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Abstract

Background: Countries willing to adopt a REDD regime need to establish a national Measurement, Reporting and
Verification (MRV) system that provides information on forest carbon stocks and carbon stock changes. Due to the
extensive areas covered by forests the information is generally obtained by sample based surveys. Most operational
sampling approaches utilize a combination of earth-observation data and in-situ field assessments as data sources.

Results: We compared the cost-efficiency of four different sampling design alternatives (simple random sampling,
regression estimators, stratified sampling, 2-phase sampling with regression estimators) that have been proposed in
the scope of REDD. Three of the design alternatives provide for a combination of in-situ and earth-observation
data. Under different settings of remote sensing coverage, cost per field plot, cost of remote sensing imagery,
correlation between attributes quantified in remote sensing and field data, as well as population variability and the
percent standard error over total survey cost was calculated. The cost-efficiency of forest carbon stock assessments
is driven by the sampling design chosen. Our results indicate that the cost of remote sensing imagery is decisive
for the cost-efficiency of a sampling design. The variability of the sample population impairs cost-efficiency, but
does not reverse the pattern of cost-efficiency of the individual design alternatives.

Conclusions, brief summary and potential implications: Our results clearly indicate that it is important to
consider cost-efficiency in the development of forest carbon stock assessments and the selection of remote
sensing techniques. The development of MRV-systems for REDD need to be based on a sound optimization
process that compares different data sources and sampling designs with respect to their cost-efficiency. This helps
to reduce the uncertainties related with the quantification of carbon stocks and to increase the financial benefits
from adopting a REDD regime.

Background
In the 1990’s tropical deforestation was estimated to cause
approximately 20 percent of the global anthropogenic car-
bon emissions [1]. Between 1997 and 2006, deforestation,
forest degradation and peatland fires contributed between
8 and 20 percent to the global anthropogenic carbon emis-
sions [2]. FAO [3] estimated an annual loss of carbon
stocks in forest biomass of 0.5 Gt between 1990 and 2010,
which is considered to be mainly a result of tropical defor-
estation. At their 16th meeting in Cancun in 2010, the
Parties of the United Nations Framework Convention on
Climate change (UNFCCC) approved the inclusion of a
reduction of emissions from deforestation and forest

degradation (REDD) mechanism as an eligible action to
prevent climate changes and global warming in post-2012
commitment periods of the Kyoto Protocol (KP).
So far no financial value has been assigned to the car-

bon stored in forests. Decisions about future land use are
driven by the potential income from alternative forms of
land management rather than maintaining forests as
non-disposable intangible assets. REDD introduces a new
land use paradigm in which developed countries provide
financial resources for incentives to developing countries
to reduce carbon emissions from deforestation and forest
degradation. Financial benefits are based on quantified
carbon emission reductions relative to a pre-established
reference level [4]. Due to the financial arrangements
between developed and developing countries participat-
ing in a future REDD mechanism, there is a requirement
for reliable and verifiable data on carbon emission
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reduction efforts [5]. Countries willing to adopt a REDD
regime need to establish a national system for Measure-
ment, Reporting and Verification (MRV) that provides
information on forest carbon stock changes. While some
authors see MRV systems as easy-to-apply tools [6],
others describe the difficulties of implementation and
operational applications [7-9].
The objective of this paper is to demonstrate the impli-

cations of sampling designs and sample sizes on the cost-
efficiency of the measurement component of MRV sys-
tems. We chose four sampling approaches and anticipated
different cost schemes for field surveys and remote sensing
imagery to show the effect of both the inventory designs
and the associated costs on the cost-efficiency and reliabil-
ity of carbon inventory and monitoring systems. Assump-
tions and methods used in our study are compatible with
those laid down in the IPCC GPG (Intergovernmental
Panel on Climate Change Good Practice Guidance) [10].
Estimating forest carbon stock changes includes assess-

ments of deforestation rates and associated carbon stock
loss, afforestation and reforestation rates and associated
carbon stock gains, and changes of carbon stocks in forests
that remain forests. The approach presented in the IPCC
GPG quantifies emissions or removals from carbon stocks
within a given period as the product of the extent of
human activity (activity data, AD) and the emissions-
removals ratio per unit of activity (emission factor, EF).
Information on AD and EF can be obtained in different
ways, the most complex and reliable being from detailed,
spatially dense forest monitoring and modeling data. The
GPG classify the approaches in three categories (so called
“Tiers”) [11] with respect to requirements for data, analysis
procedures, and reliability. Since continuous forest inven-
tory data collected with a valid statistical sampling design
allows for complex assessment and analysis procedures
and results in reliable estimates with known (sampling)
errors, they are assigned the highest Tier, i.e. Tier 3.
The IPCC Guidelines use six broad land-use categories

to report emissions and removals from land use and land
use conversions: forest land, cropland, grassland, wetlands,
settlements, and other land. The six categories can be
further subdivided on the national level to capture differ-
ences between climate, soil, ecological zones, and manage-
ment practices [11]. In addition, IPCC defines five carbon
pools which are to be considered for reporting carbon
stock changes on forest land: aboveground and below-
ground biomass, dead wood, litter, and soil organic matter.
In forest inventories changes are generally assessed as

the difference of an attribute (e.g. forest area, timber or
biomass volume, stand age, timber value, carbon stock)
between successive occasions [12-15]. This approach
conforms to the so-called “stock difference method”,
which is along with the “the gain-loss method” presented
by IPCC [11] to assess carbon stock changes.

