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Abstract

Background: There is a need for new satellite remote sensing methods for monitoring tropical forest carbon
stocks. Advanced RADAR instruments on board satellites can contribute with novel methods. RADARs can see
through clouds, and furthermore, by applying stereo RADAR imaging we can measure forest height and its
changes. Such height changes are related to carbon stock changes in the biomass. We here apply data from the
current Tandem-X satellite mission, where two RADAR equipped satellites go in close formation providing stereo
imaging. We combine that with similar data acquired with one of the space shuttles in the year 2000, i.e. the so-
called SRTM mission. We derive height information from a RADAR image pair using a method called interferometry.

Results: We demonstrate an approach for REDD based on interferometry data from a boreal forest in Norway. We
fitted a model to the data where above-ground biomass in the forest increases with 15 t/ha for every m increase of
the height of the RADAR echo. When the RADAR echo is at the ground the estimated biomass is zero, and when it
is 20 m above the ground the estimated above-ground biomass is 300 t/ha. Using this model we obtained fairly
accurate estimates of biomass changes from 2000 to 2011. For 200 m2 plots we obtained an accuracy of 65 t/ha,
which corresponds to 50% of the mean above-ground biomass value. We also demonstrate that this method can
be applied without having accurate terrain heights and without having former in-situ biomass data, both of which
are generally lacking in tropical countries. The gain in accuracy was marginal when we included such data in the
estimation. Finally, we demonstrate that logging and other biomass changes can be accurately mapped. A biomass
change map based on interferometry corresponded well to a very accurate map derived from repeated scanning
with airborne laser.

Conclusions: Satellite based, stereo imaging with advanced RADAR instruments appears to be a promising method
for REDD. Interferometric processing of the RADAR data provides maps of forest height changes from which we
can estimate temporal changes in biomass and carbon.
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Background
Management of forest carbon (C) stocks is increasingly
addressed due to its impact on the global greenhouse gas
cycle and climate. Deforestation contributes to a signifi-
cant fraction of the total anthropogenic C emissions [1,2].
The C loss from land use change, i.e. mainly deforestation,
is currently about 900 Mt/yr [2]. C loss from forest dam-
age and mortality is negligible in comparison, estimated to
be only 1.9 Mt/yr for disturbances in the Amazon [3], and
only 13.5 Mt/yr in the extremely extensive mountain pine
beetle epidemic in British Columbia [4]. The suite of
* Correspondence: sos@skogoglandskap.no
1Norwegian Forest and Landscape Institute, P.O. Box 115, 1431 Ås, Norway
Full list of author information is available at the end of the article

© 2014 Solberg et al.; licensee Springer. This is
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
methods for mapping, monitoring and estimating parts of
the forest C cycle is expanding rapidly, including field in-
ventory, modelling and remote sensing. Field inventory is
widely used for national forest inventories, and its feasibil-
ity for monitoring C stocks in forests such as the Niassa
National Reserve miombo woodland in Mozambique has
recently been demonstrated [5]. Remote sensing has a
wide range of applications. For example, time-series of
vegetation indices from MODIS has been used to estimate
carbon fluxes in Alaskan ecosystems during 2000-2010 [6]
and sustainable amounts of wood harvesting in Southeast
Asia [7]. Models such as the Forest Vegetation Simulator
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(FVS) can be used to compare effects of forest manage-
ment alternatives, e.g. tree species selection, on future C
sequestration [8].
Deforestation in the tropics is of particular significance

due to its rapid speed [9], and the REDD (Reducing Emis-
sions from Deforestation and Forest Degradation in De-
veloping Countries) initiative aims at reducing the C
losses through performance-based credits by comparison
of performance against a business-as-usual reference
emission level. In addition to deforestation, forest degrad-
ation and enhancement of carbon stock through forest
growth are other components of the forest C changes that
should influence the REDD credits. In order to realize this
payment-for-ecosystem-service, the tropical countries
need to document their annual changes in forest C stocks,
and satellite remote sensing is likely to be a major data
provider for this [10,11]. Such data would also enable de-
tection of logging areas for possible counteractions. How-
ever, there is a need for new satellite remote sensing
methods for REDD. Firstly, there is a need for methods
that can overcome the limitations of today’s methods, i.e.
clouds, small areal coverage and failure to detect C stock
changes other than deforestation. Secondly, there is a need
for historical data on forest changes for the business-as-
usual emission level.
Optical satellite data is the dominating remote sensing

method today, having the limitation that the correlation
with biomass is weak and tend to saturate at low levels.
The PRODES project in Brazil represents state-of-the-
art [12]. Annual, full-coverage of Brazil is obtained with
about 233 Landsat images, from which clear-cuts are de-
tected from a semi-automatic pixel-unmixing classifica-
tion based on soil and shadow fractions. Although this is
carried out in the most cloud-free season of August-Sep-
tember, clouds are preventing data in some areas. Per-
sistent cloud cover is common in tropical forest areas
[13]. A second limitation with the method is that it
merely tracks land cover changes such as changes from
forest to non-forest and vice versa that can be detected,
while forest degradation is hardly detectable, and they
make up a considerable share of cuttings in the tropics.
Finally, the conversion of the annual clear-cut area into
changes in forest C stocks is crudely obtained by using
fixed emission factors. The recently upgraded Global
Forest Watch [14] is a new and valuable forest monitor-
ing tool; however, it is also largely based on Landsat [15]
and is apparently having the same abilities and limita-
tions as the PRODES system.
Remote sensing methods that provide 3D data have a

