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Abstract

Background: The high spatio-temporal variability of aboveground biomass (AGB) in tropical forests is a large
source of uncertainty in forest carbon stock estimation. Due to their spatial distribution and sampling intensity,
pre-felling inventories are a potential source of ground level data that could help reduce this uncertainty at larger
spatial scales. Further, exploring the factors known to influence tropical forest biomass, such as wood density and
large tree density, will improve our knowledge of biomass distribution across tropical regions. Here, we evaluate (1)
the variability of wood density and (2) the variability of AGB across five ecosystems of Costa Rica.

Results: Using forest management (pre-felling) inventories we found that, of the regions studied, Huetar Norte had

values.

Degradation) program.

the highest mean wood density of trees with a diameter at breast height (DBH) greater than or equal to 30 cm,
0.623 +£0.182 g cm > (mean + standard deviation). Although the greatest wood density was observed in Huetar
Norte, the highest mean estimated AGB (EAGB) of trees with a DBH greater than or equal to 30 cm was observed
in Osa peninsula (17347 +60.23 Mg ha™'). The density of large trees explained approximately 50% of EAGB
variability across the five ecosystems studied. Comparing our study’s EAGB to published estimates reveals that, in
the regions of Costa Rica where AGB has been previously sampled, our forest management data produced similar

Conclusions: This study presents the most spatially rich analysis of ground level AGB data in Costa Rica to date.
Using forest management data, we found that EAGB within and among five Costa Rican ecosystems is highly
variable. Combining commercial logging inventories with ecological plots will provide a more representative
ground level dataset for the calibration of the models and remotely sensed data used to EAGB at regional and
national scales. Additionally, because the non-protected areas of the tropics offer the greatest opportunity to
reduce rates of deforestation and forest degradation, logging inventories offer a promising source of data to
support mechanisms such as the United Nations REDD + (Reducing Emissions from Tropical Deforestation and
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Introduction

Tropical forests play a vital role in regulating the Earth’s
climate through the processes of evapotranspiration and
CO, uptake. While these areas represent only 7% of glo-
bal land cover [1], they store roughly 55% of the world’s
forest carbon stock [2]. Tropical forests are among the
most carbon dense ecosystems (242 Mg C ha™') in the
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world [2]. Approximately 56% (193-223 Pg C) of their
carbon is stored in the form of biomass alone [2-4]. Dur-
ing the 1990s and early 2000s, a substantial portion of
this carbon stock suffered due to deforestation, which
reached an estimated rate of 12.9.10° ha yr’1 [5]. The
deforestation and degradation of tropical forests is also
the second largest source of anthropogenic CO, emis-
sions [6], releasing carbon at an estimated net rate of 1.0
Pg yr ' between 2000 and 2010 [4].

The United Nations REDD + (Reducing Emissions
from Deforestation and Forest Degradation) program is
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an innovative global mechanism that aims to provide
monetary benefits to developing tropical countries that
can show an increase in forest carbon stocks from an
established national baseline [7]. In the past decade, the
number of studies seeking to improve the methods and
data used to accurately estimate the spatio-temporal
variation of tropical forest carbon stocks, supporting
REDD+, have substantially increased [8]. Today, much
of this research relies upon the relationship between
aboveground biomass (AGB) and forest carbon. Despite
recent efforts to estimate AGB in the tropics (and in turn
carbon) (refer to [3,4,9]), a large degree of uncertainty in
the spatial distribution and accuracy of these estimates re-
mains [10,11]. One of the key factors in reducing uncer-
tainty in AGB estimates is using a spatial scale fine
enough to capture variability across the landscape.

Remote sensing and ground data (i.e. forest inventor-
ies) are two techniques that have been proposed for the
production of reliable carbon estimates (e.g. [12]). Re-
mote sensing is an advantageous approach as it can
provide wall-to- wall coverage of an entire country. Re-
motely sensed data, however, must be calibrated/validated
with ground truth measurements [13,14]. Additionally, re-
mote sensing instruments may not be sensitive enough to
detect the variability of biomass within and across the
high-density forest stands [14,15] typical of tropical moist
and tropical wet ecosystems. Ground data collected for
scientific research (ecological data), is the most common
data source employed to estimate AGB due to its high
level of detail and systematic nature. Nevertheless, eco-
logical data has its own weaknesses when estimating AGB
such as: (1) the standard plot size of 0.1 ha [16] is too
small to capture AGB variability [17]; (2) plots are some-
times biased towards high density (ideal) forest locations
[16]; and (3) plots cover only a small fraction of a country’s
total forested area [18]. Commercial logging inventories
may provide a solution to these problems due to their
spatial distribution and sampling intensity [18,19]. Logging
inventories are common to tropical countries and repre-
sent a large source of data on forest structure and com-
position [20]. With their success in measuring diversity on
large spatial scales [21], determining ecological factors that
influence forest structure [19], and estimating emission
factors under REDD + [18], logging inventories may pro-
vide a suitable source of forest data, complementing eco-
logical datasets and helping to estimate baseline carbon
stocks.

