
Omar and Misman ﻿ 
Carbon Balance Manage           (2018) 13:19  
https://doi.org/10.1186/s13021-018-0108-2

RESEARCH

Time‑series maps of aboveground 
biomass in dipterocarps forests of Malaysia 
from PALSAR and PALSAR‑2 polarimetric data
Hamdan Omar*   and Muhamad Afizzul Misman

Abstract 

Background:  Malaysia typically suffers from frequent cloud cover, hindering spatially consistent reporting of defor-
estation and forest degradation, which limits the accurate reporting of carbon loss and CO2 emissions for reducing 
emission from deforestation and forest degradation (REDD+) intervention. This study proposed an approach for 
accurate and consistent measurements of biomass carbon and CO2 emissions using a single L-band synthetic aper-
ture radar (SAR) sensor system. A time-series analysis of aboveground biomass (AGB) using the PALSAR and PALSAR-2 
systems addressed a number of critical questions that have not been previously answered. A series of PALSAR and 
PALSAR-2 mosaics over the years 2007, 2008, 2009, 2010, 2015 and 2016 were used to (i) map the forest cover, (ii) 
quantify the rate of forest loss, (iii) establish prediction equations for AGB, (iv) quantify the changes of carbon stocks 
and (v) estimate CO2 emissions (and removal) in the dipterocarps forests of Peninsular Malaysia.

Results:  This study found that the annual rate of deforestation within inland forests in Peninsular Malaysia was 0.38% 
year−1 and subsequently caused a carbon loss of approximately 9 million Mg C year−1, which is equal to emissions of 
33 million Mg CO2 year−1, within the ten-year observation period. Spatially explicit maps of AGB over the dipterocarps 
forests in the entire Peninsular Malaysia were produced. The RMSE associated with the AGB estimation was approxi-
mately 117 Mg ha−1, which is equal to an error of 29.3% and thus an accuracy of approximately 70.7%.

Conclusion:  The PALSAR and PALSAR-2 systems offer a great opportunity for providing consistent data acquisition, 
cloud-free images and wall-to-wall coverage for monitoring since at least the past decade. We recommend the pro-
posed method and findings of this study be considered for MRV in REDD+ implementation in Malaysia.
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Background
Global forests cover only approximately 26% of the 
Earth’s land mass, which is equal to approximately 38.5 
million square kilometers. Despite the small composi-
tion, this area is shrinking and has decreased at approxi-
mately 13 million ha per year over the last few decades 
[1]. Forests, especially in the tropics, are suffering rapid 
deforestations due to the expansion of agricultural 
lands, the increasing demand of wood products, energy, 
and massive developmental projects, as well as natural 

disasters [2]. In the event that emissions caused by defor-
estation continue to occur in the coming decades, the 
Earth will become more vulnerable to the various nega-
tive impacts of climate change. The impacts will cause 
an inconsistent carbon balance, the loss of biodiversity, 
alteration of water regulation, and variation in weather 
patterns. Reducing emissions from deforestation and for-
est degradation in developing countries (REDD+) is one 
of the global initiatives that aims at conserving forests, 
enhancing carbon stocks and reducing carbon emissions 
[3]. The basic concept of REDD+ is that governments, 
private sectors or individuals who care for forests should 
be rewarded for conserving their forests instead of har-
vesting them for economic purposes. In this manner, it 
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is expected that the initiative will contribute indirectly 
to the conservation of biodiversity, reducing habitat loss 
and ensuring the ecosystem will provide services as nor-
mal. Therefore, this option is considered the best method 
to maintain forests or to produce on a sustainable basis.

The REDD+ mechanism is based at the national 
level and therefore, the reporting should be at the 
national level. It is very important to have a national 
REDD+ scheme with a reliable, credible mechanism 
of measuring, reporting and verifying (MRV). Effi-
cient approaches to providing accurate figures for 
emissions and removal from deforestation and forest 
degradation at the national level are necessary to make 
the REDD+ implementation successful. Its implementa-
tion also relies fundamentally on systems to assess avail-
able carbon stock and monitor changes due to loss of 
biomass from deforestation and forest degradation [3]. 
Therefore, efforts to provide reliable information on the 
extent of carbon stocks over particular forest areas, as 
well as to investigate their changes, have been progress-
ing in many parts of the world, especially in tropical Asia 
[4]. Since Malaysia is in the phase of readiness for the 
implementation of REDD+ , there is an increasing need 
for such information.

Aboveground biomass (AGB) comprises all living com-
ponents of vegetation (i.e., stems, branches, bark, seeds, 
leaves and undergrowth) that reside above the ground. 
Generally, 47% of the AGB composition is carbon (C) 
[5]. Usually, AGB is measured in metric tons of dry mat-
ter per hectare (e.g., t ha−1 or Mg ha−1) or in metric tons 
of carbon per hectare (e.g., t C ha−1 or Mg C ha−1). The 
higher the AGB in a forest, the higher the carbon stock 
that is stored in the forest. The United Nations Frame-
work Convention on Climate Change (UNFCCC) iden-
tified AGB as an Essential Climate Variable (ECV). 
Therefore, methods for estimating forests AGB and car-
bon stocks need to be robust, consistent and transparent, 
to produce reliable estimates with minimal uncertainties 
[6].

