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Abstract 

Background:  Determining national carbon stocks is essential in the framework of ongoing climate change mitiga-
tion actions. Presently, assessment of carbon stocks in the context of greenhouse gas (GHG)-reporting on a nation-
by-nation basis focuses on the terrestrial realm, i.e., carbon held in living plant biomass and soils, and on potential 
changes in these stocks in response to anthropogenic activities. However, while the ocean and underlying sediments 
store substantial quantities of carbon, this pool is presently not considered in the context of national inventories. The 
ongoing disturbances to both terrestrial and marine ecosystems as a consequence of food production, pollution, 
climate change and other factors, as well as alteration of linkages and C-exchange between continental and oce-
anic realms, highlight the need for a better understanding of the quantity and vulnerability of carbon stocks in both 
systems. We present a preliminary comparison of the stocks of organic carbon held in continental margin sediments 
within the Exclusive Economic Zone of maritime nations with those in their soils. Our study focuses on Namibia, 
where there is a wealth of marine sediment data, and draws comparisons with sediment data from two other coun-
tries with different characteristics, which are Pakistan and the United Kingdom.

Results:  Results indicate that marine sediment carbon stocks in maritime nations can be similar in magnitude to 
those of soils. Therefore, if human activities in these areas are managed, carbon stocks in the oceanic realm—particu-
larly over continental margins—could be considered as part of national GHG inventories.

Conclusions:  This study shows that marine sediment organic carbon stocks can be equal in size or exceed terrestrial 
carbon stocks of maritime nations. This provides motivation both for improved assessment of sedimentary carbon 
inventories and for reevaluation of the way that carbon stocks are assessed and valued. The latter carries potential 
implications for the management of human activities on coastal environments and for their GHG inventories.
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Background
Global carbon cycle dynamics
Carbon forms the basic building block of life on Earth, 
and is stored in the atmosphere, land and ocean. In the 
atmosphere, carbon is contained in greenhouse gases, 
such as carbon dioxide and methane, where it exerts 
a controlling role on climate. Terrestrial and aquatic 
plants remove carbon from the atmosphere through 
photosynthesis and produce reduced (organic) carbon. 

Carbon-based food is consumed by animals, which 
respire carbon dioxide. When plants and animals die and 
decay, the majority of carbon is remineralized and trans-
formed into inorganic carbon in atmospheric or oceanic 
reservoirs. A minor portion of this carbon is transferred 
to underlying soils and sediments, where it has the 
potential to be sequestered indefinitely. Furthermore, 
reduced carbon fixed on land may be exported by fluvial 
and atmospheric processes to the aquatic realm, evolving 
as it moves through along a complex land–ocean contin-
uum, with some fraction of this carbon ultimately con-
tributing to the oceanic carbon reservoirs. This myriad of 
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processes is called carbon cycle (see Fig. 1). The carbon 
cycle operates on a broad range of spatial and temporal 
scales, and involves highly complex and dynamic interac-
tions within as well as at the interfaces between atmos-
pheric, terrestrial and aquatic spheres [17, 23].

Terrestrial ecosystems include living organisms, litter 
and soils, with the latter representing the largest terres-
trial carbon reservoir [4]. Terrestrial material is trans-
ported to oceans via eolian and fluvial processes. Inland 
waters such as rivers, lakes and wetlands are seen as key 
components in this “boundless carbon cycle”, that medi-
ate the lateral and vertical carbon fluxes between land, 
ocean and atmosphere [6]. Drainage basin properties 
such as catchment size, morphology, geology, vegetation, 
soil and rock erosion, weathering, as well as human influ-
ences such as dams and land-use, influence the flux and 
nature of organic carbon exported by rivers [45]. Even 
though inland waters cover a small part of the terrestrial 
surface, they sequester equal amounts of carbon as their 

watersheds, and recycle and respire large amounts of ter-
restrial carbon [3].

