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Abstract 

Background:  Application of allometric equations for quantifying forests aboveground biomass is a crucial step 
related to efforts of climate change mitigation. Generalized allometric equations have been applied for estimating 
biomass and carbon storage of forests. However, adopting a generalized allometric equation to estimate the biomass 
of different forests generates uncertainty due to environmental variation. Therefore, formulating species-specific 
allometric equations is important to accurately quantify the biomass. Montane moist forest ecosystem comprises 
high forest type which is mainly found in the southwestern part of Ethiopia. Yayu Coffee Forest Biosphere Reserve 
is categorized into Afromontane Rainforest vegetation types in this ecosystem. This study was aimed to formulate 
species-specific allometric equations for Albizia grandibracteata Tuab. and Trichilia dregeana Sond. using the semi-
destructive method.

Results:  Allometric equations in form of power models were developed for each tree species by evaluating the 
statistical relationships of total aboveground biomass (TAGB) and dendrometric variables. TAGB was regressed against 
diameter at breast height (D), total height (H), and wood density (ρ) individually and in a combination. The allometric 
equations were selected based on model performance statistics. Equations with the higher coefficient of determina-
tion (adj.R2), lower residual standard error (RSE), and low Akaike information criterion (AIC) values were found best fit-
ted. Relationships between TAGB and predictive variables were found statistically significant (p ≤ 0.001) for all selected 
equations. Higher bias was reported related to the application of pan-tropical or generalized allometric equations.

Conclusions:  Formulating species-specific allometric equations is found important for accurate tree biomass estima-
tion and quantifying the carbon stock. The developed biomass regression models can be applied as a species-specific 
equation to the montane moist forest ecosystem of southwestern Ethiopia.
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Background
The tropical forest ecosystem has been playing a signifi-
cant role in mitigating the atmospheric carbon dioxide 
concentration and associated climate change impacts. 

Particularly, this ecosystem is known for its highest car-
bon pool when compared to other biomes of the world 
[1–3]. It is the most productive ecosystem accounting 
for over 60% of global terrestrial photosynthesis and 
one-third of global primary productivity [4]. Generally, 
the accumulation of a great deal of carbon stock in the 
aboveground biomass of tropical forests was verified [5, 
6]. However, the biomass information is uncertain for 
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many tropical forests due to the paucity of site-specific 
allometric equations [5, 7]. Therefore, applying a robust 
method for carbon stock estimation is a crucial step for 
the successful implementation of climate change mitiga-
tion strategies like REDD+ [8].

Allometric equations are important for their applica-
tion to local and national forest carbon assessments, as 
well as for global carbon balance assessments [9]. Primar-
ily, the current issue of global carbon cycles is the promi-
nent factor for the formulation of biomass regression 
models [7, 10, 11]. As a result, generalized pantropical 
allometric equations were developed by many research-
ers [5, 7, 12, 13]. The development of a generalized allo-
metric equation was approached by measuring multiple 
tree species and it was intended to be applied to a broad 
range of tropical forests [12]. However, a great error is 
generated related to adopting generic pantropical allo-
metric equations for many forests [14, 15]. Biomass 
error that can be generated at individual tree level is also 
regularly propagated bias at forest stand and country-
level during the assessment of biomass and carbon stock 
change when the appropriate allometric equation is not 
used.

Environmental variations among different forests are 
the ultimate factors for the variation of their biomass. 
Climatic regimes are the prominent factors that affect 
the growth of woody plants and biomass accumulation 
of different forest stands [16, 17]. Also, environmental 
variability in the context of physiographic and edaphic 
conditions plays a significant role in the variation of spe-
cies composition and biomass difference among different 
forest sites [18, 19]. Within-stand variation of biomass 
for different tree species is related to tree architecture, 
growth strategies and its dynamic interplay with the bio-
physical environments [20–22]. The difference of TAGB 
across a forest landscape is mostly related to the variation 
in slope, elevation, and aspect [18, 23]. Generally, tropical 
forests are known for their high diversity of woody plants. 
The application of multispecies pan-tropical equations to 
individual tree species generates uncertainty of TAGB 
[9, 24]. Therefore, formulating a species-and site-specific 
biomass regression model was found the best approach 
to accurately quantify biomass and carbon storage of for-
ests [25–27].

Yayu Coffee-Forest Biosphere has comprised Afromon-
tane Rainforest Vegetation types, which is home for the 
endemic Coffea arabica in Southwestern Ethiopia [28]. 
This forest is known for storing a good deal of carbon 
stock and high species diversity. According to [29], the 
forest is categorized into Eastern Afromontane Biodiver-
sity Hotspots which has global significance. In Ethiopia, 
forestry and agricultural sectors are the major sources of 
carbon dioxide CO2 emission, contributing more than 

85% of the country. The forestry sector alone contributes 
a total emission of about 37% CO2 emission in the coun-
try. The total contribution of other sectors like power, 
transport, industry, and buildings is less than 15% [30, 
31].