In Costa Rica, selective logging inventories or pre-
felling inventories (we use this terminology in the paper
indistinctively) are developed under a Natural Forest
Management Plan (NFMP) framework [22]. NFMP data
is available for most of the country’s ecosystems below
an elevation of 300 meters, accurately representing the
heterogeneity of the Costa Rica’s lowland landscape. The
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country is divided into 11 conservation areas (CAs) [23],
each encompassing distinct forest ecosystems. Despite
the country’s small size (approximately 51 000 km2), it
contains a rich diversity of tropical ecosystems ranging
from dry to wet forests.

A NFMP is required before the forest stand of a pri-
vately owned property can be selectively logged. In order
to be legally approved to log, the owner must hire a certi-
fied forester to conduct an inventory and census of the
forest stand [22]. In an inventory, every tree with a diam-
eter at breast height (DBH) equal to or greater than 30 cm
is measured and identified in plots of 0.3 ha. For the same
forest stand, a census is carried out to measure and iden-
tify every tree with a DBH equal to or greater than 60 cm.
For this study we use a standardized relational geodatabase
encompassing Costa Rican pre-felling inventory data [24].

The main objective of this study is to assess to vari-
ability of wood density and estimated AGB across five
ecosystems in Costa Rica. Wood density is an important
predictive variable when estimating AGB [16,25-27]. As
wood density is known to vary among different forest
communities [28-31], this variable is also critical to
studying the differences in AGB across a landscape. Des-
pite these findings, wood density has yet to be studied or
implemented when estimating AGB across Costa Rica.
Further, although our analysis is based on medium to
large trees (30 and 60 cm DBH), studies have shown that
large trees constitute a disproportionate fraction of AGB
and drive the variations in biomass across the tropics
[32]. Therefore, despite a lack of tree data below the
30 cm DBH range, patterns of AGB variability may be
discernible from our NFMP dataset. A standard method
to estimate a tree’s biomass employs an allometric equa-
tion to relate measurements on DBH to units of biomass.
The choice of allometric model is critical and should be
based upon both the aim of the study [28] and the charac-
teristics of the dataset [33]. Allometric models should be
representative of the DBH range and ecosystem being
studied [33]. Additionally, to allow for regional scale com-
parisons, AGB estimates must be based on a consistent re-
gression approach to avoid the confounding of results by
variations inherent in different models [28].

In recent years, the pantropical allometric models de-
veloped by Chave et al. [25] have been widely applied
across the globe to estimate AGB. In Costa Rica, how-
ever, numerous studies of biomass have employed
Brown’s [34] equation for wet forests (e.g. [17,35,36]) as
it was calibrated with data collected at Costa Rica’s La
Selva Biological Station. For this study, we believe
Brown’s [34] equation has many disadvantages when
compared to those developed by Chave et al. [25]. These
shortcomings include: (1) the representation of a smaller
DBH range; (2) the development of the equation from a
smaller sample size; (3) the limited application of the
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equation outside of Costa Rica (making the comparison
of AGB estimates with other countries/studies more
complex); and (4) the absence of wood density as a par-
ameter which is an aspect of forest structure that varies
significantly at regional scales [28,30].

With the use of allometric models [25], the Global
Wood Density database [30,37], the pre-felling inventory
database [24], and national measurements of wood density
found in the scientific literature (e.g. [38]), this study will
first, evaluate the variability in wood density and second,
assess the variability in estimated AGB across five ecosys-
tems in Costa Rica and different sampling protocols.
Specifically, our study uses a NFMP database for five con-
servation areas to address the following questions:

(1)What are the patterns of wood density variability at
the CA-level and between data produced by the
census and inventory (i.e. sampling protocols)?;

(2)What is the variability of estimated AGB within and
among CAs?;

(3)Do estimated AGB values differ between the two
sampling protocols?

(4)What is the uncertainty associated with AGB
estimated using natural forest management data?

As ground level data from pre- felling inventories
covers a greater area than ecological plots within the five
ecosystems being studied, our study will better capture
the spatial heterogeneity of wood density and estimated
AGB across the landscape. Through this analysis, we can
enhance our understanding of the spatial distribution of
estimated AGB and, in combination with both ecological
and remotely sensed data, more reliably map and esti-
mate national forest carbon stocks.