From a statistical point of view two kinds of errors can
occur when inference is drawn from monitoring data
(Table 1). A Type 1 error would result if a change is
inferred from the monitoring data though no change
occurred in reality, while under a Type 2 error a real
change would not be detected by monitoring. In the scope
of REDD a Type 1 error could represent the risk of coun-
tries to report a change of carbon stock where the true
carbon stocks did not change, while a Type 2 error would
result in reporting no change while real carbon stocks
decreased or increased. These types of errors could thus
either cause countries to fail to report emissions reduc-
tions that would earn them benefits, or cause donors to
erroneously acknowledge a country for seemingly success-
ful reductions.
The reliability of results can be quantified by giving

their precision, accuracy, mean square error or bias.
These words are often used synonymously in colloquial
speech, but they are deliberately contrasted in the context
of sampling statistics. In the following, we show the defi-
nitions of precision, bias, mean square error, and
accuracy.

Precision
Precision refers to the size of deviations from the esti-
mated mean, µ̂, obtained by repeated application of a
sampling procedure. It is quantified by the standard error
or confidence intervals. The precision of a statistical esti-
mate can be increased by increasing the number of
observations.

Bias
Bias, B, is the difference between the estimated mean and
the true mean, thus is directly related to the accuracy of
an estimate, as B = µ̂ − µ. A problem in surveys is that the
presence of bias, i.e. the lack of accuracy, is often not
known.

Mean square error
A useful measure of reliability is the mean square error
(MSE). It combines the precision of an estimate with its
squared bias. The MSE of an estimate is a useful

Table 1 Inferences from monitoring data and associates
errors

Inference

No change Change

Actual state No change correct False positive
(Type 1 error, a)

Change False negative
(Type 2 error, b)

correct
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criterion to compare a biased and an unbiased estimate.
According to Cochran ([16], p. 15) the MSE is formally,

MSE(µ̂) = E
(
µ̂ − µ

)2 = E
[
(µ̂ − m) + (m − µ)

]2
= (variance of µ̂) + (bias)2

Accuracy
Accuracy refers to the size of deviations from the true
mean, μ. It relates directly to the MSE. When compar-
ing two estimators, the one with the smaller MSE is said
to be more accurate [17].
For unbiased estimates the MSE and the precision are

asymptotically identical. As the concept of MSE and the
underlying figures are often not intuitively understood by
many stakeholders, the use of confidence intervals is sug-
gested [16,18]. Confidence intervals give an estimated
range of values, which is calculated from the sample data
and which are likely to include the unknown population
(true) value. Albeit the GPG and other publications sug-
gest differently [10,11], confidence intervals account
for precision only and do not address bias or other non-
sampling errors. The selection of a confidence level (e.g.,
95%) specifies the probability that the confidence interval
calculated will include the true parameter value. In for-
estry applications, especially in research, a common
choice is a 95%-confidence level, which says that in 95%
of the time, if repeated samples are taken with the same
methods, the confidence interval that is generated will
contain the true parameter value [15-17].
Dawkins [19] introduced the lower bound of a confi-

dence interval as a surrogate for the minimum quantity
to be expected with a given probability. The lower bound
of confidence intervals can serve as a proxy for the Reli-
able Minimum Estimate (RME) which the IPCC-Good
Practice Guidance suggests for addressing uncertainties
in the assessment of changes in soil carbon. In the con-
text of afforestation and reforestation activities under the
Clean Development Mechanism (CDM) [20,21] the RME
as a conservative measure has already been reflected in
several UNFCCC documents. Grassi et al. [22] propose
using the principle of conservativeness in order to
“address the potential incompleteness and high uncertain-
ties of REDD estimates“.
Confidence intervals and standard errors are strongly

influenced by the variability of the target population.
IPCC [10] presents the variability of above ground bio-
mass stock for different forest formations. Inventory con-
cepts need to take into account both the required
precision and budget constraints, in order to come up
with an optimal inventory design. Countries in a REDD-
readiness or demonstration phase [23] need to pay spe-
cial attention to the cost-efficiency of proposed REDD
monitoring concepts. It is good practice to evaluate

alternative sampling concepts under the criterion of cost
efficiency [24]. However, in the vast number of publica-
tions on REDD monitoring schemes the aspect of inven-
tory cost seems to have been neglected. An exception is
Hardcastle and Baird [25], who present a cost assessment
for measuring and monitoring forest carbon for 25 coun-
tries. The cost figures they present are indicative of the
levels of funding that would be required to achieve
reporting at different Tier-levels ignoring and including
degradation.