To reduce the current rate of carbon dioxide emis-
sion, the country has devised forestry-based strategies 
like REDD+ in potential forest areas. However, the esti-
mation of biomass and carbon stock change depends on 
generic pan-tropical allometric equations, which gen-
erate bias when applied to individual tree species [28]. 
Species-specific equations were not formulated for many 
tree species in Ethiopia. Therefore, this study is intended 
to formulate species-specific TAGB allometric equations 
considering selected tree species (A. grandibracteata and 
T. dregeana). The selected tree species have a wide range 
of ecological distribution across different parts of Africa 
[32]. A. grandibracteata species has multiple socio-eco-
nomic benefits and ecological services. It is fast-growing 
species on forest soils with high moisture-holding capac-
ity. A. grandibracteata is a medium-sized deciduous tree 
with a straight trunk to 20 m, and a flattened or layered 
crown [33]; it can grow up to 30  m [34]. T. dregeana is 
also a very large evergreen tree to 30  m, with a large 
straight trunk dividing into large branches and a rounded 
crown [32]. These attributes of the selected species are 
important for storing a high amount of biomass and car-
bon. The semi-destructive method of data collection was 
found environmentally sound approach in the situation 
of the biosphere reserve. The core and buffer zones of 
the Yayu coffee-forest biosphere reserve were established 
mainly for scientific research, biodiversity conservation, 
and for monitoring the ecological processes.

Methods
Site description
The study was conducted in Yayu Coffee-Forest Bio-
sphere Reserve which is located in Illubabor Zone, 
southwestern Ethiopia. The biosphere extends between 
latitude 8° 15′ 0′′–8° 35′ 0′′ N and longitude 35° 30′ 
0′′–36° 0′ 0′′ E of zone 36 (Fig.  1). Detailed informa-
tion regarding the study area extent, soil types, climatic 
condition, altitudinal range, and establishment of the 
biosphere reserve can be found in [28]. Celtis africana, 
Diospyros abyssinica, Albizia grandibracteata, Ehretia 
cymosa, Trichilia dregeana, Vangueria apiculata. Argom-
uellera macrophylla, Antiaris toxicaria, Millettia fer-
ruginea, and Cordia africana are dominant tree species 
of the study forest. In addition, Albizia grandibracteata 
and Trichilia dregeana contributes significant amount of 
basal area (BA) M2 ha−1, which has great implication to 
storing high amount of biomass and carbon (Daba and 
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soromessa: Species composition, stand structure and 
regeneration status of tree species in Yayu coffee forest 

biosphere reserve, Illubabore zone, southwestern Ethio-
pia, unpublished).

Fig. 1  Map of Ethiopia with Oromia region, and the study area. The study area is marked green and the lines with blue color are rivers



Page 4 of 13Daba and Soromessa ﻿Carbon Balance Manage           (2019) 14:18 

Species description
Albizia grandibracteata species belongs to the plant fam-
ily Fabaceae; whereas, T. dregeana species belongs to the 
plant family Meliaceae. Both tree species have a wide 
range of ecological distributions [32]. A. grandibracteata 
species mostly grow in the upland rainforest and river-
ine forest areas, with preference in moist and wet sites. 
This tree species is known for its multiple provisional 
services [35]. It provides multiple socio-economic ben-
efits (firewood, farm tools, medicine from the root, bee 
forage, ornamental, and soap from its bark); it is also 
known for nitrogen fixation which is one of its ecologi-
cal services [32]. In Ethiopia, A. grandibracteata species 
grow in moist agroclimatic zones within an altitude range 
of 1200–1700 m asl. [33]. It is a medium-sized deciduous 
tree with a straight trunk to 20 m and flattened crown; it 
can also attain a maximum height of 30 m.

In Ethiopia, T. dregeana Sond. species occurs in the 
moist and wet montane rainforest of southwestern and 
eastern highland between 1100 and 2200 m asl. altitude 
ranges [33]. This tree species is well known for provi-
sional services like firewood, timber (construction, fur-
niture), and coffee shade under natural forest. The T. 
dregeana Sond. is a large evergreen tree grows up to 35 m 
height [36]. It has a straight trunk that can attain higher 
DBH size that divides into large branches and forms a 
rounded crown [33]. The selected tree species have a sig-
nificant contribution in terms of stocking density and BA 
m2 ha−1; which indicates that these species have great 
potential in storing TAGB and carbon [37].

