.5 28.7

Sánchez Meador (2007) Pike, San Isabel, and Aarapaho NF 69 13.2 1.5 32.0

Tossey (1982) Near Red Feather Lakes, CO 26 5.4 1.0 11.4

Ponderosa pine This study Ben Delatour Boy Scout Ranch 10 34.0 4.9 61.8

Sánchez Meador (2007) Pike, San Isabel, and Aarapaho NF 80 15.3 1.8 36.6

Tossey (1982) Near Red Feather Lakes, CO 28 5.3 0.8 11.7

Douglas-fir This study Ben Delatour Boy Scout Ranch 10 24.9 2.4 46.6

Sánchez Meador (2007) Pike, San Isabel, and Aarapaho NF 63 14.1 1.5 39.6
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where s is the area of the plot in hectares.
This plot-level allometric uncertainty was combined 

and propagated with remote sensing model prediction 
error ( σ

ε,B̂plot
 ) using the following equation. The model 

prediction error was the RMSE for the random forests 
model built with the respective set of allometric biomass 
equations.

where σpred is the total uncertainty from allometric and 
prediction error in Mg ha−1. We calculate percent uncer-
tainty by dividing by the mean plot-level biomass den-
sity and evaluate the relative contribution of each error 
source as the percentage of σpred.

Results
Destructive sampling and local allometric equations
Destructively sampled trees spanned the diameter range 
observed at each site (Table 2). The lodgepole pine tended 
to have the smallest DBH and grow at the highest density, 
while the ponderosa pine had the largest DBH and grew 
in the lowest densities. We calculated dry total and com-
ponent biomass for each destructively sampled tree. The 
multiple regression equations (Additional file 1: Table S2) 
developed for predicting single branch length, foliage 
mass, and wood mass performed strongly, with adjusted 
R2 values averaging 0.84 and ranging from 0.63 to 0.98 
(Additional file 1: Table S3). Predictions from these equa-
tions were used in combination with other in-field meas-
urements to calculate component biomass (Table 2). For 
all species, the majority of aboveground biomass was in 
the bole and branch components, and trees had more 
foliage than bark biomass (Additional file  2: Fig.  S1). 
Moisture content for each component and species are 
presented in Additional file  2: Table  S1. Specific gravity 

(8)σplot =

√

√

√

√

ntree,plot
∑

i=1

σ 2
tree,i

s

(9)σpred =

√

σ 2
ε,plot + σ 2

ε,B̂plot

Table 2  Height, diameter at  breast height (DBH), 
and  stand structure of  destructively sampled trees 
and  from  7.32  m radius plots measured around  each tree 
and  total and  component biomass of  the  destructively 
sampled trees

PSME Douglas fir (Pseudotsuga menziesii; n = 10), PICO lodgepole pine (Pinus 
contorta; n = 20), PIPO ponderosa pine (P. ponderosa; n = 10)
a  Includes foliage
b  Stem wood does not include bark