Sampling design alternatives
Different sampling design alternatives can be used in the
scope of REDD monitoring. These sampling designs can
employ in-situ (field plot) data, remote sensing-based data,
or a combination of the two. Typically, a combination of
remote sensing and in-situ assessments is utilized to assess
AD and EF. Remote sensing data provide geo-referenced
information for extensive areas, but no direct information
on carbon stocks inside forests. Field assessments do not
allow for spatially explicit mapping of activity data (and
are thus generally excluded from being the sole source of
MRV data), but do provide data on tree attributes that
enable the calculation of biomass, carbon stocks and
changes in them. Especially where airborne instead of
space-borne sensors are used, it can be prohibitive to
cover large areas with remote sensing imagery. Similarly,
field data collection campaigns can be costly, especially in
areas that are hard to access. Table 2 gives an overview of
some alternative inventory concepts for REDD and the
underlying sampling designs.
In forest surveys, simple random sampling (SRS) and,

more commonly, systematic sampling, are typically used.
In SRS, sampling units are chosen randomly. In systematic
sampling, they are arranged in a systematic pattern,
usually on a square grid or other regular geometric net-
work. The starting point of the geometric network of sam-
pling units is generally the only element of randomization
in systematic sampling. However, some, such as the US
Forest Inventory and Analysis (FIA) program, randomize
within each cell of a hexagonal tessellation of the study
area [26]. Ranneby [27] and Matérn and Ranneby [28] stu-
died exact approaches to calculate variances from systema-
tic sampling in a forest inventory context, and determined
that using SRS variance equations results in overestimates
of sampling error. In forest surveys it is good practice to
approximate the standard errors of systematic sampling
designs by the SRS equations and accept the overestima-
tion of the sampling errors.
Combined in-situ/earth observation sample designs use

auxiliary information obtained by remote sensing and field
sampling systems simultaneously. The earth observation
data can consist of derived data, such as a classification of
remote sensing data into land-use strata, or unprocessed
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reflectance data from optical, radar or LiDAR sensors.
Variables of interest such as biomass or carbon stock are
assessed on a small sample of field plots, and these data
are combined with the more densely-sampled earth obser-
vation data using statistical estimation procedures in order
to generate estimates.
The use of spatially continuous earth observation data-

sets generally leads to stratified sampling or regression
sampling designs. Regression estimators relate an auxili-
ary variable, which is measured or known for all popula-
tion elements, N, to a variable of interest, which is
assessed on a sub-sample of size n. Regression estimators
are applicable whenever the constraints for the application

of linear regression are satisfied. In practical applications,
the assumptions and constraints of linear regression such
as sufficient data across the entire value range, or homo-
scedasticity, can easily be violated for small units.
In stratified sampling thematic classes are obtained by

classifying the remote sensing imagery and assigning the
individual pixels (or polygons) into a fixed number of
groups (strata). Thus, the idea of stratified sampling is to
divide the population of N units into non-overlapping sub-
populations of N1, N2, ..., NL units. The subpopulations
are called strata. The strata are constructed to minimize
the variance within strata, thus maximizing the differences
between strata means. The characteristics of classes

Table 2 Data sources and sampling designs for REDD monitoring

Data sources Sampling design Estimation procedures for means and variances of the
mean (from [15])

Field plots Simple random sampling
y =

n∑
i=1

yi

n
; v(ȳ) =

n∑
i=1

(
yi −ȳ

)2
n(n − 1)

Systematic sampling

Field plots & full coverage remote
sensing imagery

Stratified sampling

Example: field plots and Spot satellite imagery

ȳst =
L∑

h=1

Ah

A

nh∑
i=1

yhi

nh

v
(
ȳst

)
=

L∑
h=1

(
Ah

A

)2

s2h

nh

;

Regression estimators

Example: field plots and TerraSarX (radar)

ȳlr = ȳ + b(X̄ − x̄)

v
(
ȳlr

) ≈

n∑
i=1

[(
yi −ȳ

) − b (xi −x̄)
]2

n(n − 2)

Field plots & partial coverage remote
sensing imagery

2-phase sampling for stratification (double
sampling for stratification)

Example: field plots & aerial photography

ȳds =
L∑

h=1

n′
h

n’
ȳh =

L∑
h=1

whȳh

v(yds) =
N − 1
N

L∑
h = 1

(
nh − 1
n′ - 1 − n′

L − 1
N − 1

)
W′

h − s2h
n′ +

N - n′
N(n′ − 1)

L∑
h = 1

Wh(yh−yds)

where

s2h =
1
n′
h

L∑
h=1

(yhi − yh)
2

2-phase sampling with regression estimators

Example: field plots & LiDAR

ȳlr = ȳ + b(x̄’ − x̄)

v(ȳlr) = s2y.x

[
1
n
+

(
x̄′ − x̄

)2∑
(x̄′ − x̄)2

]
+
s2y − s2y.x

n′ − s2y
N

with s2y.x =
1

n − 2

[
n∑
i=1

(
yi − ȳ

)2 − b2
n∑
i=1

(xi − x̄)2
]

Where:

yi = observation on field plot i; xi = observation in phase-1 sampling unit i; n = sample size, nh = sample size in stratum h; b = regression coefficient; N =
population size; wh = weight of stratum h = Ah/A;

