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Abstract 

Background:  Grassland ecosystems play an important role in the terrestrial carbon cycles through carbon emission 
by ecosystem respiration (Re) and carbon uptake by plant photosynthesis (GPP). Surprisingly, given Re occupies a large 
component of annual carbon balance, rather less attention has been paid to developing the estimates of Re com-
pared to GPP.

Results:  Based on 11 flux sites over the diverse grassland ecosystems in northern China, this study examined the 
amounts of carbon released by Re as well as the dominant environmental controls across temperate meadow steppe, 
typical steppe, desert steppe and alpine meadow, respectively. Multi-year mean Re revealed relatively less CO2 emit-
ted by the desert steppe in comparison with other grassland ecosystems. Meanwhile, C emissions of all grasslands 
were mainly controlled by the growing period. Correlation analysis revealed that apart from air and soil temperature, 
soil water content exerted a strong effect on the variability in Re, which implied the great potential to derive Re using 
relevant remote sensing data. Then, these field-measured Re data were up-scaled to large areas using time-series 
MODIS information and remote sensing-based piecewise regression models. These semi-empirical models appeared 
to work well with a small margin of error (R2 and RMSE ranged from 0.45 to 0.88 and from 0.21 to 0.69 g C m−2 d−1, 
respectively).

Conclusions:  Generally, the piecewise models from the growth period and dormant season performed better than 
model developed directly from the entire year. Moreover, the biases between annual mean Re observations and the 
remotely-derived products were usually within 20%. Finally, the regional Re emissions across northern China’s grass-
lands was approximately 100.66 Tg C in 2010, about 1/3 of carbon fixed from the MODIS GPP product. Specially, the 
desert steppe exhibited the highest ratio, followed by the temperate meadow steppe, typical steppe and alpine 
meadow. Therefore, this work provides a novel framework to accurately predict the spatio-temporal patterns of Re 
over large areas, which can greatly reduce the uncertainties in global carbon estimates and climate projections.
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Background
Although the terrestrial biosphere absorbs nearly a quar-
ter of anthropogenic CO2 emissions and plays a critical 
role in mitigating global climate warming, the land C 
sequestration potential of different ecosystems remains 
highly uncertain, leading to large uncertainties in future 
climate projections [1, 2]. During the past several dec-
ades, substantial advances have allowed for spatially 
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continuous, long-term estimation of terrestrial gross pri-
mary productivity (GPP) based on the satellite remote 
sensing data, climate data and ecosystem models [3–6]. 
However, net ecosystem C budget depends upon the bal-
ance of C fixation through vegetation photosynthesis 
and C loss from ecosystem respiration (Re) [7, 8], which 
requires accurate estimates of not only GPP but also Re 
across biomes.

Actually, terrestrial Re from the biosphere to the atmos-
phere represents a large component of annual carbon 
budget, which even exceeds the amount of GPP [9, 10]. 
It has excited much interest in evaluating the balance 
between GPP and Re on regional to global scales [11–13], 
because small fluctuations in either component caused by 
natural or human disturbances can ameliorate or exacer-
bate the buildup of CO2 in the atmosphere [14–16]. Par-
ticularly, Re is sensitive to the environmental factors and 
is highly spatio-temporally heterogeneous across scales 
[17, 18], which made it far poorly understood owing to 
the complicated interactions among physical, chemi-
cal, and biological variables in the respiration processes, 
including autotrophic respiration (Ra) from vegetation 
itself and heterotrophic respiration (Rh) from diverse soil 
microbiota [19]. Therefore, accurate quantification of the 
C emissions through Re is crucial to understand its effect 
on climate change and global carbon dynamics.

With the development of global FLUXNET community 
based the eddy covariance (EC) technique across ter-
restrial ecosystems, it has been possible to continuously 
monitor the seasonal and interannual variations of car-
bon fluxes between the biosphere and the atmosphere, 
which can be further divided into GPP and Re according 
to the nighttime based [20] and daytime based flux-par-
titioning methods [21]. However, the in  situ observa-
tions are generally implemented at field scale with low 
areal coverage (< 1  km2) and high cost of constructing 
and maintaining flux towers [22–24]. The availability of 
spatially continuous data of ecosystem properties and 
environmental variables important for Re provides an 
alternative approach for the large-area estimates. Cur-
rently, how to upscale the field-measured data using 
remote sensing (RS) information is urgently needed for 
understanding regional and global patterns of ecosystem 
Re.

Several studies have recently been conducted to 
model the spatial distribution of soil respiration (Rs) at 
alpine grasslands [25] and forests [26, 27] using the sat-
ellite-based products including land surface tempera-
ture (LST) and spectral vegetation index (NDVI or EVI) 
or leaf area index (LAI). By incorporating the terrain 
information, Berryman et al. [28] estimated Rs in a typi-
cal of the Southern Rocky Mountains with a coefficient 

of determination (R2) of 0.45. Jägermeyr et  al. [29] 
firstly developed the models of global Re according to 
forested and non-forested biomes. However, the clas-
sification system means that parameterization may not 
take into account the wide variety of ecosystems on 
the earth [31]. Ai et al. [17] also proposed an empirical 
yet physiologically based model with R2 and RMSE of 
0.55 and 1.67 g C m−2 d−1 respectively, which is capa-
ble of retrieving the patterns in Re at the global scale. 
But the model cannot be transferred well to specific 
ecosystems, and may particularly be inaccurate in 
hydrologically sensitive areas owing to lack of water 
index affecting Re. Nevertheless, previous studies have 
implied the significant correlations between grassland 
respiration and vegetation growth status [25], as well 
as the environmental variables such as LST [15, 17, 30] 
from the time-series satellite data.

Grasslands are the dominant landscape in China and 
account for 40% of the national land area. Geographi-
cally, approximately 78% of the grasslands in China 
exist in the northern temperate and alpine zones, con-
stituting an integral part of the Eurasian grassland 
ecosystem [32, 33]. Due to their large carbon content, 
grasslands account for one-third of the global terres-
trial carbon stock, second only to the forest ecosystem 
[34, 35], and play a key role in China’s terrestrial car-
bon cycle. Zhang et al. [5] found that temperate grass-
lands in northern China have the potential to sequester 
carbon, but the capacity of carbon sequestration relies 
on grassland types and local environmental condi-
tions. Further analysis revealed that the water avail-
ability is the dominant environmental factor regulating 
the annual carbon budget [36]. Extreme climate events 
such as drought can significantly reduce the net carbon 
uptake of grasslands. Moreover, it is predicted that heat 
waves and droughts will become more frequent in the 
21st century [37], which may lead to a general decrease 
in vegetation productivity in these grassland systems 
of northern China. Although several studies suggested 
that grasslands might be weak C sinks or near equi-
librium [5, 38], as the main constraint on C budget, a 
deep understanding of Re is helpful to project climate 
change-terrestrial C feedback over different grassland 
ecosystems. Specially, the goals of this study were: (1) 
to analyze the differences of carbon released by Re as 
well as the dominant environmental variables across 
the temperate meadow steppe, typical steppe, desert 
steppe and alpine meadow, respectively; (2) to develop 
rule-based piecewise regression models to map Re of 
diverse grasslands by integrating time-series MODIS 
products and tower-based observations; and (3) to map 
the spatial patterns of annual mean Re for the grassland 
ecosystems in northern China.
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Methods and materials
Description of the study area
The study was conducted in the grassland ecosystems of 
northern China, which is characterized by the arid and 
semi-arid continental monsoon climate with the highest 
temperature and rainfall period in summer. Following 
the east-to-west precipitation gradient, the temperate 
grasslands in northern China alter longitudinally from 
meadow steppes in the northeast, through typical steppes 
in the middle, and to desert steppes in the dry northwest. 
Alpine meadows are the dominant vegetation type in the 
Tibetan Plateau zone. These grasslands usually start to 
grow in early May and wither in late September with the 
peak biomass in July or August, which provide an impor-
tant resource for livestock production and global carbon 
sequestration [5, 33].