Species Mean Standard 
deviation

Min Max

DBH (cm) PSME 24.9 15.4 2.4 46.6

PICO 16.3 8.0 2.5 29.9

PIPO 34.0 18.5 4.9 61.8

Height (m) PSME 12.7 5.3 3.2 19.7

PICO 12.2 6.5 3.2 21.1

PIPO 11.3 4.3 3.0 16.8

Tree density (trees ha−1) PSME 386 176 119 535

PICO 921 414 238 2139

PIPO 172 162 0 416

Basal area (m2 ha−1) PSME 15.6 6.5 7.2 30.3

PICO 18.6 14.9 0.5 44.9

PIPO 13.4 10.4 0 29.7

Average plot DBH (cm) PSME 21.2 7.4 12.2 35.9

PICO 15.3 7.2 4.9 27.0

PIPO 26.6 17.6 0.0 65.0

Total biomassa (kg) PSME 286.3 290.1 3.2 809.1

PICO 117.6 114.7 1.7 358.4

PIPO 710.4 751.7 5.7 2188.1

Stem wood biomassb (kg) PSME 152.6 166.1 0 434.2

PICO 72.1 83.5 0 247.2

PIPO 270.4 268.1 0 738.5

Stem bark biomass (kg) PSME 33.1 31.3 0 81.8

PICO 5.3 5.6 0 15.8

PIPO 35.5 32.3 0 89.7

Foliage biomass (kg) PSME 28.2 25.4 1.2 72.1

PICO 10.2 7.3 0.8 24.1

PIPO 49.2 49.9 1.5 153.9

Branch biomass (kg) PSME 72.4 70.5 2.0 220.9

PICO 30.1 23.7 0.9 82.0

PIPO 355.3 410.8 4.2 1206.0

Fig. 2  Evaluation metrics for allometric equations generated in this study for each component and species
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of the bole increased from lodgepole pine (0.39) to pon-
derosa pine (0.42) to Douglas-fir (0.43). Table 3 presents 
regression coefficients for Eqs.  (2–6) predicting compo-
nent biomass from a tree’s diameter at breast height for 
each species. Parameter estimates were stable to varia-
tions in their start values. Allometric equations fit the 
data well, with all but two components having adjusted 

R2 values greater than 0.90 (Fig. 2). Absolute RMSE val-
ues were highest for ponderosa pine, but lodgepole pine 
tended to have the highest relative errors (Fig. 2). Across 
species, allometric equations over-estimated bark and 
bole biomass, but under-estimated foliage biomass 
(Fig. 2).

Tree‑scale biomass variability
We used data from 285 Legacy Tree Data trees to inde-
pendently test the biomass predictions of the allomet-
ric equations developed in this study (“local”), Jenkins 
et al. [11], and the FIA-CRM (Table 1). The Legacy trees 
were smaller in terms of DBH and height than the trees 
that we destructively sampled and there were more low 
than high biomass Legacy trees (Fig. 3; Additional file 1: 
Table S6). Local equations had the lowest error and bias 
across all three species, although the bias was similar 
between local and Jenkins et al. [11] equations (Table 4). 
In general, error and bias for each set of allometric equa-
tions differed dramatically for each species. Error values 
were as high as 113.7% of the mean (Jenkins et  al. [11] 
equations for Douglas-fir) and as low as 23.1% (local 
equations for ponderosa pine), while predictions were as 
biased as 54.0% (Jenkins et  al. [11] equations for Doug-
las-fir) and had as little bias as − 4.5% (Jenkins et al. [11] 
equations for ponderosa pine; Table 4). The Jenkins et al. 
[11] equations predicted lodgepole pine biomass most 
accurately and performed similarly to the local equations 
for ponderosa pine. Local equations performed best for 

Table 3  Allometric biomass equation regression 
coefficients for  Eqs.  (2–6) for  lodgepole pine, ponderosa 
pine, and Douglas-fir

Equations were fit using nonlinear seemingly unrelated regression to estimate 
component biomass (kg) from a tree’s diameter at breast height (cm). Values in 
parentheses are standard errors of the parameter values. Total biomass can be 
calculated as the sum of these four components

Species Component ai1 ai2

Douglas-Fir Bole (i = 1) − 2.9162 (0.9896) 2.3437 (0.2647)

Bark (i = 2) − 2.0888 (0.7021) 1.6911 (0.1903)

Foliage (i = 3) − 3.3489 (0.8356) 1.9822 (0.2249)

Branch (i = 4) − 3.7741 (1.0634) 2.3588 (0.2845)

Lodgepole Pine Bole (i = 1) − 4.3642 (0.8611) 2.9255 (0.2634)

Bark (i = 2) − 5.2333 (0.8573) 2.3723 (0.2646)

Foliage (i = 3) − 2.0830 (0.6570) 1.5402 (0.2075)

Branch (i = 4) − 1.0172 (0.9174) 1.5475 (0.2897)

Ponderosa Pine Bole (i = 1) − 2.5513 (0.8855) 2.2322 (0.2231)

Bark (i = 2) − 3.5399 (0.9608) 1.9588 (0.2432)

Foliage (i = 3) − 5.75806 (1.2645) 2.6110 (0.3168)

Branch (i = 4) − 5.2127 (1.6641) 2.9843 (0.4149)

Fig. 3  Scatter plots with regression lines and 95% confidence intervals comparing destructively-sampled biomass estimates from the legacy 
database to the three allometric equations used in this study (Jenkins et al. [11], local, and FIA-CRM). Comparisons are made for three species, as 
shown in the legend. The 1:1 line of exact agreement between Legacy sampled biomass and allometric biomass is shown by the black line for 
reference. All biomass estimates shown in the figure exclude foliage and stump biomass to align with the Legacy measurements used
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Douglas-fir. The FIA-CRM equations underpredicted 
biomass for all species, while local and Jenkins et al. [11] 
equations were less biased, but tended to overpredict 
biomass (Table 4; Fig. 3).