Methods

Study area and data

This study used a database of NFMPs from five conser-
vation areas: ACLA-C (Caribbean La Amistad Conserva-
tion Area), ACAHN (Arenal Huetar Norte Conservation
Area), ACTO (Tortuguero Conservation Area), ACCVC
(Central Volcanic Conservation Area), and ACOSA (Osa
Conservation Area) (Figure 1). Greater detail about the
NEMP database and the taxonomic, wood density,
spatial, and tree measurement data used in this study is
provided in Svob et al. [24]. The differences found be-
tween the historical patterns of natural forest manage-
ment of the five conservation areas, such as the number
of NFMPs per conservation area, forest fragmentation
statistics specific to each conservation area, and descriptive
statistics based on the NFMPs collected in each conserva-
tion area, are given in Arroyo-Mora et al. [39]. The five
conservation areas considered in this study cover the
country’s Atlantic lowland forests, northern lowlands, and
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central and south Pacific forests, encompassing the re-
gions where selective logging has been most heavily prac-
ticed. All five conservation areas include natural forest
management plans that fall within the tropical wet (4000-
8000 mm precipitation yr ") and/or rain (>8000 mm pre-
cipitation yr™') forest lifezones (defined by Holdridge
[40]). Only ACLA-C and ACAHN include natural forest
management plans that represent the tropical moist
(2000-4000 mm precipitation yr~*) forest lifezone. The
management plans sampled largely represent a lowland
ecosystem (0-500 m a.s.l.) although a small subset of the
data falls within the transition zone from lowland to pre-
montane (500-1500 m a.s.l.) forest. The forest type of the
natural forest management plans was classified using the
Life Zone System Map from the Atlas Costa Rica 2008
[41]. All management plans were carried out in primary
forest (old growth).

The variability of wood specific gravity among CAs and
sampling protocols

The variability of wood density across Costa Rica can be
illustrated by differences found in wood density between
conservation areas, NFMPs, and the different sampling
protocols (census and inventory). The greater the vari-
ability in wood density, the more important it becomes
to include this parameter when producing AGB esti-
mates comparable at a landscape-scale. To carry out the
analysis, we excluded data from NFMPs with less than
80% of their trees identified to the species or genus level.
The wood density value for each tree in a NFMP was se-
lected in decreasing order of preference from (1) a
species-level average, (2) a genus-level average, and (3) a
NEMP-level average. Mean NFMP wood density was cal-
culated separately for each census and inventory. Wood
density values were extracted from the NFMP database
and are described in greater detail in Svob et al. [24].
These NFMP averages were determined by summing the
wood density of all stems with a species or genus level
value. Differences between the wood density of the con-
servation areas and the two different sampling protocols
were tested with a one-way ANOVA and a multiple
comparisons procedure using the grouping variables
conservation area and sampling protocol. All conserva-
tion area level statistical analyses only included tree data
that met the aforementioned NFMP taxonomic identifi-
cation conditions. All of the analyses were carried out in
MATLAB version R2013b (The MathWorks Inc., Natick,
MA, USA) unless otherwise specified.

Estimating tree-level AGB

In this study, we denote estimated AGB as estimated
aboveground biomass (EAGB), following Clark and Kellner
[10]. To determine EAGB per tree, Chave et al.’s [25] allo-
metric models for wet and moist forests were applied. The
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Figure 1 Map of the EAGB (Mg ha™") of trees with a DBH>30 cm per NFMP. (A) A view of the distribution NFMPs collected in ACAHN,
ACCVC, and ACTO. (B) A view of NFMPs collected in ACOSA. Forest cover source: FONAFIFO 2005 Costa Rica forest cover assessment. Protected
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EAGB of wet and rain forest lifezones was estimated by
applying the wet forest equation:

EAGB = p x exp(-1.239 + 1.980 x In(DBH) + 0.207
x In(DBH)*-0.0281 x In(DBH)?

(1)

Correspondingly, the EAGB of forests within the trop-

ical moist lifezones was estimated using the moist forest
equation:

EAGB = p x exp(-1.499 + 2.148 x In(DBH) + 0.207
x In(DBH)*-0.0281 x In(DBH)?
(2)

where p is wood density in g cm™>, DBH is in cm, and
EAGB is given in kg tree”'. Wood density values were
selected in decreasing order of preference from (1) a

species-level average, (2) a genus-level average, (3) a
NFMP-level average, and (4) a conservation area level
average. A large portion of the variation in wood density
is captured at the genus-level, making mean genus wood
density the second best option when estimating EAGB
[28,30]. We use the mean NFMP wood density for a tree
that was present in a NFMP with at least 80% of its trees
identified to the genus or species level and was missing
a corresponding species or genus level wood density. For
a tree that was reported in a NFMP with less than 80%
of its trees identified to the species or genus level and
lacked wood density information, we used a conserva-
tion area level mean wood density.

Estimating census and inventory AGB
To calculate EAGB per unit area of a census, the EAGB
values per tree with a DBH greater than or equal to
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60 cm were summed and then divided by the product-
ive area of the NFMP’s forest stand. The productive
area is the total area of the forest stand sampled by a
census. To calculate EAGB per unit area of an inven-
tory, the EAGB values per tree with a DBH greater
than or equal to 30 cm were summed across each plot
and then divided by 0.3 ha (area of the plot). Finally,
EAGB was averaged across all plots within a given
NEMP.