During recent years, a series of EC-based flux towers 
have been installed by the Coordinated Observation and 
Synthesis in Arid and Semi-arid China (COSAS), as a 
part of China Flux Observation and Research Network 
(ChinaFLUX), which can be used to observe the carbon 
and water exchanges between the atmosphere and these 
grasslands in the ecologically fragile areas of northern 
China (Fig.  1). In total of 11 flux sites are used in the 
study, which represent the most prevalent types of grass-
land ecosystems and a wide range of spatial, ecological, 
and climatic conditions, including two meadow steppe 
sites, two typical steppe sites, two desert steppe sites 
and five alpine meadow sites. Detailed descriptions of 
these flux sites can be found in the associated literature 
(Table 1).

Processing of the EC‑based flux data
Both the EC system and the automatic meteorologi-
cal station were mounted at these grassland sites, which 
acquired the continuous observations of site-level car-
bon fluxes (NEE), as well as the relevant climate data, 
including solar radiation (Rg), air and soil temperatures 
(Ta and Ts), relative humidity, soil water content (SWC), 
precipitation (P) and vapor pressure deficit (VPD). Each 
EC system was comprised of a three-dimensional sonic 
anemometer (CSAT3, Campbell Scientific, UT, USA) and 
a Li-7500 open path CO2 and H2O gas analyzer (LI-COR 
Inc., NE, USA). Raw data were continuously recorded at 
a frequency of 10 Hz on a CR5000 (Campbell Scientific) 
data logger. The processing procedures including spike 
detection and despiking, two-dimensional coordinate 
rotation, time delay removal of H2O and CO2, virtual 
temperature correction, density effects (WPL correction) 
and frequency response corrections were completed 
using the improved EdiRe software package (devel-
oped by the University of Edinburgh) to produce a half-
hour flux dataset [39]. However, owing to instrument 

malfunctions, power failure, and severe weather condi-
tions, approximately 25% of the 1-year observations were 
lost. Therefore, it was necessary to interpolate these gaps 
with a standardized gap-filling algorithm. Then, the time-
series NEE flux data were partitioned into GPP and Re, 
separately. In this study, the half-hourly Re data provided 
by flux-tower measurements were integrated to the daily 
time scale, and then averaged over each 8-day period to 
match the 8-day composite of the MODIS products. The 
procedures including gap-filling and flux partitioning, 
were completed using the new R-based package (REddy-
Proc) maintained by the Max Planck Institute for Biogeo-
chemistry [40].

Currently, there are mainly two methods implemented 
for flux-partitioning: (1) Re is estimated from the night-
time temperature and extrapolated to daytime [20] and 
(2) the light–response curve is fit to daytime NEE meas-
urements and Re is estimated from the intercept of the 
ordinate [21], which can avoid the use of potentially 
problematic nighttime data. The latter approach was 
chosen for flux partitioning because it uses a hyperbolic 
light-response curve algorithm, modified to account 
for the temperature dependency of respiration and the 
VPD limitation of photosynthesis [41]. Including the 
VPD dependency strongly improved the model’s ability 
to reproduce the asymmetric diurnal cycle during peri-
ods with high VPD, and enhances the reliability of Re 
estimates given that the reduction of GPP by VPD may 
be otherwise incorrectly attributed to higher Re. More 
details can be seen in the associated references.

MODIS products and processing
Re is generally comprised of two sources of respiration: 
Ra from maintenance respiration and growth respiration, 
and Rh from rhizomicrobial respiration and microbial 
decomposition of plant residues and other soil organic 
matter [42, 31]. Thus, it is strongly affected by plant 
growth status and climate conditions. This study used 
the enhanced vegetation index (EVI) and leaf area index 
(LAI), as well as the land surface water index (LSWI), and 
mean value of daytime and nighttime temperatures (LST) 
to represent the vegetation and climate-related variables.

All variables were derived from the time-series MODIS 
data, which can avoid the complications and difficul-
ties associated with merging disparate data sources. The 
8-day land surface reflectance (MOD09A1, V6, with 
resolution of 500 m), LAI product (MOD15A2, V6, with 
resolution of 500 m) and LST data (MOD11A2, V6, with 
resolution of 1  km) were downloaded from the NASA’s 
Earth Observing System Data and Information Sys-
tem (https​://searc​h.earth​data.nasa.gov). We only used 
the data described as good quality in the quality layer. 
These remote sensing-based products were re-sampled 

https://search.earthdata.nasa.gov


Page 4 of 14Tang et al. Carbon Balance Manage            (2020) 15:6 

to a spatial resolution of 1 km, and the data where cor-
responded to the geographical location of each flux site 
were extracted for model development. In addition, 
the vegetation type map at 1 km resolution in 2010 was 
obtained from Nanjing Institute of Geography and Lim-
nology, Chinese Academy of Science. The product spe-
cifically classified grasslands in China into temperate 
meadow steppe, typical steppe, desert steppe and alpine 
meadow, which can meet the needs to estimate Re across 
different grassland types in this study. Then, all these data 

were used to develop models and map the spatio-tem-
poral patterns of Re in grassland ecosystems in northern 
China.