Differences between allometric equations at the tree 
scale varied by species, component, and diameter (Fig. 4). 
Disagreement between allometric equations was minor 
for some species and components (e.g., total ponderosa 
pine biomass predicted by local and Jenkins) and large 
for others (e.g., total ponderosa pine biomass predicted 
by local and FIA-CRM; Fig.  4 and Additional file  3: 
Table S1). FIA-CRM biomass estimates have a range for 
a given tree diameter (the spread of gray points in Fig. 4) 
as opposed to a single line of biomass estimates like Jen-
kins and local equations because FIA-CRM biomass esti-
mates are based on more factors than just diameter, such 
as height and tree breakage or rot. Jenkins allometric 
equations tend to predict the highest biomass values for 
Douglas-fir, while local equations predict the highest bio-
mass for ponderosa and lodgepole pine. However, there 
is variability in this order by components. For example, 
local equations predict dramatically more ponderosa 
pine branch biomass than the other allometric equations, 
but Jenkins predicts the highest ponderosa pine bole and 
bark biomass. The absolute difference between allomet-
ric equations tended to increase with diameter and the 
relative difference had mixed trends (Fig.  4 and Addi-
tional file 3: Table S1). The relative difference sometimes 
increased with diameter but for other species and com-
ponents, the relative difference decreased with diameter 
or remained relatively steady.

Engelmann spruce, subalpine fir, and aspen were all 
common in our plots, but were not destructively sam-
pled in this study. Other allometric biomass equations 
were used for these species in the local biomass estimates 
for scaling to the plot and landscape-level. Engelmann 
spruce biomass from Landis and Mogren [52] and aspen 
biomass from Johnston and Bartos [53] both predicted 
higher biomass than FIA-CRM, but lower biomass than 
Jenkins et  al. [11] (Table  5). The largest tree-level mean 

biomass difference for the non-focal species of this study 
was for Engelmann spruce between Jenkins et al. [11] and 
FIA-CRM (83.4 kg) and the largest mean relative differ-
ence was for subalpine fir (− 116.3%) between local (same 
as FIA-CRM for subalpine fir tree-scale comparisons) 
and Jenkins et al. [11].

Plot‑Scale Biomass Variability
We calculated biomass at 418 FIA plots with each set of 
allometric equations. Plots ranged from dense (max basal 
area = 95.2  m2 ha−1, max trees ha−1 = 11,411) to sparse 
(min basal area = 0.5 m2 ha−1, min trees ha−1 = 30), with 
an average basal area of 33.0 m2 ha−1 and 1608 trees per 
hectare (Fig.  5). Lodgepole pine accounted for 40.5% 
of the basal area, making it the most abundant species 
in these plots. Engelmann spruce (20.6%) and subal-
pine fir (17.1%) were also common, while aspen (7.6%), 
Douglas-fir (4.3%), ponderosa pine (3.5%), limber pine 
(2.0%), Utah juniper (1.4%), and pinyon pine (1.0%) made 
up small percentages of the plot basal area. Of the three 
species that we destructively sampled, ponderosa pine 
in the FIA plots tended to be the largest (mean aver-
age diameter = 23.2  cm, max = 64.3  cm, min = 2.5  cm), 
Douglas-fir in the middle (mean average diame-
ter = 21.5 cm, max = 78.7 cm, min = 2.5 cm), and lodge-
pole pine the smallest (mean average diameter = 19.9 cm, 
max = 62.0 cm, min = 2.5 cm).

Biomass at the FIA plots tended to be highest 
when using Jenkins et  al. [11] equations (mean bio-
mass = 144.4  Mg  ha−1), followed by local equations 
(mean biomass = 137.5  Mg  ha−1) and then FIA-CRM 
(mean biomass = 100.2 Mg ha−1, Fig. 5). The differences 
between plot estimates made using Jenkins et al. [11] and 
FIA-CRM were the largest, followed by local equations 
and FIA-CRM differences (Table 6). Local equations and 
Jenkins et al. [11] plot biomass estimates were most simi-
lar, however differences between these two were larger 
when presented in terms of the absolute value of the 
biomass differences (Table 6). This reflects that plot bio-
mass estimates made by local equations were sometimes 