Sampling method
The procedures of semi-destructive methodology in 
“Manual for building tree volume and biomass allomet-
ric equations” prepared by Food and Agriculture Organi-
zation (FAO) [38] were followed. A random sampling 
technique where all individuals have an equal probabil-
ity of being involved in the study was applied. Therefore, 
the selection of individuals from different diameters at 
breast height (DBH) classes was used. The random sam-
pling technique was conducted with a quick screening of 
vegetation variability across the landscape or particular 
locality; to delimit the vegetation type in mind [20]. The 
guideline by [10] suggests the relevance of considering 
some biophysical factors of the forest stand to have rep-
resentative sample sets. Detail information about sam-
pling trees, field-based measurements, and laboratory 
analysis can be found in [28, 38, 39].

Tree biomass procedures
The biomass calculation has also followed the proce-
dure in “Manual for building tree volume and biomass 
allometric equations” prepared by FAO [38]. During 

semi-destructive procedures for biomass, diameters of 
the trunk and large branches were measured at every 1 m 
length directly in the field. The fresh biomass of trimmed 
branches was also directly measured in the field. The vol-
ume and dry weight of the wood aliquots were measured 
in the laboratory which was later used for wood density 
calculation. Three small branches for every tree sampled 
(3 × 60 = 180) were trimmed for the determination of 
trimmed biomass. The fresh biomass of small untrimmed 
branches was calculated based on the relationship 
between BD and dry biomass of trimmed branches. The 
fresh biomass of large untrimmed branches and trunk 
was calculated from volume and wood density measure-
ment. The tree sections were considered to be cylinder; 
whereas, density was considered to be the same for all 
compartments of the tree. The assumption is that along 
every 1 m length of a tree there is no tapering (variation 
in diameter is insignificant), and every section is consid-
ered to have cylinder shape [38].

Measuring trimmed and untrimmed fresh biomass
The diameter at the bases of each trimmed branch was 
measured and the leaves of each branch were fully har-
vested from the wood. Only basal diameter was meas-
ured for small untrimmed branches. A section about 
one-meter length was preferred for diameter measure-
ment of the trunk and main branches [40]. Detail infor-
mation regarding measurement of trimmed branches in 
the field, measurement of wood and leaf aliquots in the 
laboratory, measurement of small and large untrimmed 
branches, and trunk can be found in [28, 38].

Biomass calculations
All procedures of laboratory analysis related to wood 
and leaves aliquots and calculation of trimmed and 
untrimmed biomass can be found in the FAO manual 
[38] was used.

Comparison between species‑specific and pan‑tropical 
allometric equations
The species-specific equation and pan-tropical allomet-
ric equations were compared in this study for accuracy 
assessment. The pan-tropical allometric equations poten-
tially applicable in tropical moist forests were used for 
the comparison. In Ethiopia, these equations have been 
most frequently used for biomass estimation in the mon-
tane moist forest ecosystem. The datasets for biomass 
comparisons were generated form: (1) Measured bio-
mass- generated based on semi-destructive procedures; 
(2) Specific Equation-equation which was developed for 
A. grandibracteata and T. dregeana; (3) Equations devel-
oped by [5, 12, 13, 41] for tropical forests.
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Data analysis and model selection
Points regarding the summarized data and statistical 
package used during the data analysis was can be found 
in [28]. Eight allometric equations were developed by 
evaluating the relationships among the considered vari-
ables i.e. TAGB against single predictor variables (D, 
H, ρ); TAGB against single compound variables (D2H, 
DH, ρDH); TAGB against multiple variables (D + H + ρ; 
D2H + ρ; D + H). These models were fitted based on log-
transformed data and all have achieved model goodness 
of fit statistics. The relationship between TAGB and wood 
density was found statistically not significant (p > 0.05). 
Biomass regression models selections and evaluation 
were tested based on performance statistics including 
coefficient of determination (adj.R2), residual standard 
error (RSE), Akaike information criterion (AIC), and 
p-value. AIC is an estimator of the relative quality of sta-
tistical models for a given set of data. AIC estimates the 
quality of each model relative to each other [42]. All for-
mulated models used natural logarithm transformation; 
to minimize the systematic bias during the back transfor-
mation a correction factor (CF) was calculated for each 
equation [43].

Results
Allometric equations and their performance
The allometric equations relating the dependent variable 
TAGB against the predictor variables (D, H, and ρ) were 
formulated for A. grandibracteata and T. dregeana tree 
species. The descriptive summary of these main variables 
for TAGB regression models formulation was presented 
in (Table 1).