Recently, remote sensing has been widely used for this 
process, and it was recognized as an essential tool for 
providing spatial information of forests [7, 8]. Remote 
sensing has been widely tested to map and monitor 
deforestation and has been suggested as primary tool 
for MRV. However, although remote sensing has been 
proven to be an effective tool, there is a debate about 
cost–benefit of using this technology. Remote sensing is 
somehow very subjective and depends on a wide range of 
ecosystem and land uses, scales of areas being monitored, 
as well as the approaches for accounting carbon credit 
[9]. For example, in Malaysia, the presence of clouds in 
remotely sensed data often hinders deforestation activi-
ties using optical sensor systems. It is almost impossible 

to acquire seamless images without clouds from optical 
systems, even if the images were collected within a 3-year 
timeframe [10]. Hence, SAR data become the sole pos-
sible approach for providing seamless images without 
clouds, within a given timeframe. This is because SAR 
systems have the advantage of penetrating clouds and are 
independent of light conditions. Because of this distinc-
tive feature, SAR data are very useful for monitoring pur-
poses, whereby consistency is the most crucial element in 
data acquisition. Therefore, the applications of SAR data 
for forest cover identification, deforestation detection 
and forest monitoring have been explored extensively in 
recent years. To some extent, SAR data are also used for 
landuse classification, forest stratification, stand and can-
opy structure studies and other biophysical predictions, 
including AGB [11].

This study used the Japanese Advance Land Obser-
vation Satellites (ALOS), also known as DAICHI, and 
ALOS-2 (DAICHI-2). Both carry Phase Array-type 
L-band SAR (PALSAR and PALSAR-2) sensors onboard 
that are useful for studying the biophysical properties of 
forests, including their changes over time [12, 13]. It was 
demonstrated that the sensitivity of PALSAR polarim-
etry depends on the structure, density, and tree elements 
(i.e., trunk/stem, branches, and leaves) of the forests [14]. 
PALSAR has shown better potential in retrieving the 
AGB of forests, including those in the tropics [15–19]. 
However, previous studies have demonstrated that AGB 
estimation using PALSAR system remains a challeng-
ing task, especially in tropical regions, with complex 
structures and unique conditions [20]. The presence of 
uncertainties in AGB estimations are due to (i) signal 
saturation at high AGB densities, (ii) a lack of, or lim-
ited ground-surveyed data, and (iii) the application of 
inappropriate image processing techniques. Efforts and 
scientific evidence have been devoted to understanding 
and identifying major uncertainties in AGB estimation. 
Therefore, this study proposed an approach for reduc-
ing these uncertainties and consequently addressed 
issues related to the mapping of forest cover, AGB esti-
mation, quantification of changes to carbon stocks and, 
and thus, estimation of CO2 emissions (and removal) in 
a dipterocarps forests of Peninsular Malaysia. The study 
used multi-temporal datasets of PALSAR, which were 
acquired in the years 2007, 2008, 2009, 2010, and PAL-
SAR-2, which were acquired in the years 2015 and 2016, 
to estimate AGB over the lowland, hill and upper-hill 
dipterocarps forests in Peninsular Malaysia. The esti-
mation was carried out by integrating the PALSAR and 
PALSAR-2 images with a number of sample plots of AGB 
that were measured on the ground.

These time-series maps provide spatially explicit sce-
narios of changes in AGB over the time periods of this 
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study. This information is expected to aid MRV for the 
REDD+ implementation in Malaysia and to stimulate 
the development of AGB maps for the other regions of 
Malaysia (i.e., East Malaysia). This study is in-line with 
the national needs and was conducted to identify advan-
tages of the time-series of PALSAR and PALSAR-2 data-
sets in AGB, carbon stock changes, and CO2 dynamics of 
a large forest landscape [12]. The study is anticipated to 
contribute greatly to the improvement of current forest 
management, policy and governance.

Methods
The three major steps involved in this study are forest 
cover mapping, correlation analysis between satellites 
and field data, and analysis of time-series changes for 
the estimated AGB. Two main datasets that were used to 
execute these processes are mosaic products of PALSAR 
and PALSAR-2 and the AGB data that were measured in 
the field. Figure 1 shows the flowchart of the study.

The study area
Peninsular Malaysia, which is located between 1–7° lati-
tude and 99–105° longitude, generally has three major 
types of forest. Namely, these are inland, peat swamp and 
mangrove forests. These forests cover approximately 5.9 
million ha or approximately 46% of the total landmass of 
Peninsular Malaysia. Inland forest is the major forest type 
and it comprises lowland dipterocarps (< 300  m a.s.l), 
hill dipterocarps (300–750  m a.s.l), upper-hill diptero-
carps (750–1200 m a.s.l) and montane forests (> 1200 m 
a.s.l.). The forests cover approximately 93.5% of the total 
forested areas in Peninsular Malaysia. This study con-
centrates only within lowland dipterocarps, hill diptero-
carps, and upper-hill dipterocarps forests, which cover 
some 5.26 million ha or 89% of the total forested areas 
in Peninsular Malaysia. These forests embrace all pri-
mary forests of the well-drained plains, undulating, and 
hill terrains up to 1200 m a.s.l. Tree species from the Dip-
terocarpacea family are common in these forests and thus 
make the forests the primary timber production areas in 

Fig. 1  Flowchart of the methodology
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Peninsular Malaysia. The forests also store a consider-
able amount of carbon stock. Some areas are conserved 
as National Parks, where all pristine and virgin stands 
can be found [21]. Common dipterocarps trees found in 
this forest are from the genera of Shorea, Dipterocarpus, 
Anisoptera, Hopea, Dryobalanops, Neobalacarpus, and 
Vatica. Figure 2 shows the locality of major forest types 
found in Peninsular Malaysia.