considerable advantage in comparison with 2D, optical
data. They provide measurements of forest height, and
its changes, which is crucial for forest biomass changes.
Airborne 3D remote sensing, i.e. airborne laser scanning
(ALS) or stereo photogrammetry, is a more accurate tool
than optical satellite data and it can detect also forest deg-
radation and growth [16]. For most countries, applications
with complete ALS coverage are cost-prohibitive. The
feasible application of ALS would be strip sampling, which
may provide accurate estimates of C stocks changes com-
pared to other methods [17]. In [18], carbon stocks were
estimated with 1-ha resolution at the national scale of
Panama, based on a sample of field plots and ALS in com-
bination with full areal coverage of Landsat and MODIS
data. The accuracy was estimated to 20.5 t/ha of C at the
1-ha pixel level.
The current study is focusing on interferometric SAR

(InSAR), which can provide 3D data. Methods based on
satellite SAR (Synthetic Aperture RADAR) are getting
more attention, and they may resolve the limitations
with optical data. SAR is an imaging RADAR system.
The cloud problem is non-existent with SAR, because
the longer wavelengths, commonly 3-70 cm, penetrate
clouds. In Sweden, clear-cuts have been accurately de-
tected as a decrease in the backscatter of ALOS PALSAR
[19]. The idea we pursue here is based on changes in
surface height obtained from InSAR, where changes in
biomass and carbon stocks can be retrieved directly
from changes in InSAR height. Logging leads to a reduc-
tion in height, while forest growth leads to an increase
in height. Heights can be derived from SAR data in two
or more ways, mainly by phase differences (interferomet-
ric SAR, InSAR) or by parallaxes (radargrammetry) in a
SAR image pair. These techniques go back to the 1960s
and 1970s, when they were demonstrated with stereo ac-
quisitions in airborne SAR systems [20,21].
With the satellite based InSAR method the heights are

derived from phase differences between two SAR images
taken from different positions in space. This can provide
accurate height measurements; however, the accuracy de-
pends on various acquisition properties. In particular for
short wavelength SAR (e.g. X-band) over forested areas
the SAR imaging needs to be carried out by two satellites
going together in a close formation. This is called a bi-
static, or single pass, acquisition, where one satellite is
submitting microwave RADAR pulses and both satellites
receive the same echoes from Earth’s surface. A bi-static
acquisition removes temporal de-correlation, i.e. phase
noise caused by differences in the position of branches
and in moisture. Phase noise is also influenced by the dis-
tance between the satellites, i.e. the baseline, which should
neither be too large nor too small. With increasing base-
line there is an increasing volume de-correlation caused
by an increasing difference in the look angle (local inci-
dence angle) into the canopy volume. Contrary to this,
when the baseline is very small the noise increases because
of quantization errors, i.e. a given height correspond to a
tiny fraction of a 2π cycle of phase difference. In order to
compress data onboard the satellite the data is typically
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compressed to 5 or 8 bit [22], and a tiny fraction of such a
number will correspond to a crude height measurement.
Finally, random errors and phase noise will be relatively
large when the backscatter signal is weak, i.e. a low signal-
to-noise ratio, depending on incidence angle, polarization
and topography [23].
It has recently been demonstrated that forest biomass,

or the equivalent stem volume, is strongly related to
InSAR height, i.e. the height above ground of the center
of the SAR echo [24–28] This relationship may vary with
stand structure, in particular tree number density
[29,30]. However, existing studies show fairly accurate
models without taking forest structure into account,
likely because the variation in forest structure is moder-
ate, e.g. [24]. In addition, it has been demonstrated that
loggings, i.e. clear-cutting and forest degradation, can be
detected as temporal changes in surface height [31,32].
The latter studies detected the logging-induced de-
creases from the 90 m SRTM C-band DSM to a recent
and higher resolution X-band DSM.
One significant step further from detection of logged

areas would be to estimate the corresponding changes in
above ground biomass (AGB), or C stocks, as surface
height changes over time. This should cover not only de-
forestation, but also forest degradation and forest gain
and growth. In addition, the 11 year InSAR height
changes from SRTM in 2000 to Tandem-X in 2011 could
be used for the business-as-usual reference levels. The
C-band SRTM had a near-global coverage and Tandem-
X DSM has a global coverage. Hence, these two surface
models can be combined and used to detect surface
height changes in forests, and possibly estimate changes
in forest C stocks. Besides possibly providing estimates
in C stocks, this would also provide maps showing the
changes, i.e. both decreases from logging and increased
from forest growth.
A main question is how accurate C stock, or AGB

changes can be estimated by means of InSAR, and in
addition, there are several possible limitations, including:

1. The lack of a digital terrain model (DTM) making it
impossible to derive AGB and C stocks,

2. The difference in SAR wavelength between the C-
band SRTM and the X-band Tandem-X,

3. The coarse resolution of the C-band SRTM (90 m),
4. The lack of AGB data from field from the time of

the SRTM acquisition, and
5. Unstable relationships between AGB and InSAR

height.