The relationship between the predictor variables of A. 
grandibracteata and T. dregeana
The correlation coefficient between the predictor vari-
ables was calculated using Pearson’s correlation coeffi-
cient at a 95% confidence interval. Pearson’s correlation 
coefficient is the statistical measure of the strength of a 

linear relationship between the paired variable (D & H, D 
& ρ). The correlation coefficient between D and H is 0.92 
indicating a strong relationship between the variables for 
A. grandibracteata and also was found statistically signifi-
cant at (p < 0.05). The correlation coefficient between D 
& H is 74.3, and statistically significant at (p < 0.05) for T. 
dregeana. However, the correlation coefficient between 
predictor variables (D & ρ) was found statistically not 
significant at (p > 0.05) for both tree species. Scatter plot 
depicted in (Fig. 2a, b) verifies the relationship between 
D & H of A. grandibracteata and T. dregeana species 
respectively; indicating an increment of tree height for a 
unit increment of its DBH. The DBH versus tree height 
plot was constructed for the area of interest; also, it has a 
purpose to compare and determine how appropriate the 
biomass regression model for a given site.

Selected allometric equations
The allometric equations were formulated by relating 
TAGB against independent variables individually and 
in combination. The selected allometric equations were 
tested for goodness of fit based on different performance 
statistics. The coefficients for all selected allometric equa-
tions were found statistically significant (p ≤ 0.001); indi-
cating the strong relationships between the TAGB and its 
predictor variables (Table 2).

Scatter plots of TAGB against dendrometric variables for A. 
grandibracteata
As depicted in (Fig.  2b, 3a, and 4a) that the dependent 
variable (TAGB) increases with a unit increase of inde-
pendent variables (D, H, and D2H). This indicates the 
existence of a strong relationship between TAGB and the 
predictive variables. However, a significant relationship 
was not observed between TAGB and ρ (Fig.  4b). The 
relationship between wood density and tree dendromet-
ric variables is quite complex for a tree species related 
to microsite variation and tree maturity as well as due to 
different site factors.

Table 1  Descriptive summary of dendrometric variables for A. grandibracteata and T. dregeana 

TAGB aboveground biomass (in kg), D diameter at breast height (in cm), H total height (in m), ρ wood density (in g cm−3)

Tree species Variables Minimum Maximum Mean Standard deviation

A. grandibracteata TAGB 6.26 2268 587.1 629.17

DBH 5.2 70.8 31.5 18.92

H 4 38 22.97 11.14

ρ 0.3559 0.5824 0.4709 0.0703

T. dregeana TAGB 2.87 5502 939.6 1587.66

D 5.2 105 36.37 28.94

H 3.5 38 25.15 11.76

ρ 0.2406 0.5799 0.4179 0.0745
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Scatter plots of TAGB against dendrometric variables for T. 
dregeana
The scatter plots displayed in (Fig.  5a, b and 6a) shows 
the increase of TAGB against a unit variation of the pre-
dictor variables (D, H, & D2H). The scatter plots of TAGB 
against D exhibits the linear relationship. The relation-
ship between TAGB and H also shows an increment of 
TAGB for an increment of tree height. However, the rela-
tionship between TAGB and ρ has shown a weak asso-
ciation, due to the complex relationship of wood density 
with site factors and stand structure.

The scatter plot of TAGB against D2H shows linear-
ity; however, a significant relationship was not observed 
between TAGB and ρ as displayed in (Fig. 5).

Selected biomass regression models for A. grandibracteata
The species-specific biomass regression models were 
developed for the selected tree species based on log-
transformed data. All selected allometric equations have 
achieved the model goodness of fit. The best performing 
regression models of A. grandibracteata and T. dregeana 
were listed in decreasing order of importance based on 
AIC value (Table 2).

The formulated allometric equations were listed in 
decreasing order of importance from (AgEq1–AgEq8 and 
TdEq1–TdEq8) respectively for A. grandibracteata and 
T. dregeana to estimate TAGB (Table  2). The equations 
were ordered based on their AIC values, where the lower 
the AIC vale comparatively is the best equation and vice 
versa. Therefore, comparisons among the selected allo-
metric equations of A. grandibracteata shows that AgEq1 
was found best based on its AIC (− 79.49) value. This 

model shows strong relationships between the TAGB 
and the main predictive variables. The value of adj. R2 
describes that 99.36% variation in TAGB was explained 
by the predictor variables in this model. The 2nd best-
performing equation was (AgEq2) which was formu-
lated by relating TAGB against D2H and wood density. It 
is the biomass regression model with a lower AIC value 
(− 50.96) based on statistical criteria for model selec-
tion. A strong relationship was observed between TAGB 
and the predictive variables. The value of adj. R2 also 
describes that the predictor variables explain 98.30% var-
iation of the TAGB.