Satellite datasets
Satellite images
Datasets from (i) the Advanced Land Observing Satellite 
(ALOS) and (ii) ALOS-2 were used in this study. Phased 
Array type L-band Synthetic Aperture Radar (PALSAR) 
and PALSAR-2 are carried onboard ALOS and ALOS-2, 
respectively. The PALSAR and PALSAR-2 global mosaic 
datasets are created by the Japan Aerospace Exploration 
Agency (JAXA) by assembling adjacent satellite obser-
vation paths over extensive regions to form a seamless 

global mosaic. Corrections of geometric distortions spe-
cific to SAR (ortho-rectification), as well as topographic 
effects on image intensity (slope correction) have been 
applied using the SRTM-90 Digital Elevation Model. 
Backscatter is corrected for incidence angle and is thus 
given as gamma naught (γ°). The mosaics are given in 
geographical (lat/long) coordinates, using the GRS80 
ellipsoid, and provided in rectangular tiles, 1° by 1° in 
latitudinal and longitudinal direction. The pixel spacing 
is 0.8 arc seconds, corresponding to 25 m at the Equator 
[22].

Table 1 summarizes the properties of the mosaic prod-
uct and these datasets are referred to as “activity data” 
that have been used in this study. The global mosaic data 
can be downloaded free of charge from JAXA at http://
www.eorc.jaxa.jp/ALOS/en/palsa​r_fnf/fnf_index​.htm.

ALOS-2, carries the state-of-the-art of L-band SAR. 
Its mission is the follow-on of the ALOS mission and 
PALSAR-2 succeeds PALSAR onboard ALOS. ALOS 

Fig. 2  Major types of forests in Peninsular Malaysia

http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm
http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm
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PALSAR was launched in January 2006, and it was fol-
lowed by ALOS-2 PALSAR-2 that was launched in May 
2014. Both satellites are operated in a sun-synchronous 
orbit at 691  km, with a 46-day recurrence cycle. PAL-
SAR-2 currently operates and produces L-band SAR 
data, which has similar (with some advancements) char-
acteristics to PALSAR [23].

The SRTM-90 was also used in this study to acquire 
information on topography, which was used for for-
est type classification, according to the specified ele-
vation categories. These data are produced by US 
Geological Survey’s Earth Resources Observation and 
Science (EROS) Data Center and it is available at http://
srtm.usgs.gov/index​.html.

Satellite image calibration
Mosaic products of PALSAR and PALSAR-2 are nor-
mally generated in a 16-bit data format. Each pixel on 
the mosaics was assigned by digital numbers (DN) range 
from 0 to 65,535. However, the DN do not represent the 
backscatter values. Therefore, the linear backscatter val-
ues in the HH and HV images can be converted from 
image DN to γ°, and expressed in decibel (dB), by the fol-
lowing formula [22]:

Forest cover mapping
Forest cover classification was performed on the images 
to delineate the forests from other land cover types. This 
process was performed to create clear-cut boundaries of 
forest cover so that the estimation of AGB is not influ-
enced by other features on the images. Radar backscat-
ter from the canopies of forests is normally different 
from other vegetation and agricultural crops. However, 
it is often confused with rubber plantations because the 
backscatter from this crop is identical to that from for-
est canopies on both HH and HV polarizations [11]. To 
overcome this problem, several image variables were pro-
duced from the original HH and HV polarizations. The 

(1)γ
◦
= 10 · log10

(

DN 2
)

− 83[dB]

image variables, namely (i) simple band ratio (HH/HV), 
(HV/HH), (ii) average (HH + HV/2), (iii) square root of 
products (√(HH × HV)), and Gray-level co-occurrence 
matrix (GLCM), were produced.

The GLCM is often used in land use/land cover clas-
sification as a texture measure to improve classification. 
Texture is defined as a repeating pattern of local vari-
ations in image intensity, which is too fine to be distin-
guished as a separate class at the observed resolution. 
Therefore, a set of pixels having similar gray-level prop-
erties that occur repeatedly in an image region will con-
stitute a texture. In this study, a mean-type GLCM was 
applied to the original images of both from HH and HV 
polarizations. This process produced textured images, 
with clearer definitions of the objects on the images [24].

These inputs were used in the classification iterations, 
and the Maximum Likelihood Classifier algorithms with 
nearest neighbor technique was applied. The forest cover 
was then divided into several forest types, according 
to the specified elevation using the DEM from SRTM. 
These processes were applied only on the images over the 
years 2007, 2010 and 2016 because the forest cover did 
not change significantly within a short period, i.e., 1 to 
2 years. The results were used to quantify the rate of for-
est change, as well as to identify causes of deforestation 
that have occurred within the study periods.

Field sampling
Principally, the standard operating procedure (SOP) for 
the sampling design was developed by Winrock Inter-
national [25]. However, some modifications have been 
made on the design to suit the conditions of forests in 
Peninsular Malaysia. The SOP follows Intergovernmen-
tal Panel on Climate Change (IPCC) standards and is 
very practical for implementation in the field for AGB 
measurements [5]. A cluster is made up of at least four 
sub-plots, which are circular with several levels of nests 
inside, as shown in Fig. 3. The outermost nest measures 
20  m in radius, followed by the smaller nests, measur-
ing 12 and 4  m. Trees were measured according to the 
nest sizes as summarized in Table  2. The smallest nest, 
measuring 2  m in radius, was created to sample small 
trees or saplings. In this nest, all trees found within the 
radius were numerically counted but their diameter was 
not measured. This design indicates that not all trees 
were measured in a single plot because it depends on the 
nest size, which reduced the time spent in the field, while 
maintaining the sampling adequacy and representative-
ness for AGB estimation in a particular forest stratum.