Table 4  Comparison of  biomass estimates measured in  the  Legacy Tree Database and  predictions by  three allometric 
biomass equations for  the  Legacy trees: local allometrics presented in  this study, Jenkins et  al. [11], and  the  Forest 
Inventory and Analysis Component Ratio Method (FIA-CRM)

Negative bias values indicate that the allometric equations are under-predicting biomass compared to the Legacy Database biomass

All Species (n = 285) Lodgepole pine (n = 114) Ponderosa pine (n = 108) Douglas-fir (n = 63)

RMSE Bias RMSE Bias RMSE Bias RMSE Bias

kg % kg % kg % kg % kg % kg % kg % kg %

Local 27.9 46.3 9.1 15.1 30.7 71.3 16.0 37.1 16.6 23.1 3.8 5.2 36.6 51.7 5.8 8.2

Jenkins 40.6 67.4 9.3 15.4 16.1 37.5 5.2 12.0 17.3 23.9 − 3.3 − 4.5 80.5 113.7 38.2 54.0

FIA-CRM 37.3 62.0 − 16.1 − 26.8 23.0 53.5 − 7.9 − 18.3 45.4 62.9 − 27.1 − 37.6 42.5 60.0 − 12.3 − 17.4
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Fig. 4  Comparison of the three sets of allometric equations used in this study (local equations presented in this study, Jenkins et al. [11], and Forest 
Inventory and Analysis Component Ratio Method [FIA-CRM]). Comparisons are made for the three species that were destructively sampled in this 
study (Douglas-fir, lodgepole pine, and ponderosa pine), the total tree biomass and three components. The figure shows biomass for the trees in 
the FIA plots used in this study. Total biomass includes stump biomass, but excludes foliage since FIA-CRM does not estimate foliage biomass. Bole 
and bark biomass are combined for the sake of direct comparison since FIA-CRM does not separate these components. This component represents 
bole and bark of the merchantable portion of the tree between the 1-foot stump and 4-inch top

Table 5  Comparison of aboveground tree biomass (stump included, foliage excluded for all allometric equations) for tree 
species common in our study area, but not destructively sampled

Local biomass estimates for Engelmann spruce, subalpine fir, and aspen were made using allometric equations from Landis and Mogren [52], FIA-CRM, and Johnston 
and Bartos [53], respectively

The relative differences were calculated by dividing each tree biomass difference by the minuend. FIA-CRM was used to estimate tree-level biomass in both the local 
and FIA-CRM scenario, so their difference is not applicable

Species Local—Jenkins Local—FIA-CRM Jenkins—FIA-CRM

Mean diff (kg) Mean relative 
diff (%)

Mean diff (kg) Mean relative 
diff (%)

Mean diff (kg) Mean 
relative 
diff (%)

Engelmann spruce − 20.2 − 15.6 67.8 33.4 83.4 41.2

Subalpine fir − 60.8 − 116.3 NA NA 60.8 44.2

Quaking aspen − 35.1 − 30.0 12.4 23.3 47.9 41.2
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higher and sometimes lower than Jenkins et al. [11] esti-
mates. Differences between local and FIA-CRM and 
Jenkins et  al. [11] and FIA-CRM changed little when 
the absolute values of the differences were considered, 
reflecting the consistent under-estimation of biomass by 
FIA-CRM. Random forests models of these differences 
in plot biomass estimates as a function of forest struc-
ture attributes showed that differences between allomet-
ric equations were larger in stands with higher basal area 
(Additional file 3: Figs. S1 to S4). Forest structure attrib-
utes explained between 56.7 and 86.1% of the variance 
in plot biomass differences (Additional file  3: Table  S2). 
When the relative biomass between allometric equations 
was modeled, less of the variance was explained by stand 
structure and composition (39.0–55.3%).

Plot-scale allometric uncertainty was lower when 
utilizing equation-derived allometric errors, and was 

higher when propagating the independent Legacy eval-
uation (Fig.  6). The equation-derived local allometric 
equation error values resulted in the lowest plot-level 
uncertainty (mean plot RMSE = 41.5  Mg  ha−1). How-
ever, when evaluated against the independent Legacy 
Tree data, Jenkins et  al. [11] was lowest (mean plot 
RMSE = 90.9  Mg  ha−1), followed by local equations 
(mean plot RMSE = 108.4  Mg  ha−1) and FIA-CRM 
(mean plot RMSE = 135.7 Mg ha−1).