An outlier analysis of all of the resulting EAGB values
was performed, pinpointing cases where EAGB did not
fall between the 1.5 lower and 1.5 upper interquartile
range. All outliers were cross-checked with the original
hardcopy versions of the NEMPs. If the values were the
result of uncorrectable errors present in the original
NEMPs, they were excluded from any further analyses.
To assess the amount of spatial autocorrelation among
the NFMPs sampled, we evaluated the distribution of
Moran’s I with a spatial correlogram as applied in SAM
version 4.0. Spatial correlograms indicate the correlation
between pairs of spatial observations as the distance be-
tween them is increased [42]. As the values of Moran’s I
were relatively small, ranging between 0.154 and -0.209,
we did not include any additional methodological ap-
proaches to account for spatial autocorrelation in later
analyses.

Comparing the EAGB of the sampling protocols and CAs
Differences in EAGB between conservation areas and
between sampling protocols (tree census vs tree inven-
tory) were tested with a one-way ANOVA and a multiple
comparisons procedure using conservation area and
sampling protocol as the grouping variables. We also
evaluated differences in the density of large trees (DBH 2
70 cm) between CAs and sampling protocols, as the re-
cent study of Slik et al. [32] found that large trees ex-
plained up to 70% of the variation in EAGB across the
tropics.

In order to compare the data captured by inventories
and censuses more directly, EAGB was recalculated for
each inventory including only the trees that would be
sampled during a census (DBH>60 cm). To assess
whether there was a significant difference in this data, a
paired ¢-test was applied. As multiple NFMPs only in-
cluded census data (DBH > 60 c¢m), we attempted to de-
velop a model to estimate the EAGB of stems with a
DBH >30 ¢cm and a DBH < 60 cm. We attempted to de-
velop a model by relating, for each pre-felling inventory,
the EAGB of trees with a DBH > 60 cm to the EAGB of
trees with a DBH > 30 cm and a DBH < 60 cm. We com-
pared the ability of a number of regression models (lin-
ear, exponential, logistic, and polynomial) to capture a
relationship between EAGB (DBH >60 c¢cm) and EAGB
(60 cm < DBH < 30 cm).
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Evaluating the uncertainty of AGB estimates
Uncertainty can be introduced to a tree’s EAGB through
DBH measurement errors (cMDBH), wood density
measurement errors (cMp), and errors inherent in the
allometric model itself (0A) [33]. In this study, we evalu-
ated the uncertainty of tree-level AGB estimates intro-
duced by error in wood density measurements (cMp) at
the four following levels: species (cMp:sp), genus (cMp:
gen), NEMP (cMp:NFMP), and conservation area (cMp:
CA). We hypothesized that the measurement error will
increase as the source of wood density increases in taxo-
nomic scale. To evaluate errors introduced by the allo-
metric models themselves, we reiterated the calculation
of a tree’s EAGB while varying ¢ (Equations 3 and 4)
based on the residual standard error (RSE). Monte Carlo
simulations were run in MATLAB version R2013b (The
MathWorks Inc., Natick, MA, USA) to simulate the pa-
rameters (wood density and residual standard error of
the allometric model (g)) and determine both wood
density measurement error and allometric model error.
As wood density values vary at the tree level within
NFMPs, conservation areas, species, and genera [30], using
mean wood density values to estimate AGB will introduce
measurement error. Further, in forest management inven-
tories, trees are identified in the field by common names
and later related to scientific names. This methodology
can result in the misidentification of species [43] and
therefore, additional wood density measurement errors.
We evaluate wood density errors under the assumption
that the errors have a centered normal distribution. The
distribution of errors for each tree uses the calculated
mean and standard deviation of the appropriate species,
genus, NEMDP, or conservation area. We randomly selected
10 000 trees (5 000 from the census and 5 000 from the in-
ventory) to evaluate the uncertainty at each level. For each
tree, we calculated EAGB 1 000 times while varying the
wood density parameter by a random normal distribution.
As allometric models are typically created using a re-
gression on log-transformed variables, there is inherent
error built in them. This uncertainty is the result of trees
departing from the exact allometry described by the
models [33]. Errors in tree AGB estimates due to the
allometric model were assessed by varying & (Equation 3
and 4) following the methodology of Maniatis et al. [18].
We assumed that € followed a centered normal distribu-
tion with a mean of 0 and a standard deviation of 0.356
(residual standard error reported for the models in
Chave et al. [25]). € was incorporated into the EAGB
equations using the same structure as Maniatis et al.
[18]. For wet forests the model became:

EAGB = p x exp(-1.302 + 1.980 x In(DBH) + 0.207
x In(DBH)*-0.0281 x In(DBH)?) x exp(e)
(3)
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while for moist forests is became:

EAGB = p x exp(-1.562 + 2.148 x In(DBH) + 0.207
x In(DBH)*-0.0281 x In(DBH)?) x exp(e)

(4)

Following the previously described methodology, 10
000 were randomly selected from the census and inven-
tory and, for each tree, EAGB was calculated 1000 times
while varying the € parameter by a random normal
distribution.