The 3rd best equation (AgEq3) was formulated by 
relating TAGB with D. The adj. R2 value for this bio-
mass regression equation has shown (97.97%); indicat-
ing that D is a single tree dendrometric variable that best 
explains variation in TAGB of A. grandibracteata species. 
Other selected equations (AgEq4, 5, 6, 7, and 8) have also 
achieved models performance statistics and also listed 
in decreasing order of importance based on AIC value 
(− 44.49, − 32.89, 12.59, 16.97, 29.77) respectively. There 
is a lower value of adj.R2 and a higher value of RSE for 
these models compared to the above models (1, 2, and 
3). Generally, a strong relationship was found between 
TAGB and the dendrometric variables for all models. 
However, H has explained (adj. R2 = 81.9%) variation in 
TAGB of A. grandibracteata tree species. TAGB against 
predictive variable (H) has achieved a strong relationship 
which is statistically significant at (p ≤ 0.001). In contrast, 
a model relating TAGB with ρ was found statistically 
insignificant and then rejected.

Fig. 2  Scatter plot of Diameter-Height relationships for: a A. grandibracteata, b T. dregeana tree species
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Trichilia dregeana biomass regression model (TdEq1) 
was found as the best model with the least AIC value 
(22.55). The predictor variables in this model have 
explained 97.5% of the variation in TAGB. Also, the 

lower value of RSE is the parameter that has proved the 
fitness of this model. The allometric equation (TdEq2) 
has also shown the model goodness of fit well among 
the selected biomass regression models. This model 

Table 2  Best fitted regression models for predicting aboveground biomass of A. grandibracteata and T. dregeana 

Where TAGB: aboveground tree biomass (kg); D: diameter at breast height of tree (cm); H: total tree height (m); ρ: Wood Density (g cm−3); α: intercept; β1, β2, β3: are 
slopes; adj.R2: adjusted R square; RSE: Residual Standard Error; AIC: Akaike Information Criterion; CF: correction factor; AgEq: A. grandibracteata Equation; TdEq: T. 
dregeana equation

Equation No. Allometric equations Coefficients Model performance statistics

Symbol Value Adj.R2 RSE AIC CF p-value

AgEq1 TAGB = exp[α + β1ln(D) + β2ln(H) + β3ln(ρ)] α − 0.793 0.9936 0.1347 − 79.49 1.0091  ≤ 0.001

β1 2.117

β2 0.062

β3 0.991

AgEq2 TAGB = exp[α + β1 ln(D2H) + β2ln(ρ)] α − 0.810 0.983 0.2198 − 50.96 1.0245  ≤ 0.001

β1 0.749

β2 1.030

AgEq3 TAGB = exp[α + β1ln(D)] α − 1.744 0.9797 0.2408 − 46.41 1.0294  ≤ 0.001

β1 2.241

AgEq4 TAGB = exp[α + β1ln(D) + β2ln(H)] α − 1.755 0.979 0.2449 − 44.49 1.0304  ≤ 0.001

β1 2.199

β2 0.049

AgEq5 TAGB = exp[α + β1ln(D2H)] α − 1.834 0.9681 0.3016 − 32.89 1.0465  ≤ 0.001

β1 0.775

AgEq6 TAGB = exp[α + β1ln(H)] α − 1.363 0.8545 0.6437 12.59 1.2302  ≤ 0.001

β1 2.286

AgEq7 TAGB = exp[α + β1ln(ρDH)] α − 0.699 0.9682 0.3007 16.97 1.0462  ≤ 0.001

β1 1.129

Ag Eq8 TAGB = exp[α + β1ln(DH)] α − 1.803 0.9514 0.3722 29.77 1.0717  ≤ 0.001

β1 1.172

TdEq1 TAGB = exp[α + β1 ln(D) + β2 ln(H) + β3 ln(ρ)] α − 2.526 0.975 0.3204 22.55 1.0560  ≤ 0.001

β1 2.029

β2 0.593

β3 0.648

TdEq 2 TAGB = exp[α + β1ln(D2H) + β2ln(ρ)] α − 2.756 0.973 0.3302 23.49 1.0560  ≤ 0.001

β1 0.897

β2 0.562

TdEq 3 TAGB = exp[α + β1ln(D2H)] α − 3.168 0.972 0.3408 24.48 1.0598  ≤ 0.001

β1 0.888

TdEq 4 TAGB = exp[α + β1ln(D) + β2ln(H)] α − 3.032 0.972 0.3371 24.74 1.0585  ≤ 0.001

β1 1.964

β2 0.641

TdEq 5 TAGB = exp[α + β1ln(D)] α − 2.563 0.962 0.3911 32.74 1.0795  ≤ 0.001

β1 2.427

TdEq 6 TAGB = exp[α + β1ln(DH)] α − 3.356 0.958 0.4121 35.87 1.0886  ≤ 0.001

β1 1.377

TdEq 7 TAGB = exp[α + β1ln(ρDH)] α − 2.220 0.951 0.4467 40.71 1.1049  ≤ 0.001

β1 1.393

TdEq 8 TAGB = exp[α + β1ln(H)] α − 3.088 0.819 0.8565 79.77 1.4431  ≤ 0.001

β1 2.771
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predicts the relationship of TAGB against the main var-
iables (D2H + ρ) and each predictive variable was inde-
pendently fitted. The predictive variables explain adj.
R2 (97.3%) variation of TAGB for this tree species. The 
relationship between TAGB and the predictor variable 
was also found highly significant at (p ≤ 0.001).