Fig. 5  a Summary of aboveground tree biomass at Forest Inventory and Analysis (FIA) plots as estimated by three allometric equations. 
FIA-CRM = FIA Component Ratio Method (does not estimate foliage mass); Jenkins = Jenkins et al. [11]; local = equations presented in this study. b 
and c) Histograms of basal area and the number of trees per hectare at the FIA plots

Table 6  Summary of  differences in  plot biomass 
when calculated using different allometric equations: local 
(presented in  this study), Forest Inventory and  Analysis 
Component Ratio Method (FIA-CRM), and  Jenkins et  al. 
[11]

The mean of both the differences and the absolute value of the differences are 
presented as well as the mean relative difference

Allometric 
equations 
compared

Mean 
difference 
(Mg ha−1)

Mean of absolute 
differences 
(Mg ha−1)

Mean relative 
difference (%)

Local—Jenkins − 6.9 25.9 − 13.0

Local—FIA-CRM 37.3 37.9 28.7

Jenkins—FIA-CRM 44.2 44.8 32.9

Fig. 6  Boxplots showing plot-level allometric uncertainty for local 
equations (those presented in this study), Jenkins et al. [11], and the 
Forest Inventory and Analysis Component Ratio Method (FIA-CRM). 
Allometric error was evaluated in two ways for Jenkins et al. [11] 
and local equations: equation-derived evaluation and independent 
evaluation against Legacy Tree Data (“Jenkins Leg.” and “Local Leg.”). 
The FIA-CRM model was only evaluated against Legacy tree data 
(“FIA-CRM Leg.”). Notches on the boxplots show roughly a 95% 
confidence interval for the medians. Diamonds are the mean
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Landscape‑scale biomass variability
We developed three maps of standing aboveground tree 
biomass in 2001 using random forests models: one map 
for each set of allometric biomass equations. The three 
models performed similarly with 53.77- 59.36 percent 
variation explained and RMSEs ranging from 40.8 to 
54.8  Mg  ha−1 and low bias (Table  7). The Normalized 
Difference Infrared Index (NDII) was an important vari-
able in all models, and the Landsat 7 blue band (band 1) 
and digital elevation model were also important predic-
tor variables (Table 7). Consistent with other studies that 
map biomass using passive remote sensing, the biomass 
predictions saturate in all three maps (Fig.  7a). Models 

built from allometric equations that predict higher bio-
mass in the FIA plots (local and Jenkins et  al. [11]) sat-
urate at slightly higher levels than FIA-CRM, which 
estimated lower biomass at the FIA plots. 

We evaluated the contribution of two main sources of 
uncertainty to the biomass predictions: allometric error 
and prediction error from mapping biomass (Fig.  7b). 
Total uncertainty was lowest for models constructed 
using equation-derived evaluation of local allometric 
equations  (49.9%) and was highest for independently 
evaluated FIA-CRM models (164.5%; Fig.  7b). Model 
prediction error was relatively consistent across all mod-
els. The variability in total uncertainty was driven by 

Table 7  Out-of-bag model evaluation metrics (pseudo R2 and  RMSE) from  the  Random Forest aboveground biomass 
models

These values are the prediction errors only, and do not include allometric error. FIA-CRM Forest Inventory and Analysis Component Ratio Method, RMSE root mean 
square error, NDII normalized difference infrared index, DEM digital elevation model, PAS precipitation as snow, mtry number of predictor variables randomly sampled 
at each split in model, ntrees number of trees grown in model