A natural forest ecosystem usually has five carbon 
pools, which are; (i) aboveground biomass of living trees, 
(ii) belowground biomass of living trees, (iii) deadwood 
and woody debris, (iv) non-tree vegetation and litter falls, 

Table 1  Properties of  the  PALSAR and  PALSAR-2 mosaic 
product

Year of acquisition Satellite Sensor

2007 ALOS PALSAR

2008 ALOS PALSAR

2009 ALOS PALSAR

2010 ALOS PALSAR

2015 ALOS-2 PALSAR-2

2016 ALOS-2 PALSAR-2

http://srtm.usgs.gov/index.html
http://srtm.usgs.gov/index.html
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and (v) soil. Among all of these carbon pools, the above-
ground biomass of the trees constitutes the major portion 
of the carbon pool and it is directly affected by deforesta-
tion and forest degradation. Aboveground biomass com-
prises all the living components of a tree, including stem, 
branches, and leaves. Allometric functions, which typi-
cally include DBH and/or height, are the best way to esti-
mate the AGB. In this study, an allometric function that 
was published for dry inland forests in the Asia region 
was used to estimate the AGB [26].

AGB is aboveground biomass (kg/tree), E denotes biocli-
matic variable, ρ represents wood density, and D is DBH.

The forest survey was conducted in two phases: (i) phase 
1, within years 2009–2010 and (ii) phase 2, within years 
2015–2016. In the study, 334 plots were surveyed within 
two phases, and these were used as sample plots. Surveys 
were conducted during several trips, and the distribution of 
sampling plots was concentrated mainly at the central parts 

(2)AGB = [exp
(

−1.803− 0.976E + 0.976ln(ρ) + 2.673ln(D)− 0.0299[ln(D)]2
]

of Peninsular Malaysia, as shown in Fig. 4. The AGB within 
all sample plots ranged between 35.57 and 615.50 Mg ha−1, 
with an average of 399.42  Mg  ha−1, as summarized in 
Table 3. The survey covered all conditions of forests, which 
are virgin (i.e., totally protected areas), natural forests (with 
good, moderate and low stand density), and logged forests 
to ensure that the final estimation was representative of all 
types and conditions of forests.

Aboveground biomass estimation
Since the forest surveys were conducted in two phases, 
i.e., within years 2009–2010 and 2015–2016, the correla-
tions were generated based on datasets from 2010 (PAL-
SAR) and 2016 (PALSAR-2). Backscatter values from HV 
polarization from both datasets were extracted from the 
images. The AGB values that were measured at the sample 
plots were correlated with the backscatter values at corre-
sponding locations using a non-linear regression method. 
Several prediction functions have been produced, and the 
most representative function was used to retrieve AGB 
over the entire study area. The derived prediction functions 
used AGB as a dependent variable and the backscatter as 
the independent variable. Exponential functions are com-
monly applied to create this relationship, which is repre-
sented as y = a.e b(x), where x and y = HV polarization and 
AGB, respectively; a and b = model coefficients.

To check the accuracy of the estimates, root mean square 
error (RMSE) was calculated. In this case, the accuracy is 
a measure of the error between a derived/predicted AGB 
from the PALSAR and PALSAR-2 images and the actual 
AGB measured on the ground. The calculation can be 
expressed as follows:

where RMSE is the root mean square error of the esti-
mated AGB (± Mg  ha−1), AGBp and AGBr are the pre-
dicted and reference AGB, respectively, and n is the 

sample size (i.e., number of sample plots).
In additional to the RMSE, the accuracies of the esti-

mates were also measured in terms of percentage (%) using 
the mean absolute percentage error (MAPE), which can be 
calculated using the following formula.

(3)RMSE =

√

∑ (AGBp − AGBr)
2

n

(4)MAPE =

[

1

n

∑ AGBr − AGBp

AGBr

]

× 100

Fig. 3  A cluster that comprises of four sub-plots and the design of a 
sub-plot

Table 2  Sizes of  trees that  were measured in  all nests 
in a sub-plot

Nest radius (m) Size Diameter 
at breast 
height, DBH 
(cm)

2 Sapling DBH < 10 cm; 
height > 1.3 m

4 Small 10.0–19.9

12 Medium 20.0–39.9

20 Large ≥ 40.0
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Validation of the AGB estimates
The prediction function that was used to estimate AGB in 
the entire study area was validated using the K-fold cross-
validation method, which is a technique that is used to 

evaluate a predictive model by dividing the original sam-
ple into (i) a training set to train the model and (ii) a test 
set to evaluate the model. The cross-validation process 
is then repeated k times (the folds), with each of the k 

Fig. 4  Distribution of sample plots within the study area

Table 3  Summary of the distribution of the sample plots within the study area

Phase Year Number of sample 
plot (n)

AGB (Mg ha−1)

Minimum Maximum Average Std. dev.

1 2010 254 73.50 615.50 401.91 126.42

2 2016 80 35.57 596.37 392.37 131.10

1 and 2 2010 and 2016 334 35.57 615.50 399.42 127.63
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subsamples used exactly once as the validation data [27]. 
In this study, tenfold cross-validation method was used 
where all sample plot data were randomly grouped by 
tens (10). This method was used because it can indicate 
the performance of a prediction model better than the 
common residual method. This method also provides an 
indication of how well the model makes new predictions 
over new sample data. One group was used as a testing 
set, while the other nine groups were used to develop the 
model. The RMSE was calculated using the testing set. 
This process was iterated 10 times and each group was 
used as a testing set once. Then, all RMSE were averaged 
to obtain an overall RMSE of the validated model.