To evaluate the uncertainty of EAGB at the census
and inventory levels, EAGB was simulated 1 000 times
for every tree of 100 randomly selected censuses and
100 randomly selected inventories. For each simulation,
we varied both wood density and & simultaneously fol-
lowing the above sampling methodology. Simulated
EAGB values were compared, revealing the uncertainty
and precision of the reported EAGB values.

Results

The variability of wood density

Among all conservation areas, ACLA-C had a significantly
lower wood density (inventory: 0.528 + 0.161 g cm™>, p <
0.01; census: 0.530+0.1520 g cm™>, p<0.01) (mean +
standard deviation unless otherwise specified) (Table 1).
No difference in wood density was detected in the census
data among ACOSA, ACCVC, and ACAHN. Based on
the inventory data set (either DBH > 30 ¢cm or only includ-
ing DBH > 60 cm), however, ACAHN had a significantly
higher wood density than the other four conservation
areas (0.623+0.182 g cm ™ and 0.636 + 0.197 g cm > re-
spectively). The greater mean wood density found in
ACAHN is due to a larger fraction of trees within the 0.8
t0 0.9 g cm™ range (Figures 2A and 2B). This is a result of
the high density of the Dialium guianensis in ACAHN
[24]. In ACCVC and ACTO, a prominent peak in the per-
cent of stems within the 0.6 to 0.7 g cm ™ range can be at-
tributed to the high relative frequency of Pentaclethra
macroloba. The range of wood density values sampled was

Table 1 Wood density (g cm ~3) per conservation area
and sampling protocol

Wood Density (g cm™)

(Mean * Std)
CA Inventory Inventory Census

(DBH>30 cm) (DBH=60 cm) (DBH=60 cm)
ACAHN 0623 +0.182 0636 +0.197 0.602+0.189
ACCVC 0602 +0.144 0579+0.170 0.600+0.143
ACLA-C 0.528 £0.161 05790171 0.530+0.152
ACOSA 0574 +0.165 0579+0.169 0.604 +0.166
ACTO 0.565 +0.143 0578 £0.169 0.564 +0.140
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similar in all five conservation areas. Additionally, in all
conservation areas, the mean wood density sampled by
the inventory and that sampled by the census did not sig-
nificantly differ.

The variability of EAGB

Based on inventory data, the estimated AGB (EAGB)
(DBH = 30 c¢cm) found in ACAHN and ACCVC was sig-
nificantly lower than that in ACLA-C and ACOSA (p <
0.05) (Figure 3 and Table 2). While ACAHN, ACCVC,
ACTO, and ACLA-C all shared similar inventory EAGB
values with at least one other conservation area, only in
ACOSA did EAGB differ significantly from all other
CAs. In fact, ACOSA presented the highest mean inven-
tory EAGB (173.47 + 60.23 Mg ha™*, p < 0.05).

Based on census data, ACAHN had the lowest EAGB,
significantly differing from ACLA-C, ACTO, and ACOSA
(p < 0.05) (Figure 4 and Table 2). Simply ranking conserva-
tion areas in decreasing order of mean EAGB (Table 2),
reveals that the overall trends are similar between sam-
pling protocols. For example, ACAHN had one of the low-
est mean EAGB values in both the census and inventory
data (39.77 +23.48 Mg ha™' and 136.63 + 60.08 Mg ha ™).
A paired t-test comparing the EAGB of trees with a
DBH =60 ¢cm from the census and inventory detected a
significant difference between the two sampling protocols
(n=366, p<0.01). Across all five conservation areas, in-
ventories generally produced higher EAGB values than
censuses of the same forest stand (Figure 5).

Our attempt to relate the EAGB of trees with a DBH >
60 cm to the EAGB of trees with a DBH>30 cm
but <60 cm did not indicate a strong relationship between
the two variables (e.g. linear regression results adj R*:
0.043, F=19.9, p<0.01, n=422). Although we were un-
able to find a relationship between the two variables, this
analysis demonstrates the amount of variance in the struc-
ture of Costa Rican forests (Figure 6A).