The other equations (TdEq3, 4, 5, 6, 7, & 8) were listed 
in decreasing order of importance considering their 
AIV values (24.48, 24.74, 32.74, 35.87, 40.71, 79.71) 
respectively. Generally, these models have achieved the 
goodness of fit statistics considering the adj.R2, RSE, & 

AIV values. The single predictive variable D in (TdEq5) 
explains adj.R2 (96.2%) variation in TAGB. Tree diam-
eter is among the dendrometric variable that can be 
accurately and easily measured in the field. However, 
tree height (H) as a single predictor variable in TdEq8 
was found to explain adj. R2 (81.9%) of TAGB varia-
tion which is lowest compared to all other formulated 
equation. The highest value of RSE (0.8565) was also 
recorded for this equation when compared to the other 
selected models.

Fig. 3  Linear regression for log-transformed data: a aboveground biomass against D; b aboveground biomass against height

Fig. 4  Linear regression for log-transformed data: a aboveground biomass against D2H, b aboveground biomass against wood density
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Comparison of species‑specific with pan‑tropical equations
The pan-tropical equations that have been used for esti-
mation of forest biomass and carbon stocks in Ethiopia 
were compared with species-specific equations of A. 
grandibracteata and T. dregeana. Summary of the statis-
tical parameters (paired t-test, mean difference of TAGB, 
percent bias, and root mean square error) for equations 
comparison was presented in (Table  3). The statistical 
parameters calculated were based on observed and pre-
dicted TAGB. The species-specific equation found bet-
ter in accurately predicting TAGB of A. grandibracteata 

and T. dregeana. When compared to pan-tropical equa-
tion. The higher value of PBIAS shows the poor perfor-
mance of pan-tropical equations in predicting TAGB of 
a specific species. This proofs the application of species 
specific allometric equation is fundamental to accurately 
estimate TAGB of tree species.

The allometric equation TAGB = 0.0509(ρD2H) by [12] 
is potentially applicable equation in tropical moist for-
ests. In addition, this equation has been most frequently 
used for biomass estimation in Afromontane rainforests 
of Ethiopia. Species-specific equation with input variable 

Fig. 5  Scatter plots for: a aboveground biomass against diameter, b aboveground biomass against height for T. dregeana 

Fig. 6  Scatter plots for: a TAGB against D2H, b TAGB against wood density for T. dregeana 
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(ρD2H) was formulated (i.e. TAGB = 0.3274 × (ρD2H)0.759 
for A. grandibracteata and TAGB = 0.0832 × (ρD2H)0.899 
for T. dregeana) based on measured dataset of total 
aboveground biomass. Therefore, Chave’s equation was 
compared with the species-specific equation as depicted 
in (Fig. 7a, b).The power models were plotted by regress-
ing tree DBH against TAGB (Measured and predicted 
biomass). The predicted TAGB was obtained using spe-
cies-specific equations (Species Eq.) and generalized 
equation (Generalized Eq.).

Discussion
The biomass regression model formulated by relating 
TAGB against multiple variables (D, H, and ρ) was found 
statistically the best performing equation for the selected 
regression models of A. grandibracteata and T. dregeana 
tree species. This model has considered important pre-
dictive variables that improve the accuracy of estimat-
ing TAGB. Several studies also suggest the importance 
of considering the dendrometric variables (D, H, and ρ) 
in formulating biomass regression models [25, 44]. Stud-
ies explain that TAGB estimation is inaccurate when tree 
height is not available as the predictor variable. Allomet-
ric equations are more likely to vary across vegetation 

Table 3  Comparison of  species-specific to  pan-tropical equations in  predicting biomass of  A. grandibracteata and  T. 
dregeana 

PT: Pan-tropical, TFM: Tropical Forests Moist, SS: Species-specific, PBIAS: percent bias, RMSE: root mean square error, D: diameter at breast height, H: total height, ρ: 
wood density, AgEq: A. grandibracteata Equation; TdEq: T. dregeana Equation

Input variable Source Type Equations Mean biomass 
difference (kg)

PBIAS RMSE Pared t-test

T-value p-value

D Chave et al. [12] PT AGB = ρ × 0.223 × (D)2.148 × (D2)0.207 × (D3)0.028 1117.20 190.29 1859.62 4.047 0.000