Crucial here is that it is the changes in C stocks we
are after, and not the C stocks themselves. Hence, the
lack of a DTM could be overcome if AGB and InSAR
height are proportional, i.e. a straight linear relationship
without saturation going through origin. This has been
found to be the case for a tropical forest in Brazil [33]
and for a spruce forest in Norway [24]. Also, without a
DTM the relationship between AGB and InSAR height
needs to be available from an external model. In the
present study an external model was fit by processing
the Tandem-X data against a DTM and estimating the
relationship between AGB and InSAR height for a num-
ber of field plots.
The main objective of this study was to estimate how

accurately AGB changes (ΔAGB) over time can be esti-
mated from DSM changes between the SRTM C-band
DSM acquired in 2000 and a Tandem-X DSM from
2011. The specific aims were to estimate

1) bias, accuracy and precision for ΔAGB on 200 m2

plots, and
2) the accuracy in the spatial variation in ΔAGB over

the study area.

In addition, we aimed at quantifying how much the
performance of this method is reduced

3) because different SAR wavelengths are used at the
two points of time (C-band in 2000 and X-band in
2011), and

4) if plot biomass values were not available to fit
models at the first point of time (year 2000) and if a
DTM was not available (which would be the general
case for most REDD countries).

We had at hand a unique data set for this study, com-
prising repeated field inventory, repeated airborne laser
scanning, and full coverage X- and C-band SRTM and
Tandem-X data.
Results and discussion
AGB – InSAR height relationship
The relationship between AGB and Tandem-X InSAR
height could be represented as a proportionality, where
AGB inceased by 14.9 t/ha per m increase in InSAR
height. We first fitted an ordinary linear regression
model, which provided an estimated intercept of 16 t/ha
and a slope of 13.4 t/ha/m, and had a RMSE of 54.3 t/
ha. The intercept was negligible and not statistically sig-
nificant from zero. We re-fitted the model without an
intercept, as shown in Figure 1. The exclusion of the
intercept had nearly no effect on the model perform-
ance, i.e. the RMSE showed almost no increase.
A positive correlation between biomass and InSAR

height is as expected, because they both increase with
tree height and stand density. In a theoretical approach
[29] demonstrated that the relationship between stem



Figure 1 Relationship between AGB and InSAR height from
Tandem-X for 200 m2 plots, fitted with a no-intercept regression
model.

Figure 2 Predicted AGB changes for 200 m2 plots based on
InSAR height changes from the SRTM C-band DSM and a
Tandem-X DSM, and the model AGB = 14.9IH, where IH is InSAR
height above ground. Bias, accuracy and precision are given in
t/ha as well as in % of mean biomass in 2010 (127 t/ha).
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volume, or correspondingly biomass (B), and height (H)
follows a power law function:

7½ � B∝Ha:

If the height variable, H, represents mean tree height
or top height the α takes a value in the range 1.5-2.0
[29,30,34], which implies a curvilinear relationship with
a saturation effect for high biomass values. In the
present study the height, H, is not representing tree
height, but rather canopy height. InSAR height, as any
type of canopy height variables, depends not only on
tree height, but also on the shape of each tree crown
and on stand density (the amount of gaps). Proportional-
ity between biomass and InSAR height, or at least α
values close to unity, has been demonstrated both in
boreal and tropical forests [24,25,33].
A few outliers having zero InSAR height and AGB >

50 t/ha might be observations where logging has oc-
curred between the field inventory in 2010 and the Tan-
dem-X acquisition in 2011. Stand structure might affect
the relationship between biomass and InSAR height
[29], and further studies may reveal whether this is the
case. It is unlikely that more accurate biomass estimates
could be obtained for these plots being as small as
200 m2, taking into account what is achieved with other
remote sensing methods including airborne laser scan-
ning [35]. Hence, the potential to improve the accuracy
taking into account stand structure seems limited.
Some plots had negative InSAR heights, down to -3 m.

This is attributable to various types of errors in the
Tandem-X DSM. These error types include remaining
bias and ramp errors over the entire study area, phase
discontinuities in steep topography such as forest stand
edges, and remaining residual errors not removed by the
multilooking and Goldstein filtering (see below).
We add here that in a real case in a tropical country

without a full coverage DTM the model would have to
be obtained in another way than here, e.g. from plots in
some smaller study area with an accurate DTM or from
scattered field plots in a sample survey having accurate
terrain heights from GPS measurements on the plots.

Accuracy in estimated AGB changes at plot level
The obtained model (Figure 1) was used to predict AGB
changes on the field plots from 2000 to 2011 directly
from DSM changes. These predictions were clearly cor-
related to field measured AGB changes with r = 0.69
(Figure 2). The RMSE of these predictions was 67 t/ha,
which was only slightly higher than the obtained accur-
acy, 59 t/ha, in the model in Figure 1. The negative
changes seen in Figure 2 are mostly large and represent
logging, while the positive changes are smaller and re-
sults from forest growth.