Time‑series changes of AGB
Since the prediction equation has been developed from 
two sets of data (i.e., PALSAR 2010 and PALSAR-2 2016), 
the one that was derived from the combination of these 
data was used. The equation was applied to all images 
to produce estimates of AGB for each respective year, 
as listed in Table 1. Spatially explicit maps of AGB have 
been produced and the magnitude of AGB changes were 
quantified. Trends in AGB and carbon stocks changes 
were also observed. The AGB was converted to carbon 
stock (C) by multiplying the values with a constant fac-
tor of 0.47 [5]. Subsequently, the rate of carbon loss was 
determined throughout the period using the ‘activity 
data’. In this case, the activity data refers to information 
on the changes of forest cover that has been produced 
from the time-series estimates.

CO2 emission and removal
The term CO2, known as carbon dioxide, is defined as 
a natural, colorless and odorless greenhouse gas that is 
emitted when fossil fuels (i.e., natural gas, oil, coal etc.) 
are burned. In this study, the CO2 emission is expressed 
as C loss, assuming that the gas is emitted when defor-
estation occurs. The unit of metric tons C was converted 
to CO2 by multiplying the ratio of the molecular weight 
of carbon dioxide to that of carbon (44/12 = 3.67) [5]. 
CO2 removal is different from CO2 reduction because the 
CO2 removal reduces emissions to the atmosphere but 
cannot reduce the amount of carbon dioxide already in 
the atmosphere. CO2 removal creates negative emissions, 
offsetting emissions from other sources such as domestic 
heating systems, airplanes and vehicle exhaust.

Generally, there are two methods that can be used to 
measure CO2 emissions resulting from deforestation. 
These are (i) the stock-difference method, and (ii) the 
gain–loss method. The stock-difference method requires 
two measurements in two epochs. The total change of 
carbon between these two epochs is calculated by divid-
ing the total carbon stock changes of a particular unit 

area by the total period of the assessment. This method 
is the most suitable for calculating emissions from defor-
estation. On the other hand, the gain–loss method sim-
ply measures the mean annual increment of carbon in a 
particular area. Hence, this method is better suited for 
calculating emissions from forest degradation. Using the 
stock-difference method, net emissions from land use 
changes can be calculated based on following equation 
[5]:

where ∆C is the rate of carbon stock change (Mg C 
year−1), and Ct1 and Ct2 are carbon stock (Mg C) at time 
t1 and t2, respectively. In this case, the ∆C was deter-
mined from the serial changes that have been produced 
from the activity data.

Results and discussion
Forest cover maps
Forest cover mapping was carried out on the images to 
produce classified images, with delineated forests from 
other land cover types. This process was carried out 
on images over the years 2007, 2010 and 2016, to pro-
duce different sets of forest cover maps that enabled the 
detection of changes and the identification of factors of 
deforestation. The study revealed that the HV polariza-
tion was very useful for delineating forest cover, similar 
to previous studies that were previously reported [28]. 
On the other hand, the HH polarization was effective 
in delineating crops and plantation areas, such as oil 
palm, rubber and teak. The HH is more sensitive to ori-
entation than the HV; therefore, systematically planted 
trees and homogenous crops are well-interpreted on 
HH polarization. Table  4 summarizes the classification 
results that were produced using images over the year 
2016. The estimation of AGB in this study included low-
land, hill, and upper hill dipterocarp forests, which cov-
ered 5257,395 ha. The classification results were verified 
with land use maps for the years 2006, 2010, and 2014 
that were produced by the Department of Agriculture 
Peninsular Malaysia. All classification results attained 
between 80% and 83% accuracies, with kappa coefficients 

(5)�C =
(Ct2 − Ct1)

(t2 − t1)

Table 4  Extent of the study area during the year 2016

 Forest type Extent (ha) Percentage (%)

Lowland dipterocarps 2,704,816 51.4

Hill dipterocarps 2,004,991 38.2

Upper-hill dipterocarps 547,588 10.4

Total 5,257,395 100
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of 0.77–0.81. The presence of classifications errors was 
attributed to the misclassification of rubber plantations 
and secondary forests, as these classes were defined dif-
ferently on the land use maps, which were used as a refer-
ence. However, the errors did not affect the classification 
results, as the other land uses were neglected in this 
study.

These maps were used to assess changes of forests 
within the study area. While Table  5 summarizes the 
magnitude of changes, Fig.  5 shows locations of the 
changes that have occurred within the period between 
2007 and 2016. These changes were the consequence of 
deforestation or forests that were converted to other land 
uses. The study found that the total deforested area within 
the study area between 2007 and 2016 was 213,440  ha. 
The annual rate of deforestation within this period was 
quantified at 21,698  ha  year−1 or 0.38% year−1. In this 
case, Peninsular Malaysia is considered a low deforesta-
tion country, with deforestation values of less than 0.5% 
year−1 [29]. Large pieces of forests in the region were 
converted to oil palm and rubber at commercial scales. 
In some other places, the forested areas were replaced 
by urban areas in terms of development, high density of 
human structures such as houses, commercial buildings, 
roads, and highways. Similarly, forests were converted 
to hydro-electric dams and reservoirs, as well as quarry 
and mine sites, from which mineral resources were exca-
vated from the ground. Time-series images have greatly 
facilitated the detection process of changes because the 
dynamics of land uses can be observed easily on a color 
composite of multi-temporal data (Fig. 6). Direct causes 
of deforestation are usually linked to human activities 
that directly diminish forest cover and result in loss of C 
stocks. Agriculture was found to be the most common 
driver of deforestation worldwide and comprised 80% 
of all other drivers [30]. Similarly, commercial agricul-
ture is the most prominent factor of deforestation in Asia 
and other tropical countries in Latin America and South 
Africa [31].