Statistical analyses
To reveal the dominant environmental factors controlling 
the variability in Re on an 8-day time scale over the whole 
year and different phenological periods (growing sea-
son vs dormant season) at these four different grassland 
ecosystems, the Pearson correlation coefficient (r) was 

Fig. 1  Spatial location and distribution of the grassland flux sites used in the present study. The base map is derived from MODIS land cover 
product (MCD12Q1 C5, 500 m resolution) based on the International Geosphere Biosphere Programme (IGBP) global vegetation classification 
scheme in 2010. The detailed descriptions of these flux sites including CN-Cng, CN-Nmg, CN-Du2, CN-Hzz, CN-Sw2, CN-Ham, CN-Ar, CN-Ds, CN-Dan, 
CN-Ty and CN-Mq can be seen in Table 1
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calculated to examine the relationships between site-level 
Re observations and these vegetation and climate-related 
variables. As these grasslands usually start to grow in 
early May and wither in late September, the growing 
period and dormant period were defined from WOY 16 
to 34 and the rest of 1 year (WOY 1 to 15, and WOY 35 to 
46), respectively. Then, we aimed to develop a rule-based 
piecewise regression model to capture the seasonal vari-
ations in Re of temperate meadow steppe, typical steppe, 
desert steppe and alpine meadow in northern China. 
For each grassland type, the training set and test set of 
these flux data were instructed in Table  1. The study 
defined the model developed directly from the entire year 
as model 1, and the model from the growth period and 
dormant season as model 2. The model’s accuracy was 
evaluated using two widely-used indicators: R2 and the 
root-mean-square error (RMSE). The best model gener-
ally had the highest R2 and lowest RMSE values. Finally, 
the optimal models were used to map the spatial patterns 
of annual mean Re for the grasslands in northern China. 
All statistical analyses were performed using SPSS 19.0 
(IBM, Chicago, IL, USA). In addition, the MODIS Repro-
jection Tool (MRT) and the Interactive Data Language 
(IDL) in ENVI 5.3 were used to process over 2000 scenes 
of MODIS data and large-area estimation.

Results
Differences of annual mean Re across grasslands
Multi-year mean Re of the temperate meadow steppe, 
typical steppe, desert steppe and alpine meadow eco-
systems in northern China were exhibited in Fig. 2 with 
apparent differences in magnitude. It revealed that C 
emissions by Re were mainly concentrated in the grow-
ing season, which was even about twice and seven times 
of Re during the dormant period for desert steppe and 
the other grasslands, respectively. The low Re of desert 
steppe throughout the year can be ascribed to relatively 
sparse vegetation coverage. This study also found that 
during non-growing season, only small differences in Re 
existed among these grassland types. Generally, typical 
steppe exhibited the strongest Re of 1.08 ± 0.23 g C m−2 
d−1, followed by temperate meadow steppe (1.03 ± 0.10 g 
C m−2 d−1) and alpine meadow (1.05 ± 0.48 g C m−2 d−1), 
and undoubtedly desert steppe had the weakest Re. These 
analyses again emphasized the importance to quantify 
the patterns of grassland Re separately for large-area 
estimation.

Seasonal variations in Re and environmental controls
Seasonal dynamics in Re as well as the vegetation and 
climate-related variables across the four grassland eco-
systems were illustrated in Figs. 3 and 4. It implied that 
except the desert steppe site (CN-Hzz), Re of the other 

three grassland types exhibited an apparent single-peak 
pattern. As the temperature rose in spring, Re gradually 
increased with plant growth, and reached the peak in July 
or August. However, the peak periods came earlier in typ-
ical steppe (CN-Nmg) at about week of year–WOY 23, 
followed by temperate meadow steppe (CN-Cng, WOY 
25) and alpine meadow (CN-Ham, WOY 30). Natural 
rainfall generally occurred in summer with large fluctua-
tions around the year. Contrastingly, relatively smooth 
SWC can reflect the true water availability. As a proxy of 
vegetation response to environmental variables, EVI and 
LAI exhibited consistent trends as Re. Several periods of 
the remote-derived LSWI in winter were quite large due 
to the snow cover on and under the grasslands.

Table 2 revealed that almost all variables were strongly 
correlated to Re without considering the phenology infor-
mation. However, during the dominant growth period 
for respiration in temperate meadow steppe, typical 
steppe and alpine meadow, only temperature (Ta and Ts) 
and SWC strongly and positively affected the variability 
in Re. In the desert steppe, Re was found to be exerted a 
strong effect by SWC across growing and dormant sea-
sons, which highlighted the water condition rather than 
temperature as the most important controlling factor in 
the extremely dry ecosystems. All the remotely-sensed 
vegetation indexes and climate-related LST and LSWI 
exhibited strong correlations, implying great potential to 
quantify the variability in Re using RS technique.

Model development for quantitative remote sensing
By integrating site-level Re observations and time-series 
MODIS products, the study developed the optimal mod-
els for capturing the variability in Re of different grass-
lands using the stepwise multiple regression method 

Fig. 2  Comparisons of multi-year mean Re during the growing 
period, dormant period and the entire year across grasslands in 
northern China. Error bars represent one standard error
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(Table 3). Mainly two models were proposed with good 
performances. Generally, the model 2 established from 
the growth period and dormant season separately had 
relatively higher accuracy in estimating Re than that 
directly from the whole year (model 1). Besides the desert 
steppe, R2 and RMSE of the other grasslands varied from 
0.77 to 0.88 and from 0.41 to 0.67 g C m−2 d−1, respec-
tively. The model with only LAI as an explanatory varia-
ble also got good estimates for the desert steppe. Figure 5 
further certified that the model promised well to esti-
mate 8-day Re and captured the broad trend of seasonal 
patterns, especially for the Re_model 2, whereas the Re_
model 1 caused individual abnormal Re estimates in win-
tertime. In spite of good accuracy, the RS-based models 
remained lacking of skills to capture abrupt changes in Re 
during the summertime growing season.

Meanwhile, this study evaluated the model’s perfor-
mance on annual mean Re across these four grasslands. 

Figure  6 revealed that the remotely-derived products 
slightly underestimated Re at the temperate meadow 
steppe and desert steppe sites, but overestimated Re at the 
typical steppe and alpine meadow sites. The Re_model1 
had superior Re estimates with mean bias of 9.6% at the 
typical steppe site, while Re_model2 only had an under-
estimation of 6.2% at the temperate meadow steppe site. 
Both models had similar accuracy at the desert steppe 
and alpine meadow sites.

Spatial patterns of satellite‑derived Re
The study mapped the spatial distribution of annual 
mean Re for grasslands in northern China using the pro-
posed regression models (Fig.  7), which were extrapo-
lated from the 8-day Re estimates throughout the year 
of 2010. Generally, our results showed a declining trend 
from the southeast to the northwest direction. The 
highest Re usually occurred in the temperate meadow 

Fig. 3  Seasonal trends of a–d ecosystem respiration (Re), e–h air temperature (Ta) and soil temperature (Ts), i–l solar radiation (Rg) and vapor 
pressure deficit (VPD), m–p precipitation (P) and soil water content (SWC) in an 8-day interval at the representative grassland flux sites for selected 
years including CN-Cng 2008 (Temperate meadow steppe), CN-Nmg 2004 (Typical steppe), CN-Hzz 2014 (Desert steppe) and CN-Ham 2003 (Alpine 
meadow)
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steppe under good hydrothermal conditions. However, 
the desert steppe and the Tibetan alpine meadow emit-
ted relatively fewer CO2 through respiration. The total 
regional Re estimate in the northern China’s grass-
lands during 2010 was about 100.66 Tg C, which was 
approximately 1/3 of the carbon uptake through plant 
photosynthesis with 332.08 Tg C from the MODIS GPP 
product. Specially, the ratio of Re to GPP exhibited the 
highest value in the desert steppe (88.6%), followed 
by the temperate meadow steppe (36.9%) and typi-
cal steppe (21.5%), with the lowest ratio in the alpine 
meadow of 18.0%.