The influence of SRTM band and separate models at two
points of time
The relationship between AGB and InSAR height was
fairly similar with Tandem-X in 2011 and the X- and C-
band SRTM in 2000 (Table 1). After correcting vertical
offset and ramp errors in the SRTM DSMs based on



Table 1 Separate models for each year and each band:
Estimating the relationship between AGB and the three
alternative InSAR heights, using no-intercept regression
models

InSAR data Year Slope, t/ha/m RMSE, t/ha

SRTM-C 2000 13.6 59.9

SRTM-X 2000 15.1 53.9

Tandem-X 2011 14.9 54.7
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ground control points, and subtracting the DTM, we ob-
tained no-intercept models having slopes of 13.6 and 15.1,
respectively for the C- and X-band SRTM. A lower slope
value for C-band than for X-band was contrary to what
we expected. The penetration of the C-band microwaves,
having slightly longer wavelength, should be some 2–3 m
deeper into the canopy than the X-band [36]. This should
produce lower height values for C-band as compared to
X-band in forested areas. A given biomass value would
correspond to a lower C-band than X-band height, and
hence a higher biomass-to-height ratio for C-band, which
is contrary to what we found here. This unexpected find-
ing must be attributed to random errors in the modelling,
e.g. random errors in the GCP points used. The lower
spatial resolution and lack of details in the C-band DSM
increase the probability of errors in the parameter esti-
mate. The accuracy was similar for the three InSAR data
sets, varying from 53.9 to 59.9 t/ha (Table 1).
By applying these models we obtained AGB changes in

alternative ways. The real AGB changes as obtained
from repeated field inventory had a mean value of
14.7 t/ha, while the predicted values varied from 12.1 to
21.9 t/ha (Table 2). The major finding here is that the
apparent ideal case based on a 30 m resolution X-band
DSM in the year 2000, having a DTM, and separately
calibrated AGB - InSAR models at both points of time
(alternative 4) was only marginally better than the crude
case with the 90 m C-band DSM and using only one
AGB – InSAR model from Tandem-X data (alternative
1). The bias was of the same magnitude, a few t/ha, al-
though with opposite signs, and the accuracy and correl-
ation was only slightly better with alternative 4. The two
alternatives in between, i.e. alternatives 2 and 3, had bias
and accuracy values of fairly the same magnitude. Hence,
Table 2 Comparison of performance of model alternatives for

Alt Description

1 90 m C-band SRTM as reference DSM, AGB model calibrated only in 20

2 30 m X-band SRTM as reference DSM, AGB model calibrated only in 20

3 90 m C-band SRTM as reference DSM, AGB calibrated with separate m

4 30 m X-band SRTM as reference DSM, AGB calibrated with separate m

Field measured ΔAGB was used as the reference with a mean value of 14.7 t/ha.
if forest C changes since 2000 are to be estimated with
InSAR data, this could be based on the crude alternative
1, which would be the only feasible alternative in many
tropical countries. One explanation for bias is the lack of
complete synchronicity of the field and the InSAR data, i.
e. 8 month difference at the beginning of the period and
one year at the end. Real AGB changes due to logging
and forest growth may explain some of the bias. For ex-
ample, if one of the field plots had been logged between
the last ALS acquisition and the Tandem-X acquisition,
and the InSAR height decreased from 20 to 0 m above
ground on this plot, this would generate a bias of -0.11 m
when averaged over the 176 field plots. In addition, the
results are sensitive to the GCPs used. In this study we
placed GCPs subjectively taking into account the differ-
ential interferograms. Poorly placed GCPs could generate
a bias.
A particular feature of using surface models for C

change monitoring is that it is sensitive to height biases.
A tiny bias on height changes over large areas would
translate into a considerable bias on the estimated
REDD credit. There was a negative bias of 2.6 t/ha on
the predicted AGB changes with alternative 1 (Table 2).
The predicted mean change on the field plots was
12.1 t/ha while the field measured value was 14.7 t/ha.
Although this makes up only 2% of the mean standing
AGB in 2010, it represents a 18% underestimation of the
change in AGB and the above-ground C stock. In a per-
formance based payment system this would correspond
to an underestimated REDD-credit of 2,400 US$ per
km2, if we assume that C makes up 50% of AGB and
that the payment is 5 US$ per ton CO2. Based on the
176 field plots the real REDD-credit should have been
about 14,000 US$ per km2, while the estimated REDD-
credit would be about 11,000 US$ per km2. This bias
corresponds to a -0.17 m bias on the change in InSAR
surface height, and this illustrates that a minor bias on
the derived DSMs and their changes over time can gen-
erate a considerable error if the bias occurs at large
scale. However, it is likely that an error like this would
vary over the area of interest, i.e. that there would be
both negative and positive biases varying smoothly over
the landscape due to errors varying from SAR image to
SAR image.
ΔAGB (t/ha)