A = inventory area; Ah = area in stratum h, h = 1, ..., L; sh
2 = variance of y in stratum h;
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suitable for stratification do not necessarily reflect the-
matic information that is suitable for map production. In
many cases combinations of thematic maps (i.e., different
classification schemes) or totally artificial (i.e., thematically
“meaningless”) classes prove best for stratification pur-
poses [15]. The n samples can be assigned to the strata
equally, proportional (i.e., in proportion to strata sizes),
optimal (i.e., by strata sizes and strata variances), or by
Neyman allocation that in addition to strata size and var-
iance includes the assessment costs per stratum [16]. For
monitoring purposes proportional allocation proves most
feasible, because changes in stratum assignments over
time do not affect the probabilities of selection, thus com-
plicating estimation [29,30].
In extensive surveys of large areas it is sometimes not

possible to acquire full-coverage remote sensing imagery.
That holds especially true when airborne instead of
space-borne remote sensing data are to be used. Here,
two-phase sampling designs offer an alternative by sam-
pling both the variable of interest as well as the auxiliary
variable. Stratified sampling and regression estimators
can be applied as two-phase sampling for stratification
and two-phase sampling with regression estimators.
In two-phase sampling with regression estimators the

auxiliary variable xi is measured on a sub-sample of N. In
this first phase a large sample of size n’ is selected. In the
second phase a random subsample of n’ is selected where
both xi and yi are measured and related via regression
models. Two-phase sampling with regression estimation
results in specific problems when used in practical applica-
tions. Among those problems are the need for calculating
regression estimates for any variable considered, the
assumptions for regression may be violated, no additive
tables are obtained (table cells and margins are modeled
separately), or not being able to analyze data on nominal
and ordinal scales [31].
Two-phase sampling for stratification is similar to

stratified sampling - the difference being that the strata
sizes are not measured but estimated by the large first
phase sample. The variance v(yds) combines the within
and between strata variation. For large N, v(yst) can be
used as an approximation for v(yds).
MRV systems need to provide figures on total rather

than on mean carbon stocks and their respective
changes. Therefore the equations presented in Table 2
need to be extended to total values. The population
total and its variance is estimated from any mean by

Ŷ = Ny

v(Ŷ) = N2 v
(
y
)

When y is related to a unit area (e.g. ha) then the
population size N can be replaced by the area of the

entire population A. Under the assumption that the esti-
mates of means are normally distributed, the lower and
upper confidence limits for the population mean and
total are as follows:

ȳL = ȳ − ts√
n
, ȳU = ȳ +

ts√
n

ŶL = Nȳ − tNs√
n
, ŶU = Nȳ +

tNs√
n

For sample sizes that are sufficiently large (n > 60),
the Student’s t-value corresponds to the value of the
normal deviate with the desired probability, e.g., t = 1.96
for 95% confidence levels with large sample sizes.

Selecting the optimal design
Many inventory concepts have been presented for moni-
toring carbon stocks and carbon stock changes in the
scope of REDD. Irrespective of the objective of a survey
alternative, inventory concepts exist to choose from,
including the utilized data sources (field assessments,
remote sensing, maps etc.), the design of the sampling
units (plot configuration), sampling rules and sample sizes.
The potential design alternatives are influenced by a vari-
ety of factors such as the variability of the target popula-
tion, budget allowance, or availability of auxiliary data
sources and information (e.g. maps, remote sensing
imagery, biomass models). A rational decision about the
optimal design can be made only by comparing the set of
alternatives under objective selection criteria that combine
information on survey cost and the achievable reliability of
the results. This allows for selecting the most cost-efficient
design that either provides the best reliability under a
given budget or provides the desired reliability by least
cost. Discussions on survey design alternatives that lack
the inclusion of cost are not very helpful for developing
operational MRV-systems under a national REDD regime.

Survey Costs
Survey costs are made up of fixed and variable cost com-
ponents. Fixed costs are those that do not vary with sam-
ple sizes and design alternatives, but are common to all
alternatives, for example cost for administration or
research. As fixed costs are design independent they are
not to be considered in the optimization process [24,32].
Design dependent costs include additional fixed costs for
specific design alternatives and variable costs. Costs for
visiting and measuring field samples are a typical exam-
ple of variable costs, which are proportional to the num-
ber of field samples assessed. For stratified sampling,
additional costs include acquisition, enhancement, and
classification of remote sensing data as well as validation
of the classification results.
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Hardcastle and Baird [25] studied the readiness of 25
tropical countries for monitoring forests and reporting
on REDD. For each country cost estimates are provided
for implementing REDD MRV systems, the major drivers
of costs being forest extent, stratification, and the appro-
priate choice of estimation method (Tier). They present
the initial and recurrent cost separately for 4 alternatives:

1. Tier 2, Approach A: an accurate land-cover map
is available, 300 sample plots are assessed in-situ, all
carbon measurements are performed once at the
beginning of the programme, future monitoring is
focused on the assessment of human activities (activ-
ity data, AD) such as area changes by remote sensing
data and requires only minimal field work.
2. Tier 2, Approach B: no accurate land-cover map is
available, in-situ assessments are performed when
activity monitoring by remote sensing identifies loca-
tions under change, the in-situ sampling intensity is
considerably lower than under Tier 2, Approach A.
3. Tier 3, ignoring degradation: AD and emissions per
unit of the activity (emission factors, EF) are assessed
as under alternative 1 (Tier 2 Approach A), but remea-
surements are made in permanent in-situ sample plots
(about 1/3 of the original sample locations)
4. Tier 3, including degradation: alternative 3 is
enhanced by further stratification of forests into the
two classes “intact forests” and “non-intact forests”,
the number of field plots is moderately increased

The inventory concepts applied by Hardcastle and Baird
[25] are generic rather than case-specific, as they do not
result from an optimization process on the individual
national levels. However, they are used for an approximate
comparison of cost required to implement an operational
REDD MRV scheme on the national level. Hardcastle and
Baird [25] present respective costs for four alternatives
over forest area. The cost per unit area decrease with
increasing forest area, as the share of fixed costs in total
costs decreases.

Variability of the target population
Sample sizes and thus survey costs are directly linked to
the variability of the sample population. Variability data
for a population can be obtained by prior knowledge or
by a pilot survey. For each variance component that is
included in the estimation procedures, variability figures
have to be specified. For stratified sampling this means
specifying the variance by stratum for each key attribute
of interest.

Optimization
For each sampling alternative there exists an optimum
combination of sample sizes. These optimum

combinations should be used to compare the various
design alternatives. In the optimization process var-
iance functions and cost functions have to be linked in
order to derive the optimal (i.e. most cost-efficient)
sampling alternative. The optimum sampling design
can be defined in two ways:

1. minimizing cost for a specified level of precision,
or
2. minimizing variance for a specified cost.

In either case, the optimization requires that the cost
and precision be expressed in terms of the sampling
design and sample sizes.

Results and Discussion
The results shown below were obtained based on the
assumptions presented above utilizing the Puerto Rico
dataset [33]. The percent sampling error of each of the
simulated design alternatives is presented in Figure 1.
As expected for each design alternative standard errors
decrease with increasing sample sizes. The design alter-
native that used only field plots (SRS) and not any
remote sensing derived auxiliary information consis-
tently resulted in the largest percent standard errors.
From Figure 1 it can be seen that r2-values have a

pronounced effect on standard errors. An increase of r2

from 0.3 to 0.9 reduces the percent standard error by
approximately 50 percent. The functional pattern of
sample size and percent standard error is similar for all
design alternatives except stratified sampling; under
stratified sampling the gain in precision with increasing
sample size is more pronounced. Under any sampling
design the relative gain in efficiency decreases with
increasing sample sizes. For our example there exists a
drop-off point at a sample size of around n = 200, after
which the percent standard error drop would not
account for the increased cost to collect additional
samples.
Figures 2, 3, 4, 5, 6 and 7 present the percent standard

error over cost and thus allow for the assessment of the
cost-efficiency of the design alternatives. Four different
scenarios are shown in these figures, which are a combi-
nation of cost of remote sensing imagery (0.1 US$/ha
and 1 US$/ha) and phase 1 coverage (1 percent and 10
percent). The cost per field plot are set to 5, 000 US$
(Figures 2, 3 and 4) and 500 US$ (Figures 5, 6 and 7).
The design alternatives show similar behavior - rising

cost reduces via the increased number of field plots
assessed the percent standard error. The impact of r2-
values as seen in Figure 1 can be translated into cost:
for the same cost a r2-value of 0.9 reduces the percent
standard error by half compared to an r2-value of 0.3.
The gain in standard error per cost unit decreases with
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increasing cost until it reaches a more or less steady
state.
For low costs of remote sensing as opposed to per

field plot cost (Figure 2A, Figure 3C, Figure 5A,Figure
6C) the design alternatives utilizing remote sensing per-
form better than SRS, with the exception of stratified
sampling for costs below 0.5 US$/ha and regression esti-
mators with r2 = 0.3 for costs below 0.4 US$/ha (Figure
4E, Figure 7E). The pattern of gain in percent standard
error over cost is similar for all design alternatives
except stratified sampling. Here the rate of reduction in
sampling error is greater than the other alternatives,

although there are higher initial costs (Figure 4EF,
Figure 7EF). This makes stratified sampling the least
cost-efficient alternative for low costs (fewer field plots)
and the most cost-efficient for high costs (more field
plots).
When the cost of remote sensing imagery is assumed

to be 1 US$ per hectare, the design alternatives requiring
full coverage of the auxiliary variable (regression estima-
tion and stratification) (Figure 4F, Figure 7F) differ con-
siderably in cost-efficiency from the 2-phase designs
(Figure 2B, Figure 3D, Figure 5B, Figure 6D), which
require only partial coverage. Stratification and
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regression estimators with r2-values of 0.6 reach the per-
cent standard errors of the other designs at a cost level of
1.6 US$/ha, while regression estimation with an r2-value
of 0.3 fail to achieve parity with the other designs until
they reach a much higher cost-level. Where remote