Field sampling data
The study managed to collect a total of 334 sample plots 
covering the entire study area. Aboveground biomass was 
estimated at plot level, and it was found that the average 
AGB within the study area was 399.42 Mg ha−1. The AGB 

ranged between 35.57 and 615.50 Mg ha−1, with a standard 
deviation of 127.63 Mg ha−1. It is notable that the AGB of 
small trees (DBH 10–19.9  cm) contributed only approxi-
mately 15% of the total AGB in a hectare of dipterocarp for-
est. However, these trees are abundant in terms of number. 
Figure 7 shows the average AGB and number of trees in a 
hectare of the dipterocarp forest, according to diameter 
classes, and indicates that large portions of AGB actually 
belong to large trees. Although the number of large trees 
is typically low in a forest area, the quantity of AGB that is 
stored by these trees is large.

AGB estimations
Backscatter values at corresponding sample plot loca-
tions were extracted from HV polarization on images over 
the years 2010 and 2016. Correlations analysis was car-
ried out only on HV polarization, as it has proven to be 
the best polarization for AGB estimation [14, 32]. Gener-
ally, HV backscatter is dominated by volume scattering, 
which his beneficial for estimating AGB over the dense 
vegetation cover in a tropical forest. On the other hand, 
HH backscatter is dominated by volume-surface scatter-
ing and therefore it is not helpful for AGB estimation [33]. 
This forest also has high variability in canopy structure 
and surface roughness, which will give significant influ-
ence to the scattering, as observed by the cross-polariza-
tion term (i.e., HV). In this case, the forests that have been 
selectively logged, and which have very high variability in 
canopy structure, are theoretically observable by the HV 
polarization.

The resulting prediction functions are summarized in 
Table 6, and the scatterplots are depicted in Fig. 8. Back-
scatter values from HV polarization over the sample 
plots ranged from − 8 to − 18  dB and tended to satu-
rate at approximately − 12  dB [34–36]. The backscatter 
increased rapidly with AGB at low AGB levels (i.e., up to 
200 Mg ha−1). However, the sensitivity started to decrease 
towards higher AGB levels (> 200  Mg  ha−1) and eventu-
ally became almost constant afterwards, which is the point 
at which uncertainties exist in the AGB estimation, espe-
cially in tropical forests with an extremely high biomass 
[14]. This trend was similar for both correlations, generated 
from datasets over the years 2010 and 2016. However, the 
coefficient of determination (R2) from the 2016 datasets 
was higher than that of 2010, despite a smaller number of 
sample plots. Although the correlation was stronger, both 
datasets were combined to ensure that the estimation is 
representative and reliable of all forests types in the study 
area. The combined equation was used for AGB estimation 
over the entire study area and throughout all sample peri-
ods and can be written as

(6)AGB = 3166.7e0.1744∗HV

Table 5  Changes of  the  forest cover and  rate 
of deforestation in Peninsular Malaysia

Forest cover (ha) Changes
(ha)

Rate 
of changes
(ha year−1)

Rate 
of changes
(% year−1)Year

2007
Year
2010

Year
2016

5,720,317 5,690,816 5,525,034 213,440 21,698 0.38
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where AGB is the aboveground biomass (Mg  ha−1) and 
HV is backscatter (γ°, dB).

Since the sample plots covered only lowland, hill and 
hill dipterocarps forests, the equation produced was only 
valid for these forests and not accurate for other types of 
vegetation. This equation is also valid for the PALSAR 
and PALSAR-2 datasets. Nevertheless, the equation can 

be replicated and applied to other tropical countries that 
have similar forest physical characteristics.

Referring to Table 6, the RMSE that was obtained from 
the estimates was approximately 116–117 Mg ha−1. These 
figures reflect the threshold limit when estimating AGB 
from the L-band SAR data from PALSAR and PALSAR-2 
in a tropical forest region such as Peninsular Malaysia. 

Fig. 5  Deforestation activities within years 2007, 2010 and 2016
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Meanwhile, the MAPE shows that the error of the over-
all estimates was 29.3%, which is equal to an accuracy 
of 70.7%. Therefore, the accuracy-error propagation was 
approximately 70–30, following IPCC good practice 
and guidance. The study revealed that this amount of 
error (i.e., approximately 30%) should be allowed when 

applying a pixel-based AGB estimation approach using 
L-band SAR data.

Validation of the AGB estimates
The validation method that was applied to the estima-
tions has produced RMSE for each prediction function. 
The calculated RMSE for the prediction equations that 
were derived from PALSAR, PALSAR-2 and the combi-
nation of PALSAR and PALSAR-2 (Table 6) were 115.89, 
117.45 and 116.91 Mg ha−1, respectively. Generally, each 
prediction function estimated the AGB within the study 
area at approximately the same level of accuracy, with 
small variations of RMSE. Prediction from a single sen-
sor, i.e., either PALSAR or PALSAR-2, produced approxi-
mately the same results. However, only the one that was 
derived from the combination of PALSAR and PALSAR-2 
was used to estimate AGB for the whole study area. Fig-
ure  9 shows the scatterplots generated from the refer-
ence and predicted AGB using tenfold cross validation. 
The scatterplots clearly show that the errors occurred 

Fig. 6  Color composites of PALSAR and PALSAR-2 images displayed in RGB = 2007, 2010, and 2016. The expansion of oil palm plantation occurred 
in year 2010 turns purple (a) and rubber plantation in years 2010 and 2016 turns red and purple, respectively (b). Hydroelectric dam reservoir that 
was constructed between 2010 and 2015 turns purple in (c), and hydroelectric dam reservoir that was constructed before 2010 turn red (d)

Fig. 7  Average number of trees and AGB according to diameter 
classes in a dipterocarp forest
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largely at the lower-end and higher-end of the AGB lev-
els than 400  Mg  ha−1. In the other words, the predic-
tion function has overestimated when the AGB is lower 
than 400 Mg ha−1 and underestimated when the AGB is 
higher than 400 Mg ha−1.