Coastal environments including wetlands, estuaries, 
reefs and bays host diverse ecosystems, e.g., mangroves, 
salt marshes, sea grasses, serve as a link between the ter-
restrial and marine realms, and are recognized as impor-
tant, yet vulnerable, carbon sinks (so-called “blue carbon” 
[40]). Coastal ecosystems cover just 2% of the Earth’s sur-
face, but are responsible for around 50% of the transfer 
of carbon to sediments and sequester carbon more effi-
ciently than terrestrial ecosystems of equivalent area [31]. 
Besides the large carbon storage potential in soils and 
sediments of these coastal areas, they provide a unique 
habitat for aquatic life and harbor enormous biodiversity, 
whilst also contributing to shoreline protection and pol-
lution attenuation.

In the pelagic marine realm, ecosystems are fueled 
by primary production by phytoplankton in the surface 
ocean that fixes inorganic carbon, and converts it to 

Fig. 1  General representation of the global carbon cycle (credit to Jack Cook, Woods Hole Oceanographic Institution). The broad translucent white 
arrows illustrate the general motion of the carbon cycle, depicting production and burial of carbon, and its uplift erosion and weathering resulting 
of return of this carbon to the atmosphere. The orange arrows highlight loci of carbon (CO2) exchange and transfer, such as via photosynthesis and 
respiration, including examples of human influences on carbon cycle processes. A hypothetical national boundary and exclusive economic zone 
(EEZ) are indicated as yellow dashed lines
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particulate and dissolved organic carbon. These closely 
linked carbon pools undergo complex transformations, 
many of which are biologically mediated, with a portion 
of this recently fixed carbon escaping from surface waters 
and being exported to deep water and underlying sedi-
ments via the so-called “biological pump” [23, 35].

As a result of long-term operation of this complex net-
work of carbon cycle processes, ocean floor sediments 
and associated sedimentary rocks constitute the larg-
est reservoir of carbon on the planet. The vast majority 
(approximately 90%) of sequestered organic carbon accu-
mulates on the continental margins, with deltaic environ-
ments and fjords as prominent loci of carbon burial (e.g. 
[22, 52]).

About one-third of all human-generated carbon emis-
sions are dissolved in the ocean. Direct anthropogenic 
intervention and human-induced climatic change have 
altered the carbon and nutrient cycling throughout the 
land–ocean aquatic continuum [30, 46]. By cycling and 
retaining huge amounts of carbon, oceans help to regu-
late the Earth’s climate and alleviate the impacts of global 
warming on the environment (see Fig. 1). However, given 
carbon emissions at unprecedented rates [27], and attain-
ment of concentrations that have not been witnessed in 
at least the past several hundred thousand years [43], 
understanding the partitioning of this carbon between 
atmospheric, terrestrial and oceanic reservoirs is brought 
into sharp focus. The disturbance of the carbon cycle 
and consequent destabilization of the global climate has 
now become a societal and economic issue [36, 41]. In 
addition to climate change on a global scale that is now  
recognized to be underway [27], the asymmetric geo-
graphic distribution of factors contributing to this 
change, those who are experiencing its consequences, 
and those with financial resources to influence future 
change or implement compensatory measures, leads to 
complex international tensions.

Carbon stocks and inventories
Carbon stocks convey the amount of carbon contained 
in a reservoir or system in relation to its capacity to 
accumulate or release carbon. The calculation of car-
bon stocks has been based on carbon reservoirs associ-
ated with terrestrial ecosystems, anthropogenic sources 
and the atmosphere. Carbon inventory processes are 
inherently linked with anthropogenic impacts on the 
environment. The methodological approach entails a 
multiplication of human activity (or activity data) with 
emissions or removals per unit activity (emission fac-
tors) [47]. Thus, coupled to the assessment of the size 
of the carbon stocks, there should be an assessment and 
assertion of the anthropogenic impact on corresponding  
reservoir (e.g., soils) within the national boundaries.