ΔAGB Bias Accuracy Precision r

10 12.1 −2.6 65 65 0.66

10 20.4 5.7 59 59 0.73

odels in 2000 and 2010 21.9 7.2 63 63 0.67

odels in 2000 and 2010 19.0 4.3 59 59 0.73



Solberg et al. Carbon Balance and Management 2014, 9:5 Page 6 of 12
http://www.cbmjournal.com/content/9/1/5
Accuracy in spatial variation of AGB changes
There was clearly a correspondence in the spatial pat-
tern of AGB changes (Figure 3). Clear-cuts with reduc-
tion in AGB and C stocks are visible as red areas, while
forest growth representing increases in AGB and C is
visible in green. As expected, the ALS data apparently
provided more accurate data by having sharp edges on
clear-cuts, while the InSAR-based changes were
smoother. The changes from X-band SRTM had more
distinct change features than those from the more coarse
resolution C-band DSM. There were moderately strong
correlations between the AGB changes obtained from
ALS and those obtained from InSAR. It is notable that
the C-band SRTM performed almost equally well as the
X-band SRTM. The correlation coefficient was r = 0.62
with the X-band and r = 0.65 with the C-band SRTM
(Table 2). ALS is here used as reference data, because it
was not feasible to get field measurements covering the
entire study area. The real accuracy of the InSAR based
changes is unknown. If we assume that the errors on
ΔAGB from ALS and errors on ΔAGB from InSAR are
uncorrelated, then the spatial variation of InSAR-based
changes are more accurate than these results indicate.
It is likely that some loggings occurred between the

first ALS acqusition on 8th and 9th June 1999 and the
SRTM acquisition in February 2000 (8 months), and be-
tween the last ALS acquisition on 2nd July 2010 and the
Tandem-X acquisition on 14th July 2011 (1 year). This
would include both thinning and clear-felling, and would
generate errors in the relationships. The real relation-
ships between changes in biomass and changes in InSAR
height are likely to be more accurate than what was ob-
tained here. We had no logging records available and
could not quantify the effect of the slight mismatch of
the timing of the data acquisitions.
For the entire study area the mean height change for all

pixels from C-band SRTM to Tandem-X was a decrease
ΔDSM of 0.046 m which corresponded to a predicted mean
decrease of ΔAGB= 0.71 t/ha. Estimating the accuracy of
Figure 3 Predicted AGB change (t/ha) over the study area based on h
AGB = 14.9IH (left), based on SRTM X-band (middle), and based on re
marked with black dots.
this estimate was not within the scope of the present study,
and would require further and careful analyses.
We see the presented method as a possible approach to

provide MRV data for REDD. First, it can provide
complete coverage. This is not a requirement in REDD;
however it would enable statistics for various spatial
scales. Both the national and sub-national level is defined
in REDD, in addition to project areas [37]. This means
that an entire country can participate in REDD and re-
ceive a REDD credit. However, also a part of a country
can be an entity in REDD. This can be an administrative
unit such as a state within a federation, it can be a forest
type region such as a mangrove forest area, or it can be an
area covered by a project addressing forest C stocks. In
addition, a given country may want to distribute its REDD
credit internally, i.e. setting up a performance based pay-
ment system within their country.
Secondly, the method were here tested in a Norwegian

forest; however, we believe that the method would be
appropriate also in a tropical forest. The two require-
ments for using the method are that the relationship be-
tween AGB and InSAR height (i) is straight linear, and
(ii) is stable over time. A straight linear relationship has
also been found in a virgin tropical forest in Brazil by
[33]. They used the airborne OrbiSAR system, which
provided X- and P-band InSAR data. The InSAR height
for the forest was derived as the difference between the
X- and P-band DSMs. The relationship had a slope (pro-
portionality) of about 13.5 t/ha, which is close to what
we have obtained for spruce forests in Norway
[24,25,38]. However, the straightness of the relationship
might vary with forest type. In a regular Eucalyptus plan-
tation in Brazil the relationship was found to be curvilin-
ear [39]. Secondly, the stability of the relationship across
weather conditions is also promising. It has been shown
in a study in Siberia that frost lowered the L-band
InSAR height with 4 m [40]. In a Finnish study by [41],
the X-band InSAR height in a pine forest decreased dur-
ing the autumn, however, that was attributed to needle
eight changes from C-band SRTM to Tandem-X and the model
peated ALS acquisitions (right). Agricultural fields are outlined and
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fall. In a study in Norway we found a considerable de-
crease in InSAR height for frozen conditions, as compared
to non-frozen. However, we found little or no difference
between acquisitions during unfrozen conditions spring-
summer-autumn [42].
Thirdly, the data requirements should be feasible. Tan-

dem-X has covered the Earth already two times or more,
i.e. in 2011 and 2012, and apparently the two satellites
will continue to go in Tandem-X formation for some
more years with the remaining fuel, which will enable
systematic cover of tropical countries in some more
years. At the end of the Tandem-X lifetime, a continu-
ation might be covered by best-available-alternatives.
BIOMASS is a tailored mission for forest biomass prob-
ably operational from 2021 or 2022 [43]. In the mean-
time we would have to use the best available technology.
This could be X-band radargrammetry which can pro-
vide almost equally accurate biomass estimates as Tan-
dem-X [44] or optical stereo imaging. Possible new SAR
missions in the next years include SAOCOM-CS and
Tandem-L. In addition, the SRTM DSM would be in-
valuable for deriving data on business-as-usual, from
2000 up to Tandem-X in 2011. Field inventory would be
necessary to calibrate the relationship between biomass
and InSAR height. Such relationships need to be cali-
brated for various forest types. As indicated by the
present study, it is apparently sufficient to do this cali-
bration at one point of time.
In this study we are addressing above-ground biomass