Discussion
Along the east–west precipitation gradient in north-
ern China, a wide variety of grasslands constitute the 
dominant landscape in servicing the ecological environ-
ment and socio-economics of the region and in sup-
porting diverse species of plants and animals [32]. The 
meadow steppes usually occur in the most moist and 
fertile sites among the four grassland ecosystem types, 
typically in areas with annual precipitation of about 
450  mm. The typical steppes are developed under a 
semi-arid climate in the temperate zone with annual pre-
cipitation of around 350  mm and the plant species are 

Fig. 4  The seasonal dynamics of 8-day EVI, LAI, LSWI and LST at the representative grassland flux sites for selected years including CN-Cng 2008 
(Temperate meadow steppe), CN-Nmg 2004 (Typical steppe), CN-Hzz 2014 (Desert steppe) and CN-Ham 2003 (Alpine meadow)

Table 2  Pearson correlation analysis between  8-day Re and  the  controlling environmental factors across  the  four 
grassland ecosystem types

a   and b mean that correlations are significant at the 0.01 level and 0.05 level, respectively. Rg, Ta, Ts, VPD, P and SWC are observed at the flux tower sites listed in 
Table 1. Time-series EVI, LAI, LSWI and LST data are derived from the corresponding MODIS products. All these data are at an 8-day interval

Grassland type Period Rg
(W/m2)

Ta
(°C)

Ts
(°C)

VPD
(h Pa)

P
(mm)

SWC
(%)

EVI LAI LSWI LST
(°C)

Temperate meadow steppe Growing − 0.115 0.538a 0.613a − 0.287b 0.252b 0.351a 0.745a 0.692a 0.704a 0.371a

Dormant 0.411a 0.707a 0.714a 0.685a 0.231b 0.625a 0.378a 0.635a − 0.269b 0.689a

Entire year 0.570a 0.749a 0.786a 0.520a 0.459a 0.669a 0.869a 0.851a 0.093 0.721a

Typical steppe Growing 0.073 0.760a 0.707a − 0.149 0.568a 0.495a 0.721a 0.644a 0.748a 0.669a

Dormant 0.506a 0.554a 0.553a 0.579a 0.269b 0.571a 0.377a 0.451a − 0.235 0.532a

Entire year 0.644a 0.776a 0.803a 0.581a 0.700a 0.644a 0.861a 0.794a − 0.011 0.759a

Desert steppe Growing 0.138 0.171 0.261 0.193 0.197 0.538a 0.499a 0.621a 0.338b 0.110

Dormant 0.086 0.175 0.225 0.056 − 0.119 0.611a 0.296b 0.052 − 0.262 0.175

Entire year 0.370a 0.408a 0.449a 0.421a 0.101 0.475a 0.542a 0.653a − 0.198 0.392a

Alpine meadow Growing − 0.224b 0.535a 0.531a 0.039 0.142 0.397a 0.764a 0.382a 0.739a 0.281b

Dormant 0.275b 0.652a 0.628a 0.379a 0.445a 0.630a 0.577a 0.566a − 0.206b 0.561a

Entire year 0.265b 0.629a 0.647a 0.325a 0.484a 0.565a 0.837a 0.548a 0.326a 0.531a
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Table 3  Regression analysis of  8-day Re and  the  associated MODIS-derived products across  the  four grassland 
ecosystems using the stepwise multiple regression method

Time-series EVI, LAI, LSWI and LST data are derived from the corresponding MODIS products. All data are at an 8-day interval. The training set and test set of these flux 
sites are instructed in Table 1. When using the stepwise multiple regression method to develop models, only the best is exhibited here. The model’s performance was 
evaluated using the site-level flux measurement

Grassland type Period Regression models Training set Test set

Constant EVI LAI LSWI LST R2 RMSE R2 RMSE

Temperate meadow steppe Growing 1.088 4.078 – 3.743 – 0.57 0.72 0.77 0.45

Dormant 0.064 2.362 – 0.268 0.014 0.61 0.13

Entire year − 0.619 8.487 – – 0.018 0.80 0.51 0.71 0.63

Typical steppe Growing 0.561 – – 6.058 0.096 0.72 0.60 0.88 0.41

Dormant 0.044 3.463 – 0.659 0.021 0.41 0.26

Entire year − 0.083 5.633 – 1.419 0.040 0.84 0.49 0.81 0.50

Desert steppe Growing 0.213 – 0.758 – – 0.39 0.32 0.50 0.21

Dormant 0.122 2.035 – – − 0.003 0.11 0.17

Entire year 0.190 – 0.775 – – 0.43 0.25 0.45 0.27

Alpine meadow Growing − 0.321 7.198 − 0.208 2.854 – 0.73 0.98 0.85 0.67

Dormant − 0.264 3.826 0.897 0.804 0.019 0.65 0.20

Entire year − 0.520 6.947 – 1.318 0.020 0.81 0.67 0.83 0.69

Fig. 5  Performance of the remotely-derived Re (Re_model1 and Re_model2) in capturing seasonal variations of tower-based Re (Re_observed) at the 
temperate meadow steppe (a), typical steppe (b), desert steppe (c) and alpine meadow (d) sites, respectively
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characteristically drought-tolerant. The desert steppes 
are the most arid grassland type, occurring in areas with 
annual precipitation between 150 and 250  mm under 
the influence of continental climate. Alpine steppes are 
found between 2300 and 5300  m a.s.l. in southwestern 
China. The common construction plant species are cold- 
and drought-tolerant grasses and small shrubs. Arid and 
semiarid ecosystems are often overlooked in this regard 
because of their spatially sparse vegetation and fragile 
environmental conditions [43, 44]. In fact, the grassland 
ecosystems are not only economically important, but 
recent work has shown water-limited systems to drive 
the interannual variability in the global C cycle signifi-
cantly [45, 46]. Therefore, a deep understanding of the C 
sequestration potential as well as environmental controls 
over the northern China’s grasslands is vital for reducing 
the uncertainty in future climate projections given the 
large area of grasslands.

Accurate quantification of the main C fluxes across 
terrestrial ecosystems is crucial to our understanding of 
global carbon balance [23, 47]. Till now, there are fewer 
successful models of Re compared to GPP particularly 
using the RS data directly [29, 48]. Reichstein et al. [49] 
found that soil water and temperature were good pre-
dictors for Rs, and adding LAI as a proxy for productiv-
ity further improved the accuracy. This study was based 
on closed-chamber data from forest and shrubland sites 
across Europe and North America, but it was suggested 
that the variables could easily be acquired from RS data. 
Anderson et al. [50] used a model which calculated soil 
moisture from microwave sensing, soil temperature from 
thermal imaging, and LAI, showed good agreement with 
tower flux data over pasture land in Oklahoma. However, 
model development over such a small area is unlikely to 

generate a model which is applicable to other ecosystems 
or climates, and more validation work is also needed. In 
spite of this, subsequent studies have suggested that the 
strong relationships between Rs and Re and GPP [26], 
LST [17, 25, 48] from the time-series RS data.