Terrestrial carbon accounting, particularly regard-
ing forest carbon and associated risks, is well developed 
(e.g. [24, 62]). In contrast, frameworks for assessment of 
anthropogenic impact on marine carbon stocks are not 
developed, and are beyond the scope of this paper. The 
current carbon accounting framework does not con-
sider human activities in the marine realm [53], despite 
the integral role of the oceans in the global carbon cycle 
and their vulnerability to climate change. Several human 
activities that impact carbon stocks on land and are 
included in terrestrial inventories [48] also take place in 
the shallow coastal oceans and may directly impact and 
potentially endanger coastal carbon stocks [42]. These 
include fishing and fish farming, as well as mining and 
excavation (dredging). There are also other more indirect 
consequences of human activity that may perturb marine 
carbon inventories [30], such as changes in fluvial sedi-
ment delivery to ocean [55], as well as climate change-
driven ocean warming, deoxygenation, and acidification 
[20]. Overall, we posit that, given (i) the magnitude of 
ocean carbon stocks, (ii) direct and indirect human influ-
ences on coastal environments and underlying sedi-
ments, and (iii) the precedent set by including wetlands 
in NGGI [28], there is a need to better constrain oceanic 
carbon stocks and to evaluate whether they should be 
included in national carbon inventories.

Significant information gaps exist with respect to car-
bon stocks in terrestrial and marine ecosystems, both in 
the context of C inventories in biomass, soil and sedi-
ments, as well as regarding potential disturbance, accu-
mulation or attrition of these stocks. It is challenging 
to develop global-scale assessments of organic matter 
in oceans, as they include inactive pools stored in sedi-
ments and fossil deposits and bioactive reservoirs such 
as dissolved CO2 and H2CO3, marine organisms that dif-
fer markedly in rates of turnover and hence influence on 
atmospheric C inventories [23]. At present, estimates of 
the amount and global distribution of organic carbon 
residing within ocean sediments present an extremely 
simplified, coarse picture of spatial variability in con-
tent, and especially carbon type. In particular, neritic and 
coastal environments—the nexus between land and deep 
ocean—are both particularly important in the context of 
both marine resources and carbon stocks, and highly vul-
nerable to change [7]. Yet these environments are under-
studied from the perspective of carbon stocks relative to 
their terrestrial counterparts.

Assessment of terrestrial carbon stocks has been an 
important research and legislative focus over several 
years. For example, the rapid carbon stock appraisal 
(RACSAL) method is used to estimate changes in carbon 
stock within and between land-cover classes of land use 
systems, which refer to vegetation types, human activities 
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and land-cover changes [21], so it focuses exclusively on 
terrestrial ecosystems. Ajani [1] raised the question of 
how carbon stocks in the oceans can be included in the 
environmental economical accounting. Regnier et  al. 
[46] suggested that carbon fluxes along the land–ocean 
aquatic continuum should be included in global carbon 
dioxide budgets. Ajani et al. [2] proposed a comprehen-
sive carbon accounting framework that includes stocks as 
well as flows for reservoirs, lands and activities continu-
ously over time. The framework differentiates carbon res-
ervoirs in the geosphere, biosphere and anthropogenic, 
but not the oceans. We suggest that assessment of car-
bon stocks of continental margin sediments within the 
Exclusive Economic Zones (EEZ) of maritime nations 
may provide a useful framework for greenhouse gas 
emissions accounting, and for developing strategies for 
coastal carbon management as part of planning long-
term responses to climate change. A preliminary study 
[38] estimated that carbon uptake within the EEZ of Aus-
tralia accounted for 30–40% of total Australian emissions 
in the 1990s.

In order to examine sediment C stocks in the context 
of those in soils on the adjacent land surface, and in rela-
tion to national boundaries, we define areal extents based 
on marine EEZs as we believe this may serve as a useful 
framework for assessment and discussion of invento-
ries in the context of climate change mitigation polices. 
Current international agreements on EEZs and climate 
change are summarized in the supplemental material. 
In the following section, we introduce a method for the 
estimation of organic carbon stock per unit area where 
the ocean is considered. We then describe the data used 
to estimate carbon stocks of sediments and soils for 
continental shelves and land areas for our primary test 
case Namibia, which was chosen based on the wealth of 
marine sediment carbon data that presently exists. We 
then extend this approach to two other test countries, 
Pakistan and the United Kingdom, which have con-
trasting characteristics in their marine and terrestrial 
domains. Finally, we compare estimated carbon stocks, 
present discussions and conclusions.