only, while an MRV system would require monitoring
also of below ground biomass, dead wood, litter and soil.
Hence, our proposed InSAR method doesn’t solve all the
needs for an MRV system; however, it is a possibly
important step in the right direction. Below-ground
biomass C can be estimated as it normally makes up
an amount proportional to above ground biomass C.
Dead wood, litter and soil C are more difficult to esti-
mate, and sophisticated models such as the Yasso model
[45] seems to be the only feasible way to derive litter
and soil C.
Conclusions
In conclusion, AGB changes could be estimated fairly
accurately from the DSM changes between the SRTM
C-band DSM in 2000 and a Tandem-X DSM in 2011. Es-
timated AGB changes for 200 m2 plots (and for 10 m ×
10 m pixels) were close to unbiased, with accuracy and
precision around 50%. The derived ΔAGB values from
InSAR varied consistently with those obtained from ALS
over the study area. The performance of the method was
slightly better with X-band SRTM data than with C-
band. The accuracy was negligibly improved in the case
where separate AGB – InSAR height models were fitted
for both points of time, which required AGB data for
both points of time as well as an accurate DTM.
Methods
Study area
The study area was covered by field inventory, ALS and
InSAR data at two points of time, i.e. approximately in
2000 and 2011. It was located in a forest area in the mu-
nicipality of Våler (59°30′N 10°55′E, 70–120 m above
sea level), southeast Norway, of about 852.6 ha. The
main tree species was Norway spruce (Picea abies (L.)
Karst.). Scots pine (Pinus sylvestris L.) was also quite fre-
quent and there were some scattered broadleaves, in
particular birch (Betula pubescens Ehrh.). The forest has
been actively managed for timber production, including
commercial thinning, clear-felling followed by planting
in the spruce dominated stands, and selective logging
followed by natural regeneration in the pine dominated
stands. The study area including the field and ALS data
have earlier been used and described in detail by [46]
and [47].
Field plot data
We established 176 circular 200 m2 plots for field mea-
surements of above ground biomass. The study area was
stratified into four predefined forest types; (1) recently
regenerated forest (age ≥ 20 years), (2) young forest, (3)
spruce dominated mature forest and (4) pine dominated
mature forest. This was done based on an existing stand
map. We laid out plots in systematic grids in each
stratum. Each plot center was initially located in the field
using 1:5000 topographic maps, and their positions were
later determined accurately using Differential Global Po-
sitioning System (GPS) and Global Navigation Satellite
System (GLONASS) having an accuracy of < 0.5 m [46].
The field inventory was carried out in the summers of
1998 and 1999, and then redone in the fall of 2010 and
spring of 2011. The field inventory comprised recording
of tree species, callipering of all trees with diameter at
breast height (dbh) ≥4 cm, and height measurements
with a Vertex hypsometer on sample trees selected with
a probability proportional to stem basal area. The num-
ber of trees with height measurements ranged from 3 to
43 per plot with an average of 18. Non-measured tree
heights were later obtained from species specific diam-
eter-height relationships.
AGB was estimated as the sum of the individual com-

ponents stump, stem, bark, dead and living branches
and foliage of individual trees predicted using previously
fitted species-specific allometric models having tree spe-
cies, dbh and height as input variables [48]. AGB was es-
timated for both points of time, from which we also
obtained AGB changes at the plot level (Table 3).



Table 5 ΔAGB models based on airborne laser scanning

Stratum Model1 RMSE, t/ha

1. Clear-cut ΔAGB = 1.27 + 385 δdl5 37.1

2. Thinned ΔAGB = -78.1 + 14.9 δpf0 + 26.1
δpf20 + 3.65 δcvf -16.3 δpl0

13.3

3. Recently
regenerated forest

ΔAGB =2.41 + 17.9 δpf20 26.3

4. Young forest ΔAGB = -56.3 + 32.2 δmeanf 36.5

5. Spruce dominated
mature forest

ΔAGB = 0.879 -233 δdf3 + 6.53
δpl10 + 13.7 δpl90

26.4

6. Pine dominated
mature forest

ΔAGB =8.28 + 15.1 δpf50
-89.1*δdf8-7.53 δpl60 + 8.67 δpl80

22.2

1p = height percentile of vegetation echoes (0, 10,…, 90); d = cumulative
canopy density above vegetation threshold (0, 1, …, 9); cv = coefficient of
variation of height of vegetation echoes; mean = arithmetic mean of height of
vegetation echoes; f = first echo; l = last echo.