sensing information is costly, design alternatives utilizing
only field plots or partial coverage with remote sensing
imagery can thus be the more cost-efficient alternatives.
Figures 5, 6 and 7 show results of the sample design

alternative comparison when field plots costs are
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assumed to be 500 US$/plot. In this case, cost efficiency
is necessarily consistently better than for more expensive
per plot costs (Figures 2, 3 and 4). The differences
between design alternatives are less pronounced with
low-cost remote sensing data; here differences in cost-
efficiency between regression estimators and 2-phase
sampling with regression estimators become negligible

when cost are 0.3 US$/ha or higher (Figure 5A, Figure
6C, Figure 7E). Where the cost of remote sensing are
higher (Figure 5B, Figure 6D, Figure 7F) full-coverage
design alternatives are competitive only for higher total
per hectare cost. Stratification and regression estimates
with low r2-values are less efficient than SRS for moder-
ate costs.
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Figure 3 Sampling design alternatives, field assessment cost: 5, 000 US$ per field plot, and remote sensing cover of 10%.
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When remote sensing costs are assumed to be 1 US$/ha,
stratified sampling and regression estimators can no
longer compete with the other design alternatives (Figure
4F, Figure 7F). For a remote sensing coverage of 1 percent
of the study area, 2-phase sampling with regression esti-
mators is consistently more cost-efficient than SRS (Figure
2B, Figure 5B), while for a 10-percent remote sensing

coverage this holds true only for r2-values of 0.9 (Figure
3D, Figure 6D).
While in Figures 2, 3, 4, 5, 6 and 7 constant cost for

remote sensing imagery was assumed regardless of the
type of coverage attained, Figures 8, 9 and 10 show a
cost scenario that is more realistic for remote sensing
applications. It is assumed that the cost for remote
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Figure 4 Sampling design alternatives, field assessment cost: 5, 000 US$ per field plot, and full remote sensing cover.
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sensing imagery is higher when used for partial coverage
than for wall-to-wall coverage. This is a typical situation
when inventory approaches utilizing airborne LiDAR
data are compared with those that use space-borne

multispectral or RADAR data. In the scenarios pre-
sented in Figures 8, 9 and 10, the cost for full coverage
remote sensing data was set to 0.01 US$/ha and to 1 US
$/ha for partial coverage. Under these assumptions

Remote 
sensing 
cover 

Remote 
sensing 
cost 

 

1 % 

0.1 
US$/ 

ha 

A 

Pe
rc

en
t S

ta
nd

ar
d 

Er
ro

r 

60 

 

50 

40 

30 

20 

10 

0 

  0.0  0.5    1.0 1.5     2.0 2.5_ 
  Cost [US$/ha] 

 

1 
US$/ 

ha 

B  

Pe
rc

en
t S

ta
nd

ar
d 

Er
ro

r 

60 

 

50 

40 

30 

20 

10 

0 

  0.0  0.5    1.0 1.5     2.0 2.5_ 
  Cost [US$/ha] 

 

 

Field plots only (SRS)    
2-phase sampl. with regression estimators    r2=0.3 

  r2=0.6 
   r2=0.9 

Figure 5 Sampling design alternatives, field assessment cost: 500 US$ per field plot, and remote sensing cover of 1%.
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regression estimates that require full coverage are now
more cost efficient than 2-phase sampling with regres-
sion estimators. For cost over 0.3 US$/ha stratified sam-
pling becomes the most cost-efficient alternative.

From the equations given in Table 2 it is intuitively
clear that changes in population variances affect stan-
dard errors but do not change the pattern of cost-effi-
ciency. To illustrate this obvious matter of fact we
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Figure 6 Sampling design alternatives, field assessment cost: 500 US$ per field plot, and remote sensing cover of 10%.
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simulated cost efficiency under different variance
assumptions. The variances presented in Tab. 4 were by
50% inflated and decreased. The effects on cost-effi-
ciency can be seen in Figures 8, 9 and 10. The absolute
standard errors change, but the general pattern of the
cost-efficiency curves is maintained. Similarly the

relative order of the designing alternatives with respect
to cost-efficiency does not change.

Conclusions
In our simulation study we compared different sampling
design alternatives in the scope of REDD and linked
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Figure 7 Sampling design alternatives, field assessment cost: 500 US$ per field plot, and full remote sensing cover.
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information on sampling variance with information on
cost. This allowed us to characterize the effect of sam-
pling design alternatives and sample sizes on the cost-
efficiency of a REDD MRV- system. This approach facil-
itates the selection of the optimal design alternative for
specific populations and monitoring objectives.

The optimization process offers a set of potential start-
ing points for improvement. Sampling intensity, field plot
design and sample design (including the potential for use
of a remote sensing product as auxiliary data) are the
most important control variables for developing a cost-
efficient inventory and monitoring methodology. Given
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Figure 8 Cost-efficiency under changing population variances (cost per field plot = 500 US$), and remote sensing cover of 1%.
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the assumptions we chose to adopt, our cost analysis
study revealed that incorporating expensive (i.e. airborne)
remote sensing data into the sample design for a forest
carbon measurement survey can unnecessarily inflate the
costs compared to other alternatives.