Allometric Equation RMSE RMSE percent 
of mean

Pseudo R2 Percent Bias Number of Predictors (Top 3 Predictors) mtry ntrees

Local 48.1 35.0 0.5936 0.9 11 (Band 1, NDII, DEM) 8 2000

Jenkins 54.8 37.9 0.5377 0.9 10 (NDII, DEM, Band 1) 5 1500

FIA-CRM 40.8 40.8 0.5463 1.1 9 (NDII, Band 2 texture_5 × 5 mean, PAS) 4 1000

Fig. 7  a Observed plot aboveground biomass values and those predicted by the random forest models for generating biomass maps in three 
allometric biomass equation scenarios: local equations (those presented in this study), Jenkins et al. [11], and the Forest Inventory and Analysis 
Component Ratio Method (FIA-CRM). Dashed grey line is the 1:1 line representing perfect model fit. b Uncertainty contributions from the allometric 
model (dark grey) and random forest prediction (light grey). The printed percentages within each bar are the allometric and prediction uncertainties 
relative to total uncertainty. Total uncertainty is printed at the top of each bar. Allometric error was evaluated in two ways for Jenkins et al. [11] and 
local equations: equation-derived and independent evaluation against Legacy tree data (“Jenkins Leg.” and “Local Leg.”). The FIA-CRM model was 
only evaluated against Legacy tree data (“FIA-CRM Leg.”) because we were unable to locate FIA-CRM equation-derived errors
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allometric uncertainty, which ranged from 29.9 to 75.2% 
of the total uncertainty (Fig. 7b). Allometric errors were 
less than prediction errors only when equation-derived 
allometric errors were used.

Across all forested areas in our study area, maps gen-
erated using local allometric biomass equations estimate 
2.066 billion Mg of standing aboveground biomass, while 
maps based on Jenkins et al. [11] and FIA-CRM equations 

estimate 2.224 billion Mg and 1.502 billion Mg, respec-
tively. The maps based on Jenkins et al. [11] showed 7.6% 
more biomass than the local maps, while FIA-CRM maps 
showed 27.3% less biomass than local maps. These three 
biomass maps were differenced to highlight areas of 
agreement and disagreement in the predicted amount of 
aboveground forest biomass (Fig. 8). Differences between 
biomass in a given pixel were as large as 236.6 Mg ha−1. 

Fig. 8  Left column: Biomass maps created using three sets of allometric biomass equations: local equations presented in this study, Jenkins et al. 
[11], and the Forest Inventory and Analysis Component Ratio Method (FIA-CRM). Middle and right columns: Maps of the difference and relative 
difference between the biomass maps, respectively. Note that FIA-CRM biomass estimates do not include foliage mass, but local and Jenkins et al. 
[11] maps do
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The largest differences between “Jenkins – FIA-CRM” 
and “local – FIA-CRM” were in spruce-fir forests (Fig. 9). 
Local and Jenkins et al. [11] predictions were remarkably 
similar for lodgepole pine forests and were most different 
for aspen forests (Fig. 9).

Discussion
Allometric equation selection is critical for accurately 
estimating regional biomass stocks. We evaluated the 
variability and accuracy of aboveground forest biomass 
estimates from three sets of allometric equations at the 
tree, plot, and landscape scale. Destructive sampling of 
even as few as ten trees per species generated relatively 
reliable allometric equations for our study area compared 
to existing equations. In an independent evaluation of 
these local equations, Jenkins et al. [11], and FIA-CRM, 
we found the local equations performed best for Douglas-
fir and comparably to Jenkins et  al. [11] for ponderosa 
pine. Our local lodgepole pine equations had the highest 
error and bias of the allometric equations tested. While 
it is reasonable that the local equations would perform 
strongly in the areas near our destructive sampling sites, 
we were also surprised given our low sample sizes and 
potential for high bias [71]. Due to the low sample size 
sampled across small areas, the allometric equations pre-
sented in this study should be used cautiously if applied 
in other regions. More accurate local allometrics could 

be developed by sampling additional trees representing 
a variety of genetic, abiotic, and biotic conditions and by 
incorporating more predictor variables in the allometric 
equations such as height and crown ratio.

Accuracy of each of the equations differed substan-
tially between species. For example, Jenkins et  al. [11] 
performed well compared to the Legacy Tree Data for 
lodgepole pine (RMSE = 16.1 kg; Table 4), but poorly for 
Douglas-fir (RMSE = 80.5  kg). Allometric performance 
should be tested for each species of interest when pos-
sible. The variability in biomass estimates across diam-
eters (i.e., higher differences between allometrics at some 
diameters) suggests that equations should also be tested 
across the diameter range being used.