The density of large trees (DBH >70 cm)

We found a significant correlation between the densities
of large trees (DBH =70 ¢cm) and EAGB (DBH =30 cm)
(correlation coefficient: 0.728, n: 422, adj R* 0.533, F =
470.6, p < 0.01) (Figure 6B). Our results show that 53.3%
of the variation in EAGB across five Costa Rican conser-
vation areas was explained by the density of large trees.
Additionally, trends in the density of large trees per con-
servation area match trends in EAGB per conservation
area. For example, in ACOSA, the EAGB and density of
large trees (16.48 + 8.08 tree ha™') were both significantly
higher than in the four other CAs (Table 1). Further-
more, the two conservation areas with the lowest mean
EAGB (ACAHN and ACCVC) also had the lowest mean
density of large trees (6.20 + 3.54 and 6.73 + 4.00 tree ha '
respectively). Across all conservation areas, a pairwise
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Figure 2 The distribution of wood density within five CAs. The percentage of trees that occupy consecutive 0.1 g cm > wood density bins in
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t-test indicates a significantly higher number of large
trees per hectare was recorded by the inventory than
the census of the same forest stand (n =366, p <0.01).

Uncertainty analysis

At the tree-level, when moving from species wood dens-
ity (oMp:sp=0.110 (EAGB)) to genus wood density
(oMp:gen = 0.151 (EAGB)), we found a 4% increase in
the uncertainty of EAGB due to wood density measure-
ment error (cMp). We found that an even greater
amount of EAGB uncertainty resulted from using NFMP
(oMp:NFMP =0.271 (EAGB)) or conservation area
(ocMp:CA =0.281 (EAGB)) level wood density values.
The uncertainty due to allometric model error (cA) for
each tree was 0.371 (EAGB). Hence, based on our
Monte Carlo uncertainty analysis, the uncertainty of a
tree’s EAGB can range from 48% to 65% of its EAGB de-
pending on the level of wood density used.

At the stand level, random measurement and allomet-
ric model errors counteract one another, decreasing
their impact on EAGB uncertainty and increasing the
overall precision of EAGB (Figure 7). The uncertainty of
EAGB from a NFMP’s inventory ranged from 0.021
(EAGB) to 0.171 (EAGB). At the census level, the uncer-
tainty of EAGB for each NFMP ranged from 0.011
(EAGB) to 0.101 (EAGB).

We observed that the uncertainty of a given NEMP’s
EAGB was principally dependent on the number of trees
sampled and the total area sampled (Figure 7). In Figure 7,
we also observed that the uncertainty of EAGB decreases
as the number of trees (Figure 7A) and the total area sam-
pled increases (Figure 7B and 7C) following a power
function.

Discussion

The variability of wood density

Our study demonstrates for the first time the variability
of wood density across five Costa Rican conservation
areas based on pre-felling inventory data. We found the
most northern forests included in our study, located in
ACAHN, typically contain trees of higher wood density
than those located in the other conservation areas sam-
pled. In contrast, our results show that the southeastern
lowland forests of ACLA-C house trees that tend to have
lower wood density values. The regional differences be-
tween wood density values detected by our study indi-
cate the importance of including this variable for the
production of AGB estimates that are comparable at re-
gional scales across Costa Rica. This variation also sug-
gests that using more general country or pantropical
scale wood density values when estimating AGB may
lead to inaccurate results, underestimating the variability
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Table 2 EAGB (Mg ha™") and large tree density (tree ha™") per conservation area and sampling protocol

Inventory (Mean =+ Std)

Census (Mean + Std)

CA EAGBpgH>30 cm EAGBpgH>60 cm Lrg tree density EAGBpgH>60 cm Lrg tree density
(Mg ha™") (Mg ha™) (tree ha™) (Mg ha™") (tree ha™")

ACAHN 11807 +54.09 65.25 +33.81 6.29+3.55 39.77 +£2348 425+2.72

ACCVC 116.17 £ 4448 63.35+29.99 6.71+4.02 4522 +26.05 527+339

ACLA-C 14338 +62.18 79.83 £48.29 9.21+£5.98 53.60 £ 27.89 6.15+299

ACOSA 17339+ 60.64 123.27 £53.56 1630+7.97 5835+ 23.24 765+279

ACTO 130.30+51.05 80.12£39.21 10.70+6.26 5236+ 3146 6.98 £4.27

of EAGB across tropical regions [28,29]. The regional
wood density values found express the similarities and
differences in species composition between the five con-
servation areas studied. Beyond species composition, it
is also known that wood density is closely linked to a
forest’s functional composition as light-demanding fast-
growing species commonly have lower wood densities
than shade-tolerant ones [44,45]. Building upon this
idea, we believe that both natural and human disturb-
ance regimes may play a key role in shaping the vari-
ation of EAGB and wood density among the forest
stands and conservation areas studied.