Changes in temperature and water availability, and 
thus climate change, are likely to be significant drivers 
of the future C balance of land systems and their feed-
backs to climate change. Grasslands in the arid and 
semi-arid regions are ecologically fragile and sensitive to 
climate change and human disturbances, especially to the 
changes in precipitation [51]. The precipitation in arid 
and semi-arid regions is highly variable both temporally 
and spatially. Fluctuations in carbon budget have been 
found to be closely associated with interannual and intra-
annual variations in precipitation in arid and semi-arid 
ecosystems, and persistent drought has caused a gen-
eral decrease in vegetation productivity in the grassland 
systems of northern China [5]. These work also demon-
strated that water condition is an important environ-
mental indicator for the estimates of Re in the grassland 
ecosystems. Soil moisture affects Re processes in various 
ways, including the growth and development of both 
aboveground vegetation and roots, growth and activ-
ity of microbial populations, in addition to gas transport 
throughout soils [52, 53]. Green et al. [2] also emphasize 
that the capacity of continents to act as a future carbon 
sink critically depends on the response of C fluxes to soil 
moisture. The study used the LSWI derived from the 
shortwave infrared (SWIR) and the near infrared (NIR) 
bands of MODIS data to represent land surface water 
condition, and got reasonably good performance. Actu-
ally, LSWI is different from soil moisture (SWC) because 
most information of LSWI reflects the total amount of 
liquid water in vegetation [54]. An interesting avenue 
of future work would be to consider employing the soil 
moisture data from the Advanced Microwave Scanning 
Radiometer-Earth Observing System (AMSE-E) [55]. 
The problem with many of these studies, however, is that 
they are too narrow for comparison. They consider one 
particular site in one particular ecosystem, or attempt to 
create a global model often focus on a narrow range of 
only four or five ecosystem types [17, 29]. Grasslands and 
their huge variety of types are almost never included as 
a separate category in remote sensing models of carbon 
flux, and as such are certain to be over or under-esti-
mated. Ge et al. [30] proposed similar models to evaluate 
grassland Re at a regional scale by integrating flux meas-
urements and the corresponding MODIS products. But 
this study simplified the grasslands in northern China 
by alpine grasslands and temperate grasslands. In fact, 
large differences existed among the temperate meadow 
steppe, typical steppe and desert steppe when exploring 

Fig. 6  Comparisons of annual mean Re observations and the 
remotely-derived products across the temperate meadow steppe, 
typical steppe, desert steppe and alpine meadow sites
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the dominant environmental controls and developing 
associated models. Meanwhile, the variability in Re rely 
on grassland types and local environmental conditions. 
Therefore, our research on remotely monitoring Re from 
various grasslands along a large-scale east–west transect 
across northern China can provide more information 
than previous studies.

Our results suggested that simple models relying 
entirely on spatial data have the potential to estimate Re 
over the diverse grassland ecosystems. This result pro-
vides a framework for the development of Re models 
aimed to obtain spatial pattern in Re. Meanwhile, the 
models incorporating the phenology information gener-
ally provided better estimations. In this study, we simply 
separated the growing season and dormant season as 

Fig. 7  Spatial patterns of grassland types (a) and annual mean Re (b) over the northern China’s grasslands in 2010. The unit of Re is g C m−2 d−1
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these grasslands usually start to grow in early May and 
wither in late September. To acquire more specific pheno-
logical information of each pixel, the global land surface 
phenology metrics at yearly intervals (MCD12Q2) can be 
used for auxiliary analysis. But the models would be com-
plicated for large-scale extrapolation owing to strong spa-
tial heterogeneity. In addition, there is a need for more 
long-term studies in order to monitor the interannual 
variations of Re as well as the underlying mechanisms. 
The study calculated the spatial distribution of grassland 
Re in 2010 because we only have a period of classification 
data with detailed grassland types. The total of carbon 
emissions of Re across the northern China’s grasslands 
was accumulated to 100.66 Tg C during 2010, which was 
approximately 1/3 of the regional carbon uptake through 
plant photosynthesis with 332.08 Tg C from the MODIS 
GPP product. Particularly, the carbon use efficiency was 
the highest in the alpine meadow, followed by the typical 
steppe, meadow steppe and desert steppe. However, this 
approach generally need large amounts of Re data to con-
strain parameters. The regression coefficients obtained at 
this study would not work well for other grassland sites 
with different climate, soil, and vegetation. Although we 
tried to establish the robust models for the temperate 
meadow steppe, typical steppe, desert steppe and alpine 
meadow using 11 flux sites, the representativeness of 
these limited sites presumably affected the general appli-
cability of our predictive model. Thus, the current Coor-
dinated Observation and Synthesis in Arid and Semi-arid 
China should be augmented by building more sites across 
a full range of grassland types.

Conclusion
On the basis of 24 EC-based years of flux measure-

ments over 11 grasslands sites under a wide range of geo-
graphic, weather and ecological conditions, the study was 
an attempt to upscale site-level Re data to the northern 
China’s grasslands including temperate meadow steppe, 
meadow steppe, desert steppe and alpine meadow, using 
the satellite-based RS data. The results demonstrated that 
the rule-based piecewise regression models can success-
fully estimate the seasonal variations in Re and provide 
a new framework to map the regional patterns of large-
scale Re. The reduction of uncertainties in Re is crucial for 
projecting climate change impacts on terrestrial carbon 
cycling and future atmospheric CO2 concentrations. This 
work also offers an opportunity to further understand the 
environmental drivers controlling the variability in Re. 
Specially, not only temperate but also soil water content, 
had a strong correlation with grassland Re, which should 
not be neglected when developing the RS models for arid 
and semiarid ecosystems. Meanwhile, the models incor-
porating the phenology information generally performed 
better. The spatial patterns of Re across the northern 

China’s grasslands exhibited a distinctly declining trend 
from the southeast to the northwest, with a regional esti-
mate of approximately 100.66 Tg C during 2010. With 
more periods of grassland classification information, 
future studies can even evaluate long-term land-use 
change and its impact on the large-scale Re of grasslands.

Abbreviations
Re: Ecosystem respiration; GPP: Gross primary production; MODIS: Moderate-
resolution Imaging Spectroradiometer; Ra: Autotrophic respiration; Rh: Hetero-
trophic respiration; EC: Eddy covariance; RS: remote sensing; Rs: Soil respiration; 
LST: Land surface temperature; NDVI: Normalized difference vegetation index; 
EVI: Enhanced vegetation index; LAI: Leaf area index; R2: Coefficient of deter-
mination; RMSE: Root-mean-square error; r: Correlation coefficient; ChinaFLUX: 
China Flux Observation and Research Network; NEE: Net ecosystem carbon 
flux; Rg: Solar radiation; Ta: Air temperature; Ts: Soil temperature; SWC: Soil 
water content; P: Precipitation; VPD: Vapor pressure deficit; LSWI: Land surface 
water index.