Time‑series change of AGB and C stocks
The study produced spatially explicit maps indicting 
the distribution of AGB within the study for all series 
(Fig.  10). A high density of AGB dominated the cen-
tral parts of Peninsular Malaysia. These areas are cov-
ered by virgin forests, where the largest national park is 
located within the borders of Pahang, Terengganu and 
Kelantan. High levels of AGB also occur along the Main 
Range, stretching the west coast of Peninsular Malay-
sia from Kedah to Negeri Sembilan. It is also notable 
that a high density of AGB occurs in the north of Perak, 
where the Royal Belum State Park is located. These for-
ests are known to have existed a million years ago and 
remain intact as virgin forests. Variations of AGB lev-
els are patchy and spread within the other areas, which 
consisted of natural, logged and secondary forests. A low 
density of AGB occurred along the outer edges of the for-
ests, adjacent to other land uses. From these maps, the 
statistics of the distribution were extracted to observe the 
dynamics of AGB and thus, C stock changes within the 
study area. Basic statistics and histograms of the distri-
bution are depicted in Figs. 11 and 12, respectively. It is 
obvious that the changes of AGB occurred significantly 
when the large deforestations took place within the study 
area. In the meantime, there were also some areas that 
indicated increments in AGB, which were the result 
of carbon sequestration, especially in totally protected 
areas.

The differences that exist in these statistics reflect the 
overall changes that have occurred within the study areas 
because they accounted for millions of pixels. Refer-
ring to Fig. 11, the mean AGB was almost constant from 
the year 2007 through 2010. However, the mean value 
slightly dropped in the year 2015 and increased again in 
2016, which means that there was no significant deforest-
ation or land use conversion activities occurring between 
1-year differences from 2007 through 2010; however, 
these activities occurred significantly during the 5-year 

Table 6  Summary of the correlations between AGB and the backscatter of HV polarization

Backscatter is in gamma naught (γ°, dB) and AGB in (Mg ha − 1). All correlations are significant at p < 0.05

Year Sensor Prediction equation R2 Number of samples 
(n)

RMSE
(Mg ha−1)

2010 PALSAR y = 2182.9e0.1442x 0.2735 254 115.89

2016 PALSAR-2 y = 8665e0.2535x 0.5581 80 117.45

2010 and 2016 PALSAR+PALSAR-2 y = 3166.7e0.1744x 0.3541 334 116.91

Fig. 8  Scatter plots of correlations between AGB (y-axis) and 
backscatter (x-axis) over the year 2010 (a), the year 2016 (b) and the 
combined correlations (c)
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period between 2010 and 2015. This quantitative statistic 
was cross-checked qualitatively with a color composite of 
AGB maps, as shown in Fig. 13. Notably, when the AGB 
images were draped over each other, the deforested areas 
are visibly enhanced as consequent of the loss of C stocks 
[37, 38].

Similarly, effects of AGB reductions and sequestra-
tion can be observed through the extracted histogram as 
shown in Fig. 12 and AGB composition in Fig. 14. Appar-
ently, the AGB within the range of 200–400  Mg  ha−1 
dominated the study area. The number of pixels that fall 
within low AGB values increased significantly in the year 
2015. This pattern expresses areas that were previously 
(before 2015) covered by forests with high AGB density 
and were then cleared and replaced with other crops. 
During that time, the AGB became zero (0). After 1 year 
(2016), the number of zero-value AGB increased as the 
barren areas were replaced by other crops. These crops 
will continue to sequester carbon and thus increase the 
AGB. There were also some areas within the study area 
that were designated as forest plantations. These areas 
are deliberately cleared and then planted with specific 
timber trees for commercial purposes. Normally these 
areas involved a considerable extent of land and are visi-
ble on the AGB maps. This type of dynamic was reflected 
on the histogram because the boundary for the statistic 
extraction was from forest cover in the year 2007. There-
fore, any change occurring after this was captured in the 
histogram.

The total AGB fluctuated in the periods between the 
years 2007 and 2016. The reduction of total AGB was 
mainly due to deforestation and also extraction of timber 
in production forest. Out of 4.92 million ha of Permanent 
Reserved Forests (PRFs) in Peninsular Malaysia, 2.99 
million ha is designated for production, where all tim-
ber extraction activities are conducted. Some 40,000  ha 
of this area is open annually for logging operation [21]. 
Although the harvesting is operated selectively, the 
extraction of timber will eventually reduce a considerable 
amount of existing AGB in those particular areas. How-
ever, as this forest is left untouched after logging, it will 
grow naturally and hence increase the AGB. The annual 
rate of carbon sequestration in dipterocarps forests was 
estimated to be approximately 3  Mg C ha−1 year−1 (or 
6.4  Mg  ha−1 year−1 of AGB) [39], which is actually the 
main reason for the pattern of AGB dynamics in Peninsu-
lar Malaysia. A drastic drop of the total AGB in the year 
2015 was mainly due to permanent deforestation for the 
construction of hydroelectric dams. The forests in these 

Fig. 9  The agreements between reference and predicted AGB. 
Scatter plots show correlations between the reference AGB (y-axis) 
and the predicted AGB (x-axis) over the year 2010 (a), the year 2016 
(b) and the combined models (c)
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Fig. 10  Spatially explicit maps of AGB over the study areas, on the years as indicated
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particular areas have become permanent reservoirs, and 
there was entirely no biomass afterwards. This informa-
tion is captured in the time-series maps of AGB and is 
translated into the total AGB, as reported in Fig. 15. Error 
bars on the top of the chart indicate the mean absolute 
percentage error of the estimations.