The variability of EAGB

The variation of EAGB among NFMPs within any given
conservation area reveals the heterogeneity of EAGB
across the five conservation areas (Figure 1). We found,
based on the pre- felling data, that the forest stands of
ACOSA are some of the most biomass rich areas of
Costa Rica while, those of ACAHN are some of the most
biomass poor. Supporting the findings of Stegen et al.
[46], a comparison of conservation area level wood dens-
ity and EAGB trends suggests that wood density alone
cannot explain regional EAGB variability. For example,
despite having one of the highest mean wood density
values, ACAHN has one of the lowest mean EAGB
values. The variation of EAGB between NFMPs was very

high, as indicated by the large standard deviation of
EAGB among conservation areas (Table 2). Our findings
highlight the need for a better understanding of both the
environmental and human variables influencing the dis-
tribution of EAGB across spatial scales. For example,
studies have found that forest fragmentation has a
strong negative impact on AGB and AGC (aboveground
carbon) due to a significant increase in the mortality of
large trees near forest edges [47,48]. A greater compre-
hension of the factors controlling EAGB distribution will
allow for the production of more reliable EAGB maps at
local, regional, and national scales. Comparing the AGB
estimates of our study to published estimates reveals
that, in the regions of Costa Rica where EAGB has been
previously sampled, our NFMP based approach pro-
duced a similar range of values. A study conducted at
the La Gamba biological station in ACOSA reported the
EAGB of trees with a DBH>30 cm was 21846+
29.01 Mg ha™' [49]. After considering one standard devi-
ation from the mean, the EAGB determined from
NEMPs (173.47 + 60.23 Mg ha™') overlaps with the pub-
lished estimates of Hofhansl et al. [49]. At ACCVC’s La
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Selva biological station, Clark and Clark [17] found the
density of large trees ranged from 4.7 to 10.1 stems ha™
and the EAGB of large trees (DBH = 70 c¢m) ranged from
22.6 to 55.4 Mg ha™'. The analysis of ACCVC NFMPs
found values comparable to those reported by Clark and
Clark [17], with a large tree density of 5.27 + 3.39 tree ha™*
(census) and 6.71 +4.02 tree ha™' (inventory) and a large
tree (DBH > 70 cm) EAGB of 27.53 + 18.06 Mg ha™' (cen-
sus) and 34.84 + 22.43 Mg ha™! (inventory). This indicates
a positive aspect in using NFMP data for assessing bio-
mass and carbon [18].

Over half of the variation in EAGB across the five con-
servation areas sampled in this study was explained by
the density of large trees. Although the strength of this
predictive variable was approximately 20% less than the
value reported by Slik et al. [32], our study supports the
conclusion that large tree density accounts for a signifi-
cant portion of EAGB variability across tropical regions.
Additionally, we found that the patterns of EAGB and
large tree density matched among conservation areas,
demonstrating the importance of large trees as drivers of
regional EAGB differences across Costa Rica.

Despite such a great amount of EAGB variability
across NFMPs, a weak relationship was found between
the EAGB of trees with a DBH < 60 ¢cm but 230 cm and
the EAGB of trees with a DBH > 60 cm. If these results
are consistent throughout other components of forest
biomass, they indicate that models developed to estimate
unmeasured portions of forest biomass based solely on
the EAGB of measured forest components (e.g. [18])
may lead to an underestimation of the variability of for-
est biomass across the tropics. Future studies aiming to
identify key variables that best explain how EAGB is dis-
tributed throughout different DBH classes and other for-
est stand components (e.g. lianas, coarse woody debris)
could greatly improve the accuracy of AGB estimates
(particularly in smaller trees) and in turn, the effort re-
quired to conduct large scale studies.

Our results show that the plot based sampling meth-
odology of NFMPs (i.e. the inventory) tends to overesti-
mate EAGB when compared to EAGB values calculated
from the census of an entire forest stand. Houghton
et al. [50] reported a similar result, finding a weak nega-
tive correlation between area sampled and EAGB. Both
our results and those of Houghton et al. [50] indicate
that the total area sampled may have important negative
impacts on tropical AGB estimates. An additional source
of the differences found may be explained by the loca-
tion and distribution of inventory plots within forest
stands. Although NFMP protocols specify that plots be
randomly placed, we found a significant bias towards
higher EAGB regions of the forest stand. As we do not
have data to fully resolve the reason behind the bias, we
hypothesize that it may be explained by a desire to
achieve a higher economic outcome from the NEMP (i.e.
to log a greater number of species and trees) and/or to
reduce sampling effort (i.e. the placement of plots in
more convenient areas of the forest stand). No matter
the reason behind the bias, this finding brings to light
the need to evaluate the sustainability of forest manage-
ment practices in Costa Rica. If inventories are not only
overestimating the number and EAGB of trees with a
DBH = 60 cm, but the number and EAGB of trees within
the 30 cm to 60 cm DBH range, they may also be over-
estimating the capacity of forests to recover after a se-
lective logging event [51].