Methods
Estimation of carbon stocks of soils and marine sediments
Stocks and changes are statistical estimates, i.e., they are 
not accurate values and are frequently associated with 
uncertainties in measured variables [56]. An approxima-
tion of carbon stocks of a country is sufficient to give a 
general indication of their magnitude in this study. Our 
approach for estimating carbon stocks requires organic 
carbon (OC) concentrations (gC/kg) and bulk density 
(BD) measurements (g/cm3) of samples located within 
a given depth interval in soil or sediment. BD is used 

to convert organic carbon concentrations to mass per 
soil area at a chosen depth (Eq. 1). BD values vary with 
age, depth and state of compaction, where compaction 
increases BD, and different matrix types have different 
grain densities and packing geometries. In the present 
study, carbon stock is calculated as tonnes of carbon 
per hectare (t/ha), i.e., equivalent to kgC/m2, for the top 
0-10  cm depth interval of soils/sediments. OC data is 
described as a percentage (%) of the topsoil, e.g., 3.5  g 
carbon per 100 g soil or sediment, or 35 g per kg.

In the present investigation, we do not seek to scruti-
nize prior assessments of soil carbon stocks, and instead 
report values based on established sources (e.g., FAO). 
Our primary focus is to undertake preliminary assess-
ments of organic carbon stocks in sediments that fall 
within the EEZ of those nations chosen for this explora-
tory study.

Case studies: EEZ and organic carbon of Namibia, Pakistan 
and United Kingdom
Our study was carried out with data samples drawn from 
Namibia, where a strong coastal upwelling system prevails 
and a wealth of sediment data is available, in order to esti-
mate carbon stocks within its adjacent continental mar-
gin sediments and mineral soils. For comparison, we also 
estimated approximate carbon stocks for sediments and 
soils of Pakistan and the United Kingdom. These three 
countries ratified the Kyoto Protocol and have potential 
activities that could impact sediment carbon storage in 
their EEZs, if they were managed. These countries were 
selected also due to their contrasting EEZ-land ratios (see 
Fig.  2 and  Additional file  1: Table S1 that presents EEZ 
fraction of total area for all maritime nations), location in 
different continents, marked variations in terrestrial and 
marine ecosystems and corresponding carbon deposi-
tional (soil, sedimentary) environments. For simplicity we 
did not consider blue carbon (coastal wetlands) estimates 
here, but blue carbon stores in the coastal environment 
of the United Kingdom are potentially highly significant 
(e.g. [10]). Namibia and Pakistan are high OC burial sites 
due to high productivity from coastal upwelling and 
pronounced oxygen minimum zones. Their sediments 
are carbon-rich whereas their soils (mostly deserts) are 
relatively barren in carbon. Both countries do not have 
extensive coastal wetland systems, and serve as simplified 
“binary” systems where soil and marine sediment carbon 
stocks can be more readily compared.

Prospective data sources include the scientific litera-
ture, the geo-reference data library PANGAEA (http://

(1)

C stock (t/ha) = [TOC](%) × BD
(

g/cm3
)

× depth (cm)

http://www.pangaea.de
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www.pangaea.de), databases of international institutions, 
e.g., Harmonized World Soil Database (HWSD) [39], 
ISRIC-WISE [5], LUCAS [57] and Africa DB [32], FAO 
[15] and governmental institutions. The available data 
have different coverage, size and release dates. We rely 
primarily on official data that encompass the required 
parameters in a consistent way for all three countries.

Measures of OC and BD were chosen for the upper 
10  cm layer of soil and sediment, using two significant 
figures, whenever possible. When a subset of available 
data spanned a different depth range, the values were 
proportionally adjusted to the top 10  cm. Mean values 
of OC concentrations and BD were used as inputs in 
the estimation of carbon stocks. We utilized established 
sources and adopted established values for soil OC, in 
order to focus in estimates for sedimentary inventories 
of OC within EEZs of Namibia, Pakistan and the United 
Kingdom [61]. Detailed information about the EEZ, OC 
and BD of sediments and soils from the three maritime 
nations are given in the Additional file 1.

Results
Data Synthesis
The organic carbon and bulk density values of top soils 
and sediments from Namibia, Pakistan and the United 
Kingdom used in the estimation of carbon stocks are 
summarized, with data sources and statistics, in Table 1. 
For visualizing the sediment data, we mapped the con-
sidered samples within the EEZ of Namibia, Pakistan and 
United Kingdom, which are shown in Fig. 3.