CO2 emission and removal
Information that has been derived from the activity 
data was used to calculate and quantify changes of C 
stocks within the periods, as summarized in Table  7. 
The annual rate of change was also derived from the 
information. Subsequently, cumulative CO2 emissions 
between the years 2007 and 2016 were accounted for, 
as summarized in Table 8. Net CO2 emission was meas-
ured to be − 458,348,374  Mg CO2 and removal was 
+ 161,301,555 Mg CO2. Somehow, the difference between 
the emission and removal has left approximately net CO2 
emission of − 297,046,819  Mg CO2. According to this 
figure, the annual rate of emission was − 33,005,202 Mg 
CO2 year−1. An overall picture of the CO2 emission and 
removal cycle is shown in Fig. 16.

Figure  15 generalizes the net CO2 emissions and 
removal that have been measured from the activity data 
from this study. There were consistent CO2 emissions 

Fig. 11  Basic statistic of time-series AGB in the study area

Fig. 12  Histogram of time-series AGB distribution in the study area

Fig. 13  Color composite of AGB images, displayed in RGB = 2016, 2010, and 2007. The dark blue patches indicates clear-cut areas due to 
deforestation and lighter colors represent dynamics of AGB within the periods. Gray color indicates areas that have no change, i.e. the remaining 
forests, and the black patches are unchanged water bodies
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Fig. 14  Summary of AGB distribution composition in time series

Fig. 15  Total AGB in the study area accounted in time series
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and removal between the years 2007 and 2009, where 
emission activities in 2008 had been offset by CO2 
emission removal in the year 2009, at approximately 
0.04 billion Mg CO2. However, the deforestation and 
land use activities between the years 2009 and 2015 
continued to emit CO2, without any offset. Sequestra-
tion in the year 2016 was eventually removed and the 

CO2 emission was approximately 0.13 billion Mg CO2. 
This pattern actually reflects the effectiveness of over-
all structural planning and management practices of 
the forests in Peninsular Malaysia. Information that 
has been produced by this study is valuable for the 
REDD+’s MRV and is important in the management 
and protection of forested areas.

Table 7  Summary of time-series AGB and C stocks and rate of changes in the study area

Year AGB
(Mg)

Carbon stock (Mg C) Total C change (Mg C) Rate of C 
change (Mg C 
year−1)

2007 1,944,851,626 914,080,264 0 0

2008 1,924,372,988 904,455,304 − 9,624,960 − 9,624,960

2009 1,945,061,005 914,178,672 9,723,368 9,723,368

2010 1,875,228,104 881,357,209 − 32,821,464 − 32,821,464

2015 1,699,815,037 798,913,067 − 82,444,142 − 16,488,828

2016 1,772,640,588 833,141,077 34,228,009 34,228,009

Table 8  Net CO2 emissions and removal from the activity data

Net
(Mg CO2)

Year

2007–2008 2008–2009 2009–2010 2010–2015 2015–2016 Total

Emission − 35,323,603 – − 120,454,771 − 302,570,000 – − 458,348,374

Removal – 35,684,761 – – 125,616,794 161,301,555

Fig. 16  Net CO2 emission and removal from the activity data
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Conclusions
The study has successfully produced spatially explicit, 
time-series estimates of the AGB over the years 2007, 
2008, 2009, 2010, 2015, and 2016, with an overall RMSE 
of approximately ± 117 Mg ha−1 at an accuracy at approx-
imately 70%. According to these maps, the forests within 
the study area in are currently store approximately 1.77 
billion Mg of AGB, which is equals to approximately 833 
million Mg C, with an average density of 146 Mg C ha−1. 
The cumulative CO2 emission between years 2007 and 
2016 was accounted at approximately − 458 million Mg 
CO2 and removal at some + 161 million Mg CO2. Some-
how, the difference between the emission and removal 
has left an approximately net CO2 emission at approxi-
mately − 297 million Mg CO2. Prior to these estimates, 
the rate of deforestation has been determined at 0.38% 
year−1.

Although there were limitations found, this study pro-
vided an alternative for AGB retrieval that can be uti-
lized in a practical manner to assist decision makers. This 
study, to some extent, can provide a significance contri-
bution towards the MRV in the REDD+ implementa-
tion. An effective implementation of REDD+ activities 
needs to be based on a robust estimate of emissions, as 
presented in this study. MRV should follow the UNF-
CCC principles of transparency, consistency, compara-
bility, completeness, and accuracy. This study met these 
requirements and the report presented was very clear. 
Therefore, L-band SAR remote sensing such as PALSAR 
and PALSAR-2 systems has been identified as a key tech-
nology to successfully implement and monitor a future 
REDD+ mechanism.

One of the greatest advantages of using these data is 
that the datasets are free to access. Free-cloud cover and 
rapid acquisition make them more valuable, especially 
for this type of study in Malaysia. Overall, the method 
that was presented here is applicable for achieving opti-
mal goals, with reliable accuracy, low operational cost 
and very consistent available satellite data, which is very 
promising for the future.
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