Acknowledgements
All scientists and technicians maintaining the flux site management, data 
collection and long-term observations are greatly appreciated. The eddy 
covariance data and meteorological data are acquired from the Coordinated 
Observation and Synthesis in Arid and Semi-arid China (COSAS), a part of 
ChinaFLUX. We are also grateful to the Distributed Active Archive Center of 
the Oak Ridge National Laboratory, and the Earth Observing System Data for 
making these MODIS products available.

Authors’ contributions
PY conceived the research; XT and ZD contributed to data analysis and wrote 
the manuscript; YZ and HL provided data support; LY and MM improved the 
manuscript. All authors read and approved the final manuscript.

Funding
The study was jointly supported by the National Natural Science Founda-
tion of China (Grant Nos. 41830648, 41401221), the State Cultivation Base of 
Eco-agriculture for Southwest Mountainous Land, Southwest University China 
(Grant No. 5330200076) and Chongqing Basic and Frontier Research Program 
(Grant No. cstc2018jcyjAX0056).

 Availability of data and materials
The data used in this article are available upon request.

Competing interests
The authors declare that they have no competing interests.

Author details
1 State Cultivation Base of Eco‑agriculture for Southwest Mountainous Land, 
Southwest University, Chongqing 400715, China. 2 Chongqing Jinfo Mountain 
Field Scientific Observation and Research Station for Karst Ecosystem (South-
west University), Ministry of Education, Chongqing 400715, China. 3 Interna-
tional Institute for Earth System Science, Nanjing University, Nanjing 210023, 
China. 4 Nanjing Institute of Geography and Limnology, Chinese Academy 
of Sciences, Nanjing 210008, China. 

Received: 30 December 2019   Accepted: 17 April 2020

References
	1.	 Ballantyne AP, Andres R, Houghton R, Stocker BD, Wanninkhof R, Ande-

regg W, Cooper LA, DeGrandpre M, Tans PP, Miller JB, Alden C, White JWC. 
Audit of the global carbon budget: estimate errors and their impact on 
uptake uncertainty. Biogeosciences. 2015;12:2565–84.



Page 13 of 14Tang et al. Carbon Balance Manage            (2020) 15:6 	

	2.	 Green JK, Seneviratne SI, Berg AM, Findell KL, Hagemann S, Lawrence DM, 
Gentine P. Large influence of soil moisture on long-term terrestrial carbon 
uptake. Nature. 2019;565:476–9.

	3.	 Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto 
H. A continuous satellite-derived measure of global terrestrial primary 
production. Bioscience. 2004;54:547–60.

	4.	 Wu C, Chen JM, Huang N. Predicting gross primary production from the 
enhanced vegetation index and photosynthetically active radiation: 
evaluation and calibration. Remote Sens Environ. 2011;115:3424–35.

	5.	 Zhang L, Guo H, Jia G, Wylie B, Gilmanov T, Howard D, Ji L, Xiao J, Li J, Yuan 
W, Zhao T, Chen S, Zhou G, Kato T. Net ecosystem productivity of temper-
ate grasslands in northern China: an upscaling study. Agric For Meteorol. 
2014;184:71–81.

	6.	 Zhao M, Heinsch FA, Nemani RR, Running SW. Improvements of the 
MODIS terrestrial gross and net primary production global data set. 
Remote Sens Environ. 2005;95:164–76.

	7.	 Chapin FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldoc-
chi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, 
Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, 
McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, 
Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze ED. Reconcil-
ing carbon-cycle concepts, terminology, and methods. Ecosystems. 
2006;9(7):1041–50.

	8.	 Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell 
BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, 
Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton 
RA, Melillo JM, Moore B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, 
Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C. Recent patterns 
and mechanisms of carbon exchange by terrestrial ecosystems. Nature. 
2001;414(6860):169.

	9.	 Messerschmidt J, Parazoo N, Wunch D, Deutscher NM, Roehl C, Warneke 
T, Wennberg PO. Evaluation of seasonal atmosphere-biosphere 
exchange estimations with TCCON measurements. Atmos Chem Phys. 
2013;13(10):5103–15.

	10.	 Milyukova IM, Kolle O, Varlagin AV, Vygodskaya NN, Schulze ED, Lloyd J. 
Carbon balance of a southern taiga spruce stand in European Russia. 
Tellus Ser B Chem Phys Meteorol. 2002;54(5):429–42.

	11.	 Byrne B, Wunch D, Jones DBA, Strong K, Deng F, Baker I, Köhler P, Franken-
berg C, Joiner J, Arora VK, Badawy B, Harper AB, Warneke T, Petri C, Kivi R, 
Roehl CM. Evaluating GPP and respiration estimates over northern mid-
latitude ecosystems using solar-induced fluorescence and atmospheric 
CO2 measurements. J Geophys Res Biogeosci. 2018;123:2976–97.

	12.	 Peylin P, Law RM, Gurney KR, Chevallier F, Jacobson AR, Maki T, Niwa Y, 
Patra PK, Peters W, Rayner PJ, Rödenbeck C, Van Der Laan-Luijkx IT, Zhang 
X. Global atmospheric carbon budget: results from an ensemble of 
atmospheric CO2 inversions. Biogeosciences. 2013;10:6699–720.

	13.	 Tian H. Regional carbon dynamics in monsoon Asia and its implications 
for the global carbon cycle. Glob Planet Change. 2003;37:201–17.

	14.	 Tang X, Li H, Ma M, Yao L, Peichl M, Arain A, Xu X, Goulden M. How do 
disturbances and climate effects on carbon and water fluxes differ 
between multi-aged and even-aged coniferous forests? Sci Total Environ. 
2017;599:1583–97.

	15.	 Wohlfahrt G, Anderson-Dunn M, Bahn M, Balzarolo M, Berninger F, Camp-
bell C, Carrara A, Cescatti A, Christensen T, Dore S, Eugster W, Friborg 
T, Furger M, Gianelle D, Gimeno C, Hargreaves K, Hari P, Haslwanter A, 
Johansson T, Marcolla B, Milford C, Nagy Z, Nemitz E, Rogiers N, Sanz 
MJ, Siegwolf RTW, Susiluoto S, Sutton M, Tuba Z, Ugolini F, Valentini R, 
Zorer R, Cernusca A. Biotic, abiotic, and management controls on the net 
ecosystem CO2 exchange of European mountain grassland ecosystems. 
Ecosystems. 2008;11:1338–51.

	16.	 Zheng C, Tang X, Gu Q, Wang T, Wei J, Song L, Ma M. Climatic 
anomaly and its impact on vegetation phenology, carbon sequestra-
tion and water-use efficiency at a humid temperate forest. J Hydrol. 
2018;565:150–9.