The results indicate that it is important to include cost-
efficiency aspects in the selection of the remote sensing
alternative to be used. It needs special justification if
expensive remote sensing alternatives are suggested.
Either they improve cost-efficiency or there are
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Figure 9 Cost-efficiency under changing population variances (cost per field plot = 500 US$), and remote sensing cover of 10%.
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additional benefits beyond the mere estimation of carbon
stock changes.
The development of MRV-systems for REDD needs to

be based on a sound optimization function, where either

costs are minimized for a desired level of precision, or
variances are minimized for a specified budget. Design
optimization has to consider the marginal benefit for
improving the cost-efficiency. Increasing the budget for
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Figure 10 Cost-efficiency under changing population variances (cost per field plot = 500 US$), and full remote sensing cover.
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an assessment results in substantial improvements of
standard errors in the beginning, but the marginal bene-
fits become negligible for high costs. The definition of
the ideal turning point is such essential for the design
optimization. The turning point could be selected by
applying the principles of capital budgeting or by expert
opinion.
Monitoring cost are especially important in the con-

text of REDD, as an MRV-system can be seen as an
investment that aims to generate financial benefits. The
amount of investment and the resulting reliability of the
estimated carbon stock drives the financial gains, and
thus rules the success of a REDD regime. This holds
especially true in situations where deforestation is driven
by the expectation of financial profits due to land-use
change.
Uncertainty is a major issue in MRV-systems. Given the

decreasing marginal benefit with increasing budgets indi-
cates that increasing the sampling intensity is not the ulti-
mate solution to improve the reliability of estimates. The
application of models and functions renders necessary to
transfer data assessments into estimates of carbon stock
changes. The uncertainty underlying those models and
functions has widely been discussed and was recognized
by IPCC [11]. In relation to design optimization it could
be a better choice to accept lower sampling intensities and
resulting higher standard errors and invest into the
improvement of models and functions. Extending the cost
considerations from the cost-efficiency of sampling to the
overall cost of a MRV-system turns design optimization
into a process that is part of the entire desire to reduce
uncertainties and make estimates of carbon stock changes
more reliable.

Materials and methods
Designing a monitoring system renders decisions on data
sources, sample sizes, and sampling designs necessary,
which in turn control inventory cost and cost-efficiency.
To represent the interrelations between these inventory
design components in a general and transferable way, we
chose a simulation study approach. The simulation study
was designed to repeatedly generate estimates on sampling
errors with different combinations of design alternatives,
samples sizes and costs. By analyzing the results of the
simulation runs we hope to indentify principles that can
help to guide design choices for REDD monitoring.
True population data on variance structures were taken

from the Third Forest Inventory of Puerto Rico [33,34],
which covers a total land area of 886, 996 ha. The forest
life zones found on the mainland of Puerto Rico are “sub-
tropical dry forest, subtropical moist forest, subtropical
wet forest, subtropical rain forest, subtropical lower mon-
tane wet forest, and subtropical lower montane rain for-
est” [34], while on the islands of Vieques and Culebra

subtropical dry forest conditions prevail. Field data were
collected by FIA. Each FIA plots consists of four circular
14.6 m diameter subplots, with one subplot located in
the center and three equidistant subplots distributed
symmetrically around and located 31.6 m from the center
subplot. The subplots occupy 0.07 ha, and the subplot
array can be subtended by a circle of 0.4 ha in area
[35,36].
Per plot aboveground biomass (AGB) figures were taken

from the FIA data set. FIA estimates AGB by regression
models that are either developed by the FIA program or
compiled from the literature. The models predict above-
ground biomass from individual tree dbh and total height
measurements and provide the total oven-dry biomass in
kilograms of all live aboveground tree parts, including
stem, stump, branches, bark, seeds, and foliage. Carbon is
calculated by multiplying estimated total biomass of all
trees with dbh ≥ 2.5 cm by a factor of 0.5 [34]. Per plot
values were expanded to unit area (hectare).
Table 3 provides the summary statistics of the data

used for the case study for all observed plots and for the
key forest types. A total of 956 plots were available of
which 288 plots (or 30 percent) are located on forested
areas and 678 plots on non-forest land. Both forested and
non-forested plots were used in the simulation runs. For
the entity of all plots a coefficient of variation of 242 per-
cent was calculated, ranging from 40 percent in lower
wet and rain forests to 137 percent in Mangrove forests.
The simulation study aims at comparing the efficiency

in terms of percent sampling error with the underlying
assessment cost and providing information on the cost-
efficiency of different design alternatives. Four different
sampling designs were selected for the simulation study:

- Simple random sampling (SRS); this alternative
would represent a solely field-based assessment
- Regression estimators; under this alternative auxili-
ary data (e.g. LiDAR or RADAR backscatter) are
assessed on a wall-to-wall coverage of remote sen-
sing imagery and linked via regression estimates to
the variable of interest (e.g., AGB) that is assessed
on a (small) sub-sample of field plots.
- Stratified sampling; a wall-to-wall coverage of
remote sensing imagery is utilized to separate the
entire population into homogeneous strata. In each
stratum field plots are assessed. The classification of
multi-spectral, optical remote sensing data would be
a common procedure to obtain the stratification of
the inventory area.
- 2-phase sampling with regression estimators; the
alternative is similar to regression estimators, but
requires only a partial coverage of the inventory area
by remote sensing imagery. Where airborne remote
sensing systems such as LiDAR render data
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assessment on flight lines rather than full coverage
necessary, this sampling alternative is the preferred
method. For the simulations study we used a phase-
1 coverage of 1 percent and 10 percent of the entire
inventory area.