AgEq3 SS TAGB = 0.175 × D2.241 6.45 1.09 213.94 0.163 0.872

D, H, ρ Chave et al. [5] PT TAGB. = 0.0673 × (ρD2H)0.976 457.88 77.99 776.72 3.931 0.000

AgEq2 SS TAGB = 0.445 × (D2H)0.749 × ρ1.030 63.21 − 10.77 216.44 − 1.644 0.111

AgEq5 SS TAGB = 0.159 × (D2H)0.787 41.99 − 7.15 212.58 − 1.085 0.287

AgEq7 SS TAGB = 0.497 × (ρDH)1.129 95.61 − 16.29 269.68 − 2.042 0.050

Brown et al. [41] TFM TAGB = 0.0899 × (D2Hρ)0.9522 499.95 85.16 822.14 4.125 0.000

AgEq1 SS TAGB = 0.452 × D2.117 × H0.062 ×ss ρ0.991 33.85 − 5.77 179.34 − 0.035 0.309

D Brown [13] TFM TAGB = 0.118 × D2.53 1235 210.36 2073.59 3.993 0.000

AgEq3 SS TAGB = 0.175 × D2.241 6.45 1.09 213.94 0.163 0.872

D, H, ρ Chave et al. [12] TFM AGB = 0.0509 × ρD2H 430.28 73.29 752.12 3.756 0.001

AgEq1 SS TAGB = 0.452 × D2.117 × H0.062 × ρ0.991 33.85 − 5.77 179.34 − 0.035 0.309

AgEq4 SS TAGB = 0.173 × D2.199 × H0.049 3.6292 0.62 211.03 0.093 0.927

AgEq2 SS TAGB = 0.445 × (D2H)0.749 × ρ1.030 63.21 − 10.77 216.44 − 1.644 0.111

AgEq7 SS TAGB = 0.497 × (ρDH)1.129 95.61 − 16.29 269.68 − 2.042 0.050

D Chave et al. [12] PT TAGB = ρ × 0.223 × (D)2.148 × (D2)0.207 × (D3)0.028 1990.50 211.85 4322.19 − 2.794 0.009

TdEq 5 SS TAGB = 0.077 × D2.427 89.89 9.57 552.83 − 0.889 0.381

D,H, ρ Chave et al. [5] PT TAGB. = 0.0673 × (ρD2H)0.976 555.82 59.15 1099.35 − 3.156 0.004

TdEq2 SS TAGB = 0.064 × (D2H)0.897 × ρ0.562 130.80 − 13.92 575.44 1.257 0.219

TdEq3 SS TAGB = 0.042 × (D2H)0.888 124.93 − 13.29 534.76 1.294 0.206

Brown et al. [41] TFM TAGB = 0.0899 × (D2Hρ)0.9522 592.60 63.07 1128.80 − 3.322 0.002

TdEq1 SS TAGB = 0.0799 × D2.029 × H0.593 × ρ0.648 85.33 − 9.08 493.59 0.945 0.352

TdEq2 SS TAGB = 0.064 × (D2H)0.897 × ρ0.562 130.80 − 13.92 575.44 1.257 0.219

TdEq7 SS TAGB = 0.109 × (ρDH)1.393 236.08 − 25.13 907.31 1.451 0.157

D Brown [13] TFM TAGB = 0.118 × D2.53 1532.30 163.08 3409.18 − 2.709 0.011

TdEq5 SS TAGB = 0.077 × D2.427 89.89 9.57 552.83 − 0.889 0.381

D, H, ρ Chave et al. [12] TFM TAGB = 0.0509ρD2H 539.11 57.38 1101.95 − 3.021 0.005

TdEq1 SS TAGB = 0.0799 × D2.029 × H0.593 × ρ0.648 85.325 − 9.08 493.59 0.945 0.352

TdEq2 SS TAGB = 0.064 × (D2H)0.897 × ρ0.562 130.80 − 13.92 575.44 1.257 0.219

TdEq3 SS TAGB = 0.042 × (D2H)0.888 124.93 − 13.29 534.76 1.294 0.206

TdEq7 SS TAGB = 0.109 × (ρDH)1.393 236.08 − 25.13 907.31 1.451 0.157



Page 11 of 13Daba and Soromessa ﻿Carbon Balance Manage           (2019) 14:18 

types since diameter and height are influenced by the 
environmental condition.

The compound variable of diameter and height (D2H) 
as a single predictor or in combination with ρ is robust 
in prediction TAGB of the tree in this study. Allometric 
equations with such predictor variables are mostly pro-
posed for its wide range of applications. The study of [45] 
also reports that the combination of predictor variables 
(D & H) is used to capture volume variation. The impor-
tant predictor variables (D & H) can be directly modu-
lated with climatic and physiographic factors, hence 
affect the biomass. For instance, the biomass regression 
model that relates TAGB against the compound variable 

(ρD2H) was found the best fit model in many studies [5, 
12].