	17.	 Ai J, Jia G, Epstein HE, Wang H, Zhang A, Hu Y. MODIS-based estimates 
of global terrestrial ecosystem respiration. J Geophys Res Biogeosci. 
2018;123:326–52.

	18.	 Zhang Q, Lei HM, Yang DW. Seasonal variations in soil respiration, 
heterotrophic respiration and autotrophic respiration of a wheat and 
maize rotation cropland in the North China Plain. Agric For Meteorol. 
2013;180:34–43.

	19.	 Hinko-najera N, Fest B, Livesley SJ, Arndt SK. Agricultural and Forest 
Meteorology Reduced throughfall decreases autotrophic respiration, but 
not heterotrophic respiration in a dry temperate broadleaved evergreen 
forest. Agric For Meteorol. 2015;200:66–77.

	20.	 Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bern-
hofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, 
Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci 
G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg 
E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R. 
On the separation of net ecosystem exchange into assimilation and 
ecosystem respiration: review and improved algorithm. Glob Change 
Biol. 2005;11:1424–39.

	21.	 Lasslop G, Reichstein M, Papale D, Richardson A, Arneth A, Barr A, Stoy 
P, Wohlfahrt G. Separation of net ecosystem exchange into assimilation 
and respiration using a light response curve approach: critical issues and 
global evaluation. Glob Change Biol. 2010;16:187–208.

	22.	 Gu Q, Wei J, Luo S, Ma M, Tang X. Potential and environmental control 
of carbon sequestration in major ecosystems across arid and semi-arid 
regions in China. Sci Total Environ. 2018;645:796–805.

	23.	 Tang X, Wang Z, Liu D, Song K, Jia M, Dong Z, Munger JW, Hollinger DY, 
Bolstad PV, Goldstein AH, Desai AR, Dragoni D, Liu X. Estimating the 
net ecosystem exchange for the major forests in the northern United 
States by integrating MODIS and AmeriFlux data. Agric For Meteorol. 
2012;156:75–84.

	24.	 Xiao J, Zhuang Q, Baldocchi DD, Law BE, Richardson AD, Chen J, Oren 
R, Starr G, Noormets A, Ma S, Verma SB, Wharton S, Wofsy SC, Bolstad 
PV, Burns SP, Cook DR, Curtis PS, Drake BG, Falk M, Fischer ML, Foster DR, 
Gu L, Hadley JL, Hollinger DY, Katul GG, Litvak M, Martin TA, Matamala 
R, McNulty S, Meyers TP, Monson RK, Munger JW, Oechel WC, Paw UKT, 
Schmid HP, Scott RL, Sun G, Suyker AE, Torn MS. Estimation of net ecosys-
tem carbon exchange for the conterminous United States by combining 
MODIS and AmeriFlux data. Agric For Meteorol. 2008;148:1827–47.

	25.	 Huang N, He JS, Niu Z. Estimating the spatial pattern of soil respiration in 
Tibetan alpine grasslands using Landsat TM images and MODIS data. Ecol 
Indic. 2013;26:117–25.

	26.	 Huang N, Gu L, Niu Z. Estimating soil respiration using spatial data prod-
ucts: a case study in a deciduous broadleaf forest in the Midwest USA. J 
Geophys Res. 2014;119:6393–408.

	27.	 Wu C, Gaumont-Guay D, Andrew Black T, Jassal RS, Xu S, Chen JM, 
Gonsamo A. Soil respiration mapped by exclusively use of MODIS data for 
forest landscapes of Saskatchewan, Canada. ISPRS J Photogramm Remote 
Sens. 2014;94:80–90.

	28.	 Berryman E, Vanderhoof MK, Bradford JB, et al. Estimating soil respiration 
in a subalpine landscape using point, terrain, climate and greenness data. 
J Geophys Res. 2018;123(10):3231–49.

	29.	 Jägermeyr J, Gerten D, Lucht W, Hostert P, Migliavacca M, Nemani R. 
A high-resolution approach to estimating ecosystem respiration at 
continental scales using operational satellite data. Glob Change Biol. 
2014;20(4):1191–210.

	30.	 Ge R, He HL, Ren XL, Zhang L, Li P, Zeng N, Yu GR, Zhang LY, Yu SR, Zhang 
FW, Li HQ, Shi PL, Chen SP, Wang YF, Xin XP, Ma YM, Ma MG, Zhang Y, Du 
MY. A satellite-based model for simulating ecosystem respiration in the 
Tibetan and Inner Mongolian grasslands. Remote Sens. 2018;10(1):149.

	31.	 Gao Y, Yu G, Li S, et al. A remote sensing model to estimate ecosystem 
respiration in Northern China and the Tibetan Plateau. Ecol Model. 
2015;304:34–43.

	32.	 Kang L, Han X, Zhang Z, Sun OJ. Grassland ecosystems in China: review of 
current knowledge and research advancement. Philos Trans R Soc B Biol 
Sci. 2007;362:997–1008.

	33.	 Wei J, Chen Y, Gu Q, Jiang C, Ma M, Song L, Tang X. Potential of the 
remotely-derived products in monitoring ecosystem water use efficiency 
across grasslands in Northern China. Int J Remote Sens. 2019;40:6203–23.

	34.	 Schuman G, Janzen H, Herrick J. Soil carbon dynamics and potential 
carbon sequestration by rangelands. Environ Pollut. 2002;116(3):391–6.

	35.	 Zhang L, Zhou G, Ji Y, Bai Y. Spatiotemporal dynamic simulation of grass-
land carbon storage in China. Sci China Earth Sci. 2016;59(10):1946–58.

	36.	 Chen Y, Gu H, Wang M, Gu Q, Ding Z, Ma M, Liu R, Tang X. Contrast-
ing performance of the remotely-derived GPP products over different 
climate zones across China. Remote Sens. 2019;11(16):1855.

	37.	 Hua T, Wang X, Zhang C, Lang L, Li H. Responses of vegetation activity to 
drought in northern China. Land Degrad Dev. 2017;28(7):1913–21.



Page 14 of 14Tang et al. Carbon Balance Manage            (2020) 15:6 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	38.	 Gilmanov TG, Svejcar TJ, Johnson DA, Angell RF, Saliendra NZ, Wylie BK. 
Long-term dynamics of production, respiration, and net CO2 exchange in 
two sagebrush-steppe ecosystems. Rangel Ecol Manag. 2006;59:585–99.

	39.	 Mauder M, Foken T, Clement R, Elbers JA, Eugster W, Grünwald T, 
Heusinkveld B, Kolle O. Quality control of CarboEurope flux data—Part 
2: inter-comparison of eddy-covariance software. Biogeosciences. 
2008;5:451–62.

	40.	 Wutzler T, Lucas-Moffat A, Migliavacca M, Knauer J, Sickel K, Šigut L, 
Menzer O, Reichstein M. Basic and extensible post-processing of eddy 
covariance flux data with REddyProc. Biogeosciences. 2018;15:5015–30.