Simple random sample will serve as the baseline for
comparing alternative sampling designs. The performance
of both, regression estimators and 2-phase sampling with
regression estimators depends on the correlation between
the auxiliary variable and the variable of interest. Drake
et al. [37] used metrics from large-footprint LiDAR and
modeled plot-level biomass with r2 = 0.93 for a 1, 536 ha
area in Costa Rica stocked by primary and secondary wet
tropical forest, abandoned pasture and plantations, and
agro-forestry. Even higher r2-values could be found in bor-
eal and temperate mono-species forests. For example,
Means et al. [38] found on 26 plots (approx. 6.5 ha) pri-
marily of Douglas-fir and western hemlock r2 values of
0.96 for the estimation of AGB. Considerably lower r2-
values were found for volume (0.66) and biomass (0.59) by
van Aardt et al. [39], who used small-footprint LiDAR to
study a LiDAR-based, object-oriented approach to forest
volume and aboveground biomass modeling in temperate
forests. We included r2-values of 0.9, 0.6, and 0.3 in our
simulation study to extent the informative value to opera-
tional applications and to show the effect of the underlying
correlation between auxiliary and field data on the cost-
efficiency of the design.
In order to prepare the data for the simulation of strati-

fied sampling, the Jenks Natural Breaks Classification

method was applied [40]. Jenk’s optimization method
assigns values to a given number of classes with the objec-
tive of minimizing variances within classes while maximiz-
ing between class means (Table 4). In terms of the
simulation study, this results in an optimal stratification
rule; not any remote sensing technology could perform
better.
For each design alternative the initial number of field

plots was set to n = 20, except for stratified sampling,
where a minimum of 40 field plots was predefined to
obtain a sufficient within-strata sample size. A maximum
sample of n = 6, 000 was sufficient to show the effect of
increasing sample size on the percent standard error. We
sampled n = 20 to 6, 000 in increments of 5.
Costs are decisive for the selection of the optimal

design alternative, but are for the most part neglected in
publications on inventory concepts for REDD. Reports
on costs of different components of an inventory such as
ground survey, analysis of remote sensing data, or data
cost vary widely. As we did not want to optimize an
inventory design for a specific application but illustrate
the effect of cost implications on the design selection, we
choose a range of realistic costs for field assessments and
remote sensing data acquisition and interpretation. Fixed
cost components such as administration, training or
infrastructure were not included as they are not design
dependent. Table 5 shows the costs used in the simula-
tion study. For remote sensing imagery two alternative
cost scenarios were utilized. Alternative 1 was chosen
according to Asner et al. [41], who quantified the cost for
the acquisition of LiDAR data with 0.16 US$/ha for

Table 4 Stratification by Jenk’s Natural Breaks Classification Method

Strata by Jenk’s N Mean Variance Coeff of Variation Std Error

0 676 0.00 0.00 . 0.00

1 80 25.36 225.26 59.18 1.68

2 81 85.74 390.56 23.05 2.20

3 51 153.43 539.90 15.14 3.25

4 40 248.44 923.50 12.23 4.80

5 28 465.04 31, 521.72 38.18 33.55

Table 3 Summary statistics for above ground biomass*

Forest Type N Mean Variance Coeff. of Variation Std Error

Mangrove 3 45.99 3, 949.77 136.64 36.28

Dry forest 54 54.17 2, 451.60 91.40 6.74

Moist forest 141 136.33 19, 248.57 101.77 11.68

Wet and rain forest 81 200.58 27, 611.02 82.84 18.46

Lower montane wet and rain forest 4 220.36 7, 675.41 39.76 43.80

Mixed 5 68.55 2, 021.61 65.59 20.11

All (288 forest plots; 678 non-forest plots) 956 41.59 10, 137.60 242.11 3.26

* AGB expanded to unit area (hectare)
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carbon mapping on the Island of Hawaii. Alternative 2
reflects the cost of multispectral imagery, as specified by
Häussler (cited in [25]).
The following settings of the simulation study were

realized:
Field sample size: n = {20, ... 6, 000}
Remote sensing coverage: 1%, 10%, full
Cost per field plot: 500 US$, 5, 000 US$
Cost remote sensing imagery: 0.1 US$/ha, 1 US$/ha
r2-value, AGB = f(remote sensing signal): 0.3, 0.6, 0.9
Sampling designs: simple random sampling, stratified

sampling, regression sampling, 2-phase sampling with
regression estimators
Based on the coefficients of variation for the sampling

population (Table 3) and the stratification rules presented
in Table 4 we calculated the cost-efficiency in terms of
total cost and percent standard error or each combination
of settings. The simulation was run under SAS© [42].
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