Estimated carbon stocks
Marine continental margin ecosystems and associ-
ated depositional settings [33] are heterogeneous and, 
although there is typically a general relationship between 
organic carbon and water depth (deeper waters, lower 
carbon contents), carbon contents of underlying marine 
sediments vary greatly. However, measurements of 
organic carbon in sediments, especially together with 
bulk density along continental margins, remain surpris-
ingly scarce in the scientific literature (e.g., [50]) and the 
number of measurements of carbon and other biogeo-
chemical data are generally too limited to provide suf-
ficient coverage for robust estimates over large areas. 
Therefore, the carbon stocks estimated in this study 
carry large uncertainties, including from the approach 
of adopting a statistical mean to represent the collected 
data, which may artificially bias calculated values. For 
example, in locations characterized by little available data 
(e.g., distal regions of the Namibian EEZ) the mean value 
could be strongly biased or thus unrepresentative of EEZ-
wide values. In addition, the estimated carbon stocks of 
Pakistan and the United Kingdom are not as robust as 
the stocks of Namibia, because there are less sediment 
data available for Pakistan and the United Kingdom 
than for Namibia. Thus, rather than providing the most 
robust estimates for sediment and soil carbon stocks, 
the primary goal of this preliminary assessment is to 
raise the fundamental question concerning the potential 
integration of marine sediments into carbon stocks and 
inventories. We consider these crude approximations as 

Fig. 2  EEZ fraction of total (land plus EEZ) area of nations, considering data and situation in 2016 (see Additional file 1: Table S1)

http://www.pangaea.de
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sufficient for our purpose, while at the same time as justi-
fication for future efforts to acquire more sediment data.

Carbon stocks in the sediments within the correspond-
ing EEZs of Namibia, Pakistan and the United Kingdom 
and in their soils were estimated for the depth interval 
0–10 cm depth. Approximated values of carbon stocks in 
the three countries are summarized in Table 2.

Comparing estimates of carbon stocks in continental 
margin sediments to carbon stocks in soils reveals that 
organic carbon in Namibian sediments corresponds to 
186% of carbon held in its soil. The total maritime zone of 
Pakistan represents more than 20% of its land area, and 
sedimentary carbon stocks correspond to almost 40% of 
the amount of organic carbon in soils of Pakistan. In the 
United Kingdom, carbon in sediments corresponds to 
53% of its soil carbon stock (see Table 2). The proportion 
of land and EEZ areas for the three countries is shown in 
Fig.  4a, while the resulting approximated carbon stocks 
of soils and sediments are shown in Fig. 4b.

Discussion
Although the EEZ estimates carry substantial uncer-
tainty, being based on relatively sparse OC and/or BD 
data for marine sediments, they indicate that large stocks 
of carbon reside in sediments within the EEZs of the 
three countries examined here. More robust estimates of 
marine sediment carbon stocks could be derived from (1) 
additional measurements; (2) use of kriging techniques 

for more accurate interpolation of data to account for 
spatial gradients (e.g. [29]); and (3) incorporation of 
diagenetic models and global observations (e.g. [37]) to 
better define general trends in OC attenuation with sedi-
ment depth.

Nevertheless, given the magnitude of sedimentary 
OC stocks relative to corresponding soil carbon stocks 
revealed by the present investigation, the question arises 
as to whether land-proximal ocean sediments underlying 
territorial waters should be considered as part of national 
carbon accounting and potential GHG mitigation pro-
jects and subject to management against human-induced 
disturbance. Although the nature of anthropogenic inter-
actions with coastal ocean ecosystems is fundamentally 
different from that on land, there is undeniable impact 
of humans over the entire globe, and myriad ways that 
humans directly and indirectly impact the ocean carbon 
cycle. In the most recent IPCC report [28], the carbon 
stock inventory framework focuses on wet and drained 
soils as well as managed wetlands, which share similarities 
of processes at the land-sea interface [9]. This issue may be 
especially pertinent for nations and associated territories 
with large EEZ-to-land area ratios, where existing sedi-
ment carbon stocks could have a large impact on invento-
ries. For countries with upwelling zones and relative low 
soil carbon stocks, such as Namibia, marine sediment 
stocks can be equally relevant. Carbon stocks of nations 
such as Chile, where its EEZ accounts for a major fraction 