	41.	 Gilmanov TG, Johnson DA, Saliendra NZ. Growing season CO2 fluxes in 
a sagebrush-steppe ecosystem in Idaho: bowen ratio/energy balance 
measurements and modeling. Basic Appl Ecol. 2003;4:167–83.

	42.	 Hibbard KA, Law BE, Reichstein M, Sulzman J. An analysis of soil respira-
tion across northern hemisphere temperate ecosystems. Biogeochemis-
try. 2005;73(1):29–70.

	43.	 Lioubimtseva E, Henebry GM. Climate and environmental change in 
arid Central Asia: Impacts, vulnerability, and adaptations. J Arid Environ. 
2009;73(11):963–77.

	44.	 Ahlström A, Raupach MR, Schurgers G, et al. The dominant role of semi-
arid ecosystems in the trend and variability of the land CO2 sink. Science. 
2015;348(6237):895–99.

	45.	 Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell 
JG, Chevallier F, Liu Y, Running SW, Sitch S, Van der Werf GR. Contribution 
of semi-arid ecosystems to interannual variability of the global carbon 
cycle. Nature. 2014;509:600–3.

	46.	 Soussana J-F, Loiseau P, Vuichard N, Ceschia E, Balesdent J, Chevallier T, 
Arrouays D. Carbon cycling and sequestration opportunities in temperate 
grasslands. Soil Use Manag. 2004;20:219–30.

	47.	 Baldocchi D. Measuring fluxes of trace gases and energy between 
ecosystems and the atmosphere—the state and future of the eddy 
covariance method. Glob Change Biol. 2014;20:3600–9.

	48.	 Olofsson P, Lagergren F, Lindroth A, Lindström J, Klemedtsson L, Kutsch W, 
Eklundh L. Towards operational remote sensing of forest carbon balance 
across Northern Europe. Biogeosciences. 2008;5:817–32.

	49.	 Reichstein M, Rey A, Freibauer A, Tenhunen J, Valentini R, Banza J, Casals 
P, Cheng Y, Grünzweig JM, Irvine J, Joffre R, Law BE, Loustau D, Miglietta 
F, Oechel W, Ourcival J-M, Pereira JS, Peressotti A, Ponti F, Qi Y, Rambal S, 
Rayment M, Romanya J, Rossi F, Tedeschi V, Tirone G, Xu M, Yakir D. Mod-
eling temporal and large-scale spatial variability of soil respiration from 
soil water availability, temperature and vegetation productivity indices. 
Glob Biogeochem Cycles. 2003;17:4.

	50.	 Anderson MC, Norman JM, Kustas WP, Houborg R, Starks PJ, Agam N. A 
thermal-based remote sensing technique for routine mapping of land-
surface carbon, water and energy fluxes from field to regional scales. 
Remote Sens Environ. 2008;112:4227–41.

	51.	 Hu Z, Yu G, Fan J, Zhong H, Wang S, Li S. Precipitation-use efficiency along 
a 4500-km grassland transect. Global Ecol Biogeogr. 2010;19(6):842–51.

	52.	 Moyano FE, Manzoni S, Chenu C. Responses of soil heterotrophic respira-
tion to moisture availability: an exploration of processes and models. Soil 
Biol Biochem. 2013;59:72–85.

	53.	 Yan Z, Bond-Lamberty B, Todd-Brown KE, Bailey VL, Li S, Liu C, Liu C. A 
moisture function of soil heterotrophic respiration that incorporates 
microscale processes. Nat Commun. 2018;9:2562.

	54.	 Chandrasekar K, Sesha Sai MVR, Roy PS, Dwevedi RS. Land Surface Water 
Index (LSWI) response to rainfall and NDVI using the MODIS vegetation 
index product. Int J Remote Sens. 2010;31:3987–4005.

	55.	 Al-Yaari A, Wigneron JP, Ducharne A, Kerr Y, de Rosnay P, de Jeu R, Govind 
A, Al Bitar A, Albergel C, Muñoz-Sabater J, Richaume P, Mialon A. Global-
scale evaluation of two satellite-based passive microwave soil moisture 
datasets (SMOS and AMSR-E) with respect to Land Data Assimilation 
System estimates. Remote Sens Environ. 2014;149:181–95.

	56.	 Dong G, Guo J, Chen J, Sun G, Gao S, Hu L, Wang Y. Effects of spring 
drought on carbon sequestration, evapotranspiration and water use effi-
ciency in the songnen meadow steppe in northeast China. Ecohydrology. 
2011;4(2):211–24.

	57.	 Chen S, Chen J, Lin G, Zhang W, Miao H, Wei L, Huang J, Han X. Energy 
balance and partition in Inner Mongolia steppe ecosystems with differ-
ent land use types. Agric For Meteorol. 2009;149:1800–9.

	58.	 Lian J, Huang M. Comparison of three remote sensing based models 
to estimate evapotranspiration in an oasis-desert region. Agric Water 
Manag. 2016;165:153–62.

	59.	 Shao P, Zeng X, Sakaguchi K, Monson RK, Zeng X. Terrestrial carbon 
cycle: climate relations in eight CMIP5 earth system models. J Clim. 
2013;26(22):8744–64.

	60.	 Kato T, Tang Y, Gu S, Hirota M, Du M, Li Y, Zhao X. Temperature and 
biomass influences on interannual changes in CO2 exchange in an 
alpine meadow on the Qinghai-Tibetan Plateau. Glob Change Biol. 
2006;12(7):1285–98.

	61.	 Liu SM, Xu ZW, Wang WZ, Jia ZZ, Zhu MJ, Bai J, Wang JM. A comparison of 
eddy-covariance and large aperture scintillometer measurements with 
respect to the energy balance closure problem. Hydrol Earth Syst Sci. 
2011;15:1291–306.

	62.	 Hu Z, Yu G, Fu Y, Sun X, Li Y, Shi P, Wang Y, Zheng Z. Effects of vegetation 
control on ecosystem water use efficiency within and among four grass-
land ecosystems in China. Glob Change Biol. 2008;14(7):1609–19.

	63.	 Wang Z, Xiao X, Yan X. Modeling gross primary production of maize crop-
land and degraded grassland in northeastern China. Agric For Meteorol. 
2010;150(9):1160–7.

	64.	 Shang L, Zhang Y, Lü S, Wang S. Energy exchange of an alpine grassland 
on the eastern Qinghai-Tibetan Plateau. Sci Bull. 2015;60(4):435–46.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Remotely monitoring ecosystem respiration from various grasslands along a large-scale east–west transect across northern China
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods and materials
	Description of the study area
	Processing of the EC-based flux data
	MODIS products and processing
	Statistical analyses

	Results
	Differences of annual mean Re across grasslands
	Seasonal variations in Re and environmental controls
	Model development for quantitative remote sensing
	Spatial patterns of satellite-derived Re

	Discussion
	Acknowledgements
	References