Table 3 Above-ground biomass on the plots (t/ha)

Mean min - max

AGB 1999 112 2 - 349

AGB 2010 127 0 – 407

ΔAGB 15 −275 - 153
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ALS data
The study area was covered by complete cover ALS data
acquired under leaf-on conditions on 8th - 9th June 1999
and 2nd July 2010 with a Piper PA-31-310 Navajo aircraft
at a speed of 70 – 80 m/s at an elevation of 700 – 900 m
above the ground (Table 4).
A DTM was derived from the ALS acquisitions, and

the heights of the echoes were recalculated to heights
above the ground.
Model-predicted AGB changes from the repeated ALS

acquisitions were used as a reference representing the
true spatial variation of ΔAGB. These ALS-based predic-
tions were produced with separate models for six strata
(Table 5). The strata mainly represent the age and the
dominating tree species, while one stratum contains
stands having thinning during the study period. For each
plot we extracted height distribution metrics of the two
main ALS echo types (first and last), including height
percentiles, cumulative canopy density above certain
thresholds, coefficient of variation and mean. We did
this for both the 1999 and the 2010 laser scans, and ex-
tracted the temporal changes in these metrics. Simple
linear models for predicting ΔAGB were developed by
regressing field measured ΔAGB against these ALS
height metric changes. We applied a stepwise regression
model with forward selection of explanatory variables.
The number of selected metrics varied from one to

four. As an example, the model for change in above
ground biomass in young stands, stratum 4, was -56.3 +
32.2 δmeanf, where δmeanf was the change in the mean
height of the first echoes. We used these regression
models to predict ΔAGB for each 10 m × 10 m pixel
over the entire study area. For land cover types other
than forest land we applied the model for stratum 1,
clear-cut. In order to compare the predicted changes
Table 4 Key parameters for the airborne laser scanning
campaigns

Parameter 1999 2010

Instrument Optech ALTM 1210 Optech ALTM Gemini

Pulse repetition frequency 10 kHz 100 kHz

Scan frequency 21 Hz 55 Hz

Scan half-angle
(after processing)

14.0° 13.8°

Pulse density on ground 1.2 m−2 7.3 m−2
from InSAR and from ALS we selected 784 pixels as a
systematic grid over the area.

InSAR data
For calibrating the model of AGB against InSAR height
we processed the Tandem-X data against the DTM from
ALS, while for obtaining the temporal changes in AGB
from temporal changes in surface height we processed
them against the SRTM DSMs (Figure 4).
Temporal changes in AGB were to be detected as

changes from the SRTM DSMs to a Tandem-X DSM,
corresponding to changes in canopy height.
We used both the X- and C-band SRTM data, which

were acquired during 12th – 20th February 2000. Both
the X- and C-band SRTM data have full areal coverage
in the study area. We obtained these data as DSMs, i.e.
the X-band DSM from the German Aerospace Centre
(DLR) in 2002, and the C-band DSM was derived from a
procedure built into the ENVI/Sarscape 5.0 software,
which downloads data as SRTM-3 version 4 (http://srtm.
csi.cgiar.org/index.asp). The data were received in
geographic (lat/lon) projection with a spatial resolution
of 1 arc sec (15 m x 31 m) for the X-band and 3 arc sec
(46 m x 93 m) for the C-band, which we resampled
with bilinear interpolation to UTM32 and 10 m x
10 m pixels.
Figure 4 Overview of the InSAR processing.



Table 6 Technical properties of the Tandem-X InSAR data acquisition, incidence angle θI, normal baseline B⊥, and
height of ambiguity HoA

Date Time Orbit Polarization θI, degrees B⊥, m HoA, m

14th July 2011 05:32 Descending HH-HH 46 55 147
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The Tandem-X data were from an ascending, right
looking TanDEM-X stripmap image pair acquired in the
morning on 14th July 2011 (Table 6). The data were re-
ceived from DLR as co-registered Single Look Complex
(SLC) data in CoSSC format. The basic idea with InSAR
processing is to extract the phase component from the
complex data in each of the two SAR images, i.e. to de-
rive the phase difference for each pixel in the form of an
interferogram, from which topographic information can
be extracted. The InSAR processing was carried out with
the ENVI/Sarscape software. The processing was done
three times, i.e. separately with the X-band SRTM DSM
as a reference, with the C-band SRTM DSM as a refer-
ence, and with the ALS DTM as a reference. In each the
interferogram was processed into a differential interfero-
gram, being the part of the phase differences in the Tan-
dem-X image pair which represented either the 11 year
changes in canopy height (from SRTM) or the canopy
height (from DTM). We carried out phase unwrapping
using the Minimum Cost Flow method, and converted
the unwrapped phases into elevation data and trans-
formed from satellite slant-range geometry to a geo-
coded DSM. During the processing we used a multi-
looking of 5 azimuth x 5 range, which corresponded to
about 10 m x 10 m, which was also the spatial resolution
of the geocoded DSMs obtained by bilinear interpolation
(Figure 5).
It is important for the accuracy of this method to