Table 1  Overview of OC and BD data statistics for sediments and soils from Namibia, Pakistan and the United Kingdom

Namibia Pakistan United Kingdom

Sediment organic carbon

 Sample depth (cm) 0–30 [26] 0–10 [49, 54], 0–2 [11, 12] 0–3 [18, 51], 0–1 [13, 19, 34]

 OCaverage (%) 3.72 1.72 0.78

 Number of samples 968 109 102

 Min. value 0.1 0.34 0.03

 Max. value 22.3 4 6

Soil Organic Carbon

 Sample depth (cm) 0–10 [15] 0–10 [15] 0–10 [15]

 OCaverage (%) 0.34 0.86 6.98

Sediment Bulk Density

 Sample depth (cm) 0–10 (inferred) [16] 0–2 [11, 14] 0–15 [8]

 Bulk densityaverage (kg/dm3) 1.17 0.82 1.13

 Number of samples 16 24 137

 Max. value n.a. 1.06 1.5

Soil Bulk Density

 Sample depth (cm) 0–30 [32] 0–50 [25] 0–15 [60]

 Bulk densityaverage (kg/dm3) 1.56 1.5 0.73

 Number of samples 17 Raster data 1385

 Min. value 1.25 1.3 0.15

 Max. value 1.76 2.6 1.30
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(73%; Additional file 1: Table S1) of its overall territory and 
that hosts extensive fjords which are recognized as glob-
ally significant hotspots of OC burial [52], may indeed be 
dominated by carbon residing in the marine realm. Even 
for countries with relatively low EEZ-land area ratios such 
as Pakistan (26%), we find that sediment stocks can consti-
tute a significant fraction of total carbon stocks.

Coastal areas offer a wealth of economically valu-
able resources, provide diverse ecosystem services, and 
have in general been locations of rapid development and 
intensive land use. Coastal systems are also very sensitive 
to change [7], particularly at the land–ocean interface, 

and receive enormous quantities of terrigenous materi-
als, support important and yet fragile ecosystems such as 
mangroves, marshes and coral reefs, and both sequester 
and export large amounts of carbon [59].

In addition to the magnitude of carbon stocks, the rate 
of change (accumulation, attrition) of these stocks is of 
key concern with respect to their ability to ameliorate or 
exacerbate changes in atmospheric carbon dioxide levels, 
which in turn relates to sediment accumulation/soil for-
mation rates. The rate of carbon build-up in soils versus 
those in continental margin sediments are of a similar 
order: it takes up to 1000 years for around 2.5 cm (1 inch) 
of topsoil to develop [58], while sediment accumulation 
rates on continental shelves and upper slopes typically 
range from a few cm to several tens of cm per 1000 years 
[37]. Organic carbon is generally highest in these upper 
soil and sediment layers, and support rich and diverse 
biological communities. Losses of soil (carbon) through 
enhanced erosion and other processes are the subject 
of considerable concern, and discussed in the context 
of diminishing soil fertility [44]. In contrast, potential 
changes to sediment carbon stocks are much less well 
studied or understood, but may also be significant in the 
face of exploitation of marine resources as well as chang-
ing fluxes from land and changing ocean conditions 
(deoxygenation, warming, acidification), may in turn 
influence marine productivity and carbon burial [30].

Given that an increasing number of countries are imple-
menting policies to mitigate climate change, this study 
raises the question of whether a more comprehensive 
accounting of carbon stocks that includes human activities 
in both terrestrial and oceanic realms is necessary to ensure 
environmental and ecological integrity in both terrestrial 
and marine domains of the earth system. A major challenge 
lies in the integration of political and economic principles 
with those of ecosystem conservation for effective steward-
ship of resources of coastal margins, especially within EEZs 
[33]. Overall, when we evaluate the implications of extend-
ing existing carbon emission trade markets to include the 
carbon sequestration in the ocean for maritime nations, the 
future economic ramifications may be considerable, espe-
cially for nations with high EEZ-land ratios and of those 
that host rich deposits of marine sedimentary carbon. From 
a global perspective, the construction of databases of oce-
anic sediment carbon concentrations and associated physi-
cal properties would be essential for better understanding 
and assessing the potential oceanic carbon sequestration, 
as well as potential threats of carbon loss.