The uncertainty of EAGB

Our uncertainty analysis explored how incorporating
wood density values at different scales in allometric
models will introduce different amounts of uncertainty
into a tree’s estimated AGB. We found that more general
stand level and regional wood densities can lead to un-
certainties in the EAGB of a single tree between 27%
and 28%. Further, we investigated how much the uncer-
tainty of a tree’s EAGB will increase when using a genus
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versus a species level wood density average. Although
the 4% increase in uncertainty reflects the taxonomic
composition of the forest stands sampled in this study,
we believe that future work should consider this source
of uncertainty when reporting EAGB estimates. Particu-
larly, studies should pay greater attention to species and
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genera that exhibit high levels of wood density variability
in the tropics (refer to Chave et al. [52] for a list of gen-
era). The impact of wood density variability on EAGB
uncertainty will be the greatest when (1) the species
and/or genera sampled are highly variable and (2) the
highly variable species and/or genera compose a notable
portion of a forest stems and the wood density values in-
corporated into allometric models. When moving from
the tree level to the plot level, the uncertainties intro-
duced by measurement errors (wood density or DBH)
decrease as the number of trees sampled increases. Er-
rors introduced by the allometric model, on the other
hand, can be either an issue of accuracy or precision
[18,33]. If the allometric error is consistent, regardless of
sample size, an accuracy error is present (i.e. the allo-
metric model does not apply to or represent the given
area). If the allometric error differs between trees and
decreases with an increase in sample size, it is a preci-
sion error. As this study does not include direct tree bio-
mass measurements collected via destructive sampling,
the accuracy of the allometric model could not be ad-
dressed [10]. Therefore, in our uncertainty analysis we
simulated the impact of random allometric model error
on EAGB to evaluate the precision of the allometric
models, finding that allometric model errors introduced
37% uncertainty to tree level EAGB values. It is import-
ant to note that the development of Chave et al’s [25]
wet forest model included samples collected in Costa
Rica (La Selva) while the moist forest equation did not.
Future studies should evaluate the accuracy and applic-
ability of these models in Costa Rican forests, particu-
larly those that did not incorporate any Costa Rican data
during their development.

Allometric model selection is an important source of
error that was not directly addressed in this study. Sev-
eral studies comparing the results of allometric models
have shown they produce vastly differing results (e.g.
[33,53-55]). Further, Pelletier et al. [55] demonstrated
that two different allometric models can result in esti-
mated annual emissions from deforestation that differ by
up to 48%. Given the potential impact of model selection
on forest biomass estimates and in turn, the success of
international mechanisms such as REDD+, future studies
will need to consider this source of uncertainty. In this
study we consciously selected the Chave et al. [25]
models as they fulfill several key criteria (the inclusion
of wood density, representation of a large DBH range,
and development from a large sample size).

Feldpausch et al. [56,57] found that an additional
source of error in AGB estimates results from the exclu-
sion of height as a predictor variable in allometric
models. Regardless of this finding, Feldpausch et al. [57]
also reported that the decrease in AGB estimation oc-
curred only in smaller DBH classes (240 cm) and not
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larger ones. As our study only includes trees with a
DBH > 30 cm, we believe that the exclusion of height in
the models applied to estimate AGB will not greatly in-
crease the error of the reported values.

Conclusions

Our study presents the most spatially rich analysis of
ground level EAGB data in Costa Rica to date. Using data
from forest management inventories, we found that the
EAGB within and among five Costa Rican conservation
areas is highly variable. Further, we detected bias in the
NEMPs towards biomass rich areas of the forest stand,
demonstrating the need to assess the sustainability of
Costa Rican forest management practices. Expanding
upon this finding, if ecological plots are also being prefer-
entially located in more easily accessible areas of forest
stands, studies may not be accurately capturing the EAGB
of tropical forests [10].

Despite the potential taxonomic issues and missing
DBH classes within NFMPs, our EAGB values were com-
parable to those reported in the scientific literature, sup-
porting their inclusion in future EAGB assessments.
Currently, the ground level data used to produce large-
scale AGB and aboveground carbon maps is predomin-
antly collected from ecological studies. Although this data
is detailed and systematic in nature, ecological plots tend
to sample either protected regions of the landscape or
areas subject to a lesser amount of human impact. Forest
management data, on the other hand, covers a consider-
able portion of the tropics and represents forests that are
being greatly impacted by anthropogenic activities. In fact,
Asner et al. [9] found that human activity was the greatest
driver of AGB and aboveground carbon in the forests of
Panama, highlighting the need measure the impact of
humans on the variability of AGB and AGC across the
tropics. Combining commercial logging inventories with
ecological plots will provide a more representative ground
level dataset for the calibration of the models and remotely
sensed data used to estimate AGB and aboveground car-
bon at regional and national scales. Additionally, it is the
non-protected areas of the tropics that offer the greatest
opportunity to reduce rates of deforestation and forest
degradation. Therefore, by improving our knowledge on
the variability of aboveground carbon and AGB through
forest management data, studies can better support the
REDD + mechanism and the sustainable management of
the rich natural resources of the tropics.
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