The FIA-CRM equations, which are commonly used for 
forest carbon accounting [e.g., 15], consistently under-
estimated biomass and generated the lowest estimates at 
the tree, plot, and landscape scales. Other studies have 
also found FIA-CRM to under-estimate biomass [e.g., 
13, 72]. The FIA-CRM plot and landscape-level estimates 
did not include foliage biomass while estimates from the 
other allometrics did include foliage. Foliage accounted 
for an average of 14% of total aboveground biomass 
for the trees we destructively sampled. Differences 
between equations at the plot scale (28.7% mean differ-
ence between local and FIA-CRM and 32.9% difference 
between Jenkins and FIA-CRM) and across the entire 

Fig. 9  Mean difference in biomass between maps produced from three sets of allometric biomass equations for the most common forest types in 
our study area. The mean was taken of all pixels within each forest type. Forest types are derived from LANDFIRE Existing Vegetation Type version 
1.0.5—forest type names are simplified for this figure. Note that mapped Forest Inventory and Analysis Component Ratio Method (FIA-CRM) 
biomass estimates do not include foliage, but local and Jenkins et al. [11] estimates do include foliage



Page 17 of 20Vorster et al. Carbon Balance Manage            (2020) 15:8 	

study area (27.3% difference between local and FIA-CRM 
and 32.5% difference between Jenkins and FIA-CRM) are 
influenced by the exclusion of foliage in FIA-CRM esti-
mates. However, biomass differences exceeded what can 
be attributed to the exclusion of foliage, indicating that 
FIA-CRM underestimates the biomass of other compo-
nents. Foliage was excluded for the comparison of all allo-
metric predictions to Legacy Trees to reduce impacts of 
the lack of foliage on FIA-CRM uncertainty propagation.

Biomass differences between equations varied widely 
across species, DBH, and component, indicating that total 
tree biomass errors can’t be assumed to represent errors 
for a single component, or errors for another species or 
size class. For example, branch biomass predictions var-
ied between equations (75% difference between local and 
Jenkins et  al. [11]) much more than total biomass (14% 
difference) for large ponderosa pine (40–60  cm DBH; 
Fig. 4; Additional file 3: Table S1). This also highlights the 
potential pitfalls and strengths of local allometric equa-
tions. The local equations predict high branch biomass 
compared to other equations, potentially reflecting true 
differences in growth form between our study area and 
the areas from which trees were sampled to develop these 
other equations. However, the high branch estimates 
could also be the result of sampling bias. We sampled 
ponderosa pine in a variety of stand densities, but several 
of our large trees were more open grown and thus had 
more branch biomass, contributing to the high branch 
biomass predictions.

The differences between allometric equation biomass 
predictions were frequently, but not always, largest for 
the biggest (60–80  cm DBH) trees (Additional file  3: 
Table  S1). This reflects an issue common for biomass 
allometry: large trees have the most biomass and great-
est variation in growth form, but are rarely measured 
because they are the most difficult and expensive to sam-
ple [73]. We had only one destructively sampled ponder-
osa pine tree in this upper diameter range, and lacked any 
trees this size for lodgepole pine or Douglas-fir. While it 
is problematic to predict outside the diameter range of 
sampled trees, this practice is commonplace in biomass 
assessments because few alternatives exist for most spe-
cies and locations. Improved allometric equation accu-
racy for large trees is needed to improve forest biomass 
estimates [39]. The inclusion of large trees in the Jenkins 
et  al. [11] equations likely make the large tree biomass 
predictions more reliable than the local equations. How-
ever, allometric equations that don’t utilize tree height 
can overpredict large diameter tree biomass [13].

Plot-level biomass estimates diverged with increasing 
basal area. Engelmann spruce-subalpine fir forests are 
some of the higher basal area forests in our study area. 
The maps (Fig. 8) and summaries of biomass differences 

by forest type (Fig.  9) both show high disagreement in 
these spruce-fir forests between all equations, highlight-
ing it as a forest type where allometric equation selection 
is particularly important. Independent evaluation of the 
allometric equations for these species is needed to deter-
mine which allometric equation is best suited for this 
forest type. Allometric choice is also important in the 
lower elevation montane forests due to the high relative 
biomass difference between Jenkins and local equations 
(Fig. 8). The use of our local equations is advised for these 
montane forests in our study area based on the favorable 
performance of the local equations relative to the Legacy 
Tree data for Douglas-fir and ponderosa pine.