Conclusions
We compared approximated organic carbon stocks of 
adjacent continental margin sediments within corre-
sponding Exclusive Economic Zones (EEZs) with those in 

Fig. 3  Sediment samples within the EEZ of a Namibia [26], b Pakistan 
[11, 12, 49, 54] and c United Kingdom [13, 18, 19, 34, 51]
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soils for three maritime countries. This initial compari-
son reveals that sediments of some maritime nations may 
hold carbon stocks that approach or exceed those of cor-
responding soils. The magnitude of estimated ocean car-
bon stocks brings into focus questions concerning their 
importance to and impact on current GHG reporting 
activities.

In addition to gauging carbon stocks in continental 
versus oceanic reservoirs, assessing the transfer of car-
bon between terrestrial and marine realms is crucial 
for advancing knowledge of biogeochemical cycles and 
on ecosystem functioning, with both issues of potential 

relevance to design of future carbon accounting of mari-
time nations. Taking into account carbon sequestration 
and release in both terrestrial as well as the aquatic envi-
ronments is pivotal for development of comprehensive 
climate mitigation strategies [6].

From both a practical and political perspective, the 
premise of using EEZ of maritime nations as a means to 
define marine sediment carbon stocks may be a fair and 
legitimate approach. Quantifying the potential for carbon 
sequestration, or carbon release, from coastal regions 
may provide motivation for implementation of poli-
cies in developed and especially in developing countries 
that combat ecosystem degradation, whilst promoting a 
more sustainable use and conservation of their natural 
resources. Thus, appropriate carbon stock assessment of 
maritime nations might positively affect coastal manage-
ment strategies and promote protection of coastal eco-
systems. In view of the projected growth of the global 
carbon trade market, the quantification of carbon seques-
tration of maritime nations may thus grow in economic 
importance, as in the future there might be ways of get-
ting carbon credits when marine activities were stopped.

Significant conceptual and practical challenges are 
associated with development of carbon asset accounts. 
This study does not attempt to provide a solution to such 
challenges, or to provide advice or recommendations 
concerning specific implementation strategies. Instead, 
our contribution is to show the relevance of marine sedi-
ment carbon measures, which could have an impact on 
the management and accounting of human activities in 
the context of GHG inventories. Our exploratory study 
highlights the importance of the availability of exten-
sive and reliable data in order to enhance the scientific 
and technical basis for further discussions on the car-
bon stocks in both oceanic and terrestrial realms. Our 
further work includes collecting geochemical data of 
marine sediments from the scientific literature to estab-
lish a database, analysis and use of appropriate interpo-
lation methods to gain information for ocean regions 

Table 2  Sediment and soil data of Namibia, Pakistan and the United Kingdom with their estimated carbon stocks

Namibia Pakistan United Kingdom

EEZ Land EEZ Land EEZ Land

Sediment Soil Sediment Soil Sediment Soil

Organic carbon (%) 1.24 0.34 1.72 0.86 0.78 6.98

Bulk density (g/cm3) 1.17 1.56 0.82 1.50 1.13 0.73

Depth (cm) 10 10 10 10 10 10

Carbon stock (t/ha) 14.48 5.30 14.14 12.90 8.73 51.05

Area (ha) 56,010,100 82,329,000 27,225,500 77,088,000 75,663,900 24,193,000

Total carbon stock (tons) 811 × 106 437 × 106 385 × 106 994 × 106 661 × 106 124 × 107

Sediment carbon stock relative to soil carbon stock 186% 39% 53%

a

b

Fig. 4  a EEZ and land surface area comparison; b approximated car-
bon stocks of sediment and soil organic carbon for Namibia, Pakistan 
and United Kingdom
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with sparse sediment data available, as well as the estima-
tion and comparison of carbon stocks of more maritime 
nations. Such comprehensive data measurements and 
collection of relevant data are of great value for improved 
understanding of the global carbon cycle, for further 
assessment of human activities impacting carbon stocks 
of coastal areas, and ultimately for the development of 
informed policies supporting decisions concerning the 
future stewardship of our planet.
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