minimize height errors. In a DSM there is typically one
height error which varies from pixel to pixel as random
noise. In the processing we applied the Goldstein filter
[49] to reduce this noise. In the Tandem-X World-
DEMTM specification this error is quantified as relative
vertical accuracy of < 2 m or < 4 m depending on the
slope. The second type of error is quantified as absolute
Figure 5 Processing from interferogram (left) into DSM (middle) and
during the 11 years are clearly visible as red areas. The SAR image covers a
vertical accuracy and should be < 10 m. This is a type of
error that varies gradually over larger distances, and in
the present study area of limited size such an error
might appear as a bias or a ramp. In the processing we
have largely removed bias and ramp errors by using
ground control points (GCPs). We selected points
manually in the data where two DSMs were expected to
have identical values, i.e. where they could be tied to-
gether. They were carefully selected in order to be useful
for all DSM corrections, and should represent locations
without forests (zero canopy height) and without any
temporal changes. This was accomplished by taking into
account three differential interferograms, i.e. from the
InSAR processing of Tandem-X against the DTM;
against the C-band SRTM DSM; and against the X-band
SRTM DSM. They were placed in sites having a low
fringe density, and where the phase values clearly indi-
cated no canopy height and no temporal change. We fit-
ted Equation (1) to these GCPs:

Δφ ¼ k0 þ k1 RG þ k2 AZ ð1Þ

where Δφ was the phase difference at each GCP, k0, k1
and k2 were correction factors, and RG and AZ were the
range and azimuth co-ordinates (Table 7). After correct-
ing the differential interferogram with these factors the
RMSE (root mean square error) of the GCP heights was
in the range of 1.3 – 1.5 m. From these corrections we
also derived ramp corrections for the SRTM DSMs,
which enabled us to extract regression models of AGB
against InSAR height for the two SRTM DSMs.
Weather conditions influence the penetration of SAR

microwaves into the vegetation. In dry or frozen condi-
tions the penetration is deeper than in moist conditions
because the amount of liquid water in the canopy is low,
height change from SRTM C-band to Tandem-X (right). Clear-cuts
bout 35 km x 35 km. The study area is indicated as a red rectangle.



Table 7 Correction factors for phase offset and phase
ramp errors (radians), see Equation (1), and the final
accuracy (RMSE) for the 39 Ground Control Points (GCP)

Reference DSM k0 k1 k2 RMSE

ALS DTM 0.1603781470 −0.0000644062 0.0000598075 1.54 m

SRTM-C 0.1027309745 −0.0000652833 0.0000286684 1.29 m

SRTM-X 0.2173415607 −0.0000852327 0.0000247047 1.27 m
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and the dielectric constant is low [50,51]. According to
this we might expect an InSAR DSM to vary between
the acquisitions. Apparently, this has played a minor role
in this case, because the obtained relationship between
AGB and InSAR height was very stable from the Febru-
ary SRTM acquisitions to the July Tandem-X acquisition.
It is possible that this effect is minor in general, or that
the dielectric properties were similar although the SRTM
was in the winter while the Tandem-X was in the
summer. The weather in the study area during 12th –
20th February 2000 was unstable and varied with
temperatures around and slightly above zero, and with
some precipitation coming as moist snow and sleet. For
the Tandem-X acquisition the mean temperature was
14°C and no precipitation from 08.00 13th July – 08.00
14th July.

Analyses
We derived the relationship between AGB and InSAR
height from field inventory on 200 m2 plots in fall 2010
and spring 2011, each linked to one 10 m x 10 m InSAR
height pixel from the combination of a Tandem-X DSM
from July 2011 and a DTM from ALS. This model was
based on all field plots without taking tree species into
account, because the field plots were dominated by
spruce and in most cases contained a mixture of species.
Spruce was present in 90% of the plots, and made up
59% of AGB on the plots. We could have estimated spe-
cies specific models, and they would likely be different
[25]. However, the number of plots for each model
would then have been small and increasing the random
error of the parameter estimates. Similarly, for the tem-
poral changes we fitted a model ΔAGB from field inven-
tory against height changes of the surface models, i.e.
ΔDSM. We applied the following statistical measures
where N is the number of observations, Pi is the pre-
dicted value for observation i, and Oi is the observed
value for observation i:

Bias ¼ N−1
X
i

Pi−Oið Þ ð2Þ

Accurracy ¼ RMSE ¼ N−1
X
i

Pi−Oið Þ2
" #0:5

ð3Þ
Precision ¼ RMSEs

¼ N−1
X
i

Pi−Oi−biasð Þ2
" #0:5

ð4Þ

The evaluation of the spatial accuracy on temporal C
changes was based on a visual examination of mapped
changes and correlation analyses. Estimated AGB
changes from the repeated ALS acquisitions were used
as a reference representing the “true” spatial variation of
ΔAGB. We are aware that also ALS based changes have
errors; however, this was the best available data set for
spatial variation in changes. We laid out a 10 m x 10 m
grid over the study area and predicted AGB changes for
each grid cell with InSAR and ALS. The ΔAGB was pre-
dicted directly from the DSM change from SRTM to
Tandem-X multiplied by the slope of the relationship be-
tween AGB and InSAR height. We selected 784 pixels
distributed systematically over the area and extracted
the predicted AGB changes from ALS and from InSAR,
and used Pearson correlation analyses to represent the
spatial correspondence.
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