The tree biomass measurements needed to indepen-
dently evaluate allometric accuracy are rare and valuable. 
These data are typically unavailable for a particular area 
or species, or are used in the development of the allomet-
ric equations themselves. Resources such as the Legacy 
Tree Database [40] and efficient non-destructive biomass 
sampling methods [44, 74] make independent allometric 
validation more feasible. Independent tree biomass data-
sets come with their own difficulties and biases due to the 
potential for biased sampling and inconsistent destruc-
tive sampling methodologies and component definitions. 
For example, we converted green mass to dry mass and 
adjusted which components were included in our inde-
pendent evaluation dataset. We also had a dispropor-
tionately high number of small trees in the Legacy Data 
(Additional file  1: Table  S6) that likely had the effect of 
underestimating allometric uncertainty of all allomet-
ric equations since allometric error tends to be less for 
smaller trees. We encourage biomass studies to openly 
share data (Additional file  4) to enable improved evalu-
ation of existing allometric biomass equations and for 
updating or building new equations. Even if independent 
data are not available for all species within a study area, 
the most common species can be prioritized as they have 
a larger influence on biomass uncertainty than less abun-
dant species.

Independently evaluating tree-level allometry 
increased uncertainty estimates. Errors reported with 
allometric equations reflect allometric performance rela-
tive to samples used to build the equations, not neces-
sarily for the application area. These samples may be a 
small, localized dataset (local equations) or from a large 
geographic area containing multiple species [11]. When 
using equation-derived errors, local allometric equa-
tions had 11% lower total uncertainty than the Jenkins 
et  al. [11] equations (Fig.  7b). However, evaluating both 
allometric equations with independent data resulted in 
similar and higher overall uncertainties. The increase in 
plot and landscape level uncertainty resulting from inde-
pendent evaluation is likely an underestimate since we 
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only had data to independently evaluate three species. 
To our knowledge, allometric errors are not reported for 
FIA-CRM equations, so independent evaluation is the 
only appropriate way to quantify FIA-CRM allometric 
error. Comparing allometric biomass predictions to inde-
pendent biomass observations from the application area 
enables improved estimates of allometric uncertainty, 
and guides selection of the best allometric equations for a 
particular region or application.

Reporting remote sensing model prediction error 
alone, as is common in many studies, insufficiently rep-
resents biomass estimation uncertainty. Allometric error 
should be considered, and, if possible, should be based 
on independent evaluation of the allometric equations 
from the population of interest. The accuracy of each 
biomass map in this study appeared similar if only con-
sidering remote sensing model prediction error, but 
differed widely once allometric uncertainty was propa-
gated (Fig. 7b). Ignoring allometric uncertainty and only 
reporting model prediction uncertainty would have rep-
resented as little as a quarter of the total uncertainty, 
reflecting a false confidence in the biomass maps. Just 
as FIA-CRM had the highest tree-level errors, biomass 
maps built using FIA-CRM had the highest total uncer-
tainty. Propagation of allometric uncertainty from an 
independent dataset revealed very high biomass estimate 
uncertainties, and improved accuracy by informing the 
selection of the most accurate allometric equations.

Conclusion
Allometric equation selection is a dominant influence 
on forest aboveground biomass estimates at the tree, 
plot, and landscape scale. Unless allometric uncertainty 
is propagated, total error in biomass estimates will be 
underestimated and uncertainty of estimates made with 
different allometric equations may look deceivingly 
similar, giving false confidence in mapped estimates of 
biomass. Allometric uncertainty can exceed the remote 
sensing model prediction uncertainty. Furthermore, 
regional evaluation is needed to quantify allometric 
performance in the study area. We found reported allo-
metric equation error to underestimate error compared 
to an independent, regional, tree-level biomass valida-
tion dataset. Total uncertainty was comparable between 
estimates made using nationwide allometric equations 
[11] and local, low sample size equations. Both outper-
formed FIA-CRM equation uncertainty. Future efforts 
should incorporate other sources of uncertainty not 
considered here (e.g. diameter and height measure-
ments). Remote sensing model prediction uncertainty 
will be reduced as algorithms improve and LiDAR and 
synthetic aperture radar become more widely avail-
able [e.g., 75], increasing the relative contribution of 

allometric uncertainty to total uncertainty [39]. Efforts 
to quantify and reduce allometric uncertainty are also 
needed. Data repositories of individual tree biomass 
data (such as the Legacy Tree Database used in this 
study) will be key in building more robust and inde-
pendently evaluated allometric equations at regional-
scales. Additional destructive sampling and refinement 
of nondestructive sampling methods will help quantify 
and reduce allometric uncertainty.
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