Wood density is the best dendrometric variable that 
converts tree volume into biomass. However, A signifi-
cant relationship was not established when data of TAGB 
was regressed against the wood density of both A. grandi-
bracteata and T. dregeana. Generally, wood density var-
ies among individuals of the same tree species due to the 
variability of environmental conditions. Similarly, the 
study of [46] explains the variation of specific wood grav-
ity of a tree species with spatial variation across a forest 
landscape. Also, the comprehensive study of [47] reveals 
the variation of tree wood density is most likely corre-
lated with increasing elevation, the coarseness of soil tex-
ture, and drought stress. The importance of wood density 
as a single variable in yielding the best fitted TAGB model 
is a great point of debate in several recent studies. The 
comprehensive study of [48] explains that xylem density 
which is the physical property of wood varies between 
individuals, species, and environments. Since, it reflects 
the physiological strategies of trees that lead to growth 
and survival, wood density as a single predictor variable 
will not be correlated with TAGB. Several other studies 
confirm the regional variation of stand-level wood spe-
cific gravity that can significantly affect the variation of 
TAGB. Overall, the great importance of wood density is 
reported in carbon accounting of tropical forests. How-
ever, its variation among different species is correlated 
with morphological, mechanical, physiological and eco-
logical properties [21, 49].

The biomass regression model relating TAGB against 
D has achieved the model goodness of fit and found 
statistically significant in this study. This has confirmed 
that there is a strong relationship between TAGB and D. 
Basically, D measurement is accurate and practical when 
compared to other dendrometric variables. Several stud-
ies have also reported the significance of D in predict-
ing TAGB [9, 12, 50]. In this study, many of the biomass 
regression models formulated for TAGB against predic-
tors (DH) or (D + H) were also found the best performing 
models. These equations are robust in predicting TAGB 
of the tree species considered in the study. Similar stud-
ies also clarify that the addition of diameter and height 
as a predictive variable in biomass measurement shows 
improvement in the TAGB variation.

Also, such models have anticipated to increases the 
accuracy at a multiregional scale [20, 51] related to its 
application. On the other hand, the relationship between 
D and H is modulated by multiple environmental fac-
tors of forests [52, 53]. The report of [5] also suggests 
the consideration of the diameter-height relationship for 
locally developed allometric equations. The ultimate rea-
son is that the variation of the relationship between these 

Fig. 7  Species specific and pan-tropical allometric equations 
comparison for: a A. grandibracteata, b T. dregeana TAGB. Measured 
biomass: was obtained based on the semi-destructive methodology 
for allometric equation; Specific Equation: equation which was 
developed for A. grandibracteata and T. dregeana; Generalized 
Equation: was taken from [12] for pantropical tropical moist forest 
stands
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predictive variables depends directly on the bioclimatic 
variables.

The existence of a few allometric equations for sub-
Saharan Africa is reported by several studies [10, 54, 55]. 
Many of adopted generalized equations generate great 
uncertainty of biomass. The study of [14] reports that 
higher bias was observed related to the Chave’s model II 
largely overestimating by approximately 300% to 400% 
for two tropical forest sites. This confirms the signifi-
cance of formulating species-and site-specific allometric 
equations for tropical forests. Such an approach avoids 
a systematic error generated related to the generalized 
equation which possibly propagates to the national and 
global carbon budget. Generally, in response to global 
climate change mitigation, the monitoring and assess-
ment of carbon dioxide from forests is essential. Ethio-
pia is known for its diverse vegetation ecosystems and 
associated high diversity of woody plants. However, the 
assessment of biomass and carbon stock of forests has 
been practiced by adopting the generic pan-tropical allo-
metric equations that cause great uncertainty. Therefore, 
the development and application of species-specific allo-
metric equation is inevitable for accurate estimation of 
biomass. Formulating allometric equations for all woody 
plants in Ethiopia is quite desirable for accurately quanti-
fying the biomass and carbon stock of forests to achieve 
accurate national and international reporting of carbon 
dioxide emission inventories.

Conclusions
Formulating an allometric equation is an important 
approach for the estimation of tree biomass. It has also 
an indirect role in contributing to the assessment and 
monitoring of the global carbon cycle. Adopting the 
generic pantropical allometric equation has the limita-
tion of uncertainty in quantifying biomass of specific for-
est stand. This is a particularly serious problem for the 
assessment of carbon stock in tropical forests of Africa, 
related to ecological variability and diverse tree species. 
Species-specific allometric equations were formulated 
for A. grandibracteata and T. dregeana species follow-
ing the procedure of semi-destructive methodology. The 
formulated equations are proposed as a species-specific 
equation particularly in the Afromontane rainforest as 
well as in the montane moist forest ecosystem of south-
western Ethiopia.
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