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Abstract
Background  Integrating trees into agricultural landscapes can provide climate mitigation and improves soil fertility, 
biodiversity habitat, water quality, water flow, and human health, but these benefits must be achieved without 
reducing agriculture yields. Prior estimates of carbon dioxide (CO2) removal potential from increasing tree cover in 
agriculture assumed a moderate level of woody biomass can be integrated without reducing agricultural production. 
Instead, we used a Delphi expert elicitation to estimate maximum tree covers for 53 regional cropping and grazing 
system categories while safeguarding agricultural yields. Comparing these values to baselines and applying spatially 
explicit tree carbon accumulation rates, we develop global maps of the additional CO2 removal potential of Tree 
Cover in Agriculture. We present here the first global spatially explicit datasets calibrated to regional grazing and 
croplands, estimating opportunities to increase tree cover without reducing yields, therefore avoiding a major cost 
barrier to restoration: the opportunity cost of CO2 removal at the expense of agriculture yields.

Results  The global estimated maximum technical CO2 removal potential is split between croplands (1.86 PgCO2 yr− 1) 
and grazing lands (1.45 PgCO2 yr− 1), with large variances. Tropical/subtropical biomes account for 54% of cropland 
(2.82 MgCO2 ha− 1 yr− 1, SD = 0.45) and 73% of grazing land potential (1.54 MgCO2 ha− 1 yr− 1, SD = 0.47). Potentials seem 
to be driven by two characteristics: the opportunity for increase in tree cover and bioclimatic factors affecting CO2 
removal rates.

Conclusions  We find that increasing tree cover in 2.6 billion hectares of agricultural landscapes may remove up to 
3.3 billion tons of CO2 per year – more than the global annual emissions from cars. These Natural Climate Solutions 
could achieve the Bonn Challenge and add 793 million trees to agricultural landscapes. This is significant for global 
climate mitigation efforts because it represents a large, relatively inexpensive, additional CO2 removal opportunity 
that works within agricultural landscapes and has low economic and social barriers to rapid global scaling. There is an 
urgent need for policy and incentive systems to encourage the adoption of these practices.
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Background
Integrating trees into agriculture is an ancient practice 
with climate-adaptive benefits as reviewed by van Noord-
wijk et al. [45], as well as a promising Natural Climate 
Solution [61]. Trees can reduce wind speeds over crops, 
reducing transpiration and drought stress [35, 39]. Trees 
in agriculture aid in regenerating and retaining soil car-
bon [40], improve biodiversity [18, 50], and provide 
other ecosystem services related to air, water, and carbon 
[33]. However, trees also compete with crops for space, 
light, water, and nutrients [47, 56], and are often cleared 
from agricultural areas, although tree management and 
arrangement can mitigate competition and trade-offs 
between trees and crop production.

Agroforestry research has been ongoing for decades 
across the globe to optimize tree spacing [51, 70] and 
management, including pruning to balance the trade-
offs of competitive and facilitative effects of trees on 
crops [14], allowing crop production to remain stable or 
increase with trees. Maximum tree covers vary greatly 
depending on geography and the design of the agrofor-
estry system, but they must allow for the required amount 
of sunlight, water, and nutrients to reach the crops. Water 
and nutrient balance are improved when trees and crops 
have different rooting depths [46] and trees contribute 
to soil fertility [8]. Trees can moderate the microclimate 
and potential negative effects of droughts on annual 
crops [42], Corraliza et al. 2018, Temani [64], and forage 
grasses [19, 48], which will be increasingly important in, 
and adaptive to, future climates [45]. Trees can increase 
production in grazing lands [32, 34] when the tree com-
ponent provides fodder [24] and provide thermoregula-
tion, improving animal health especially by protecting 
from extreme heat [3, 11, 12]. In their review of global 
alley-cropping system literature, [70] found that most 
research has been on utilizing niche complementarity 
to reduce the negative impacts of trees and crops; how-
ever, they suggest research on trees for crop facilitation, 
including through nitrogen fixation, on-farm mulch pro-
duction, and the development of shade-tolerant crops, as 
an important research frontier.

The importance of maintaining food security for a 
growing global population is fundamental to Natural Cli-
mate Solutions, which aim to safeguard food security by 
allowing no changes in cropping areas [23]. Griscom et 
al. [23] described a “Trees in Croplands” NCS pathway 
with a maximum additional biophysical carbon dioxide 
(CO2) removal potential of 1.04 PgCO2 yr− 1 from 608 M 
ha of cropland. Chapman et al. [9] generated global maps 
of aboveground woody biomass and tree cover in both 
croplands and grazing lands. They calculated the median 
value for standing carbon biomass on the agricultural 
land with > 5 Mg C ha− 1, and used it to estimate the 
maximum additional carbon sequestration potential if 

lands with < 5 Mg C ha− 1 increased to that level, finding 
a maximum additional aboveground carbon sequestra-
tion potential of 49.4 Pg C in croplands and 44.5 Pg C in 
grazing lands [9]. Chapman’s work provided the basis for 
the estimations in Roe et al. [58] which split the poten-
tial over 30 years. A more recent study by Zomer et al. 
[71] estimated a lower global potential of increased tree 
cover on agricultural land based on an updated carbon 
density map [63] and two scenarios of incremental and 
systematic increases in tree cover. They estimated a total 
mitigation potential in the range of 4–19 Pg C, similar 
to IPCC 2022 [13] Tier 1 estimates of above and below-
ground biomass on agricultural land. The discrepancies 
in estimated mitigation potential between these studies, 
as well as their use of median standing biomass to deter-
mine tree cover increase scenarios, illustrates the need 
for further refinement of global CO2 removal potential, 
based on estimates of tree cover increase tailored to spe-
cific biomes and agricultural systems.

Here we define Tree Cover in Agriculture (TCA) as a 
Natural Climate Solution (NCS) on agricultural lands 
achieved by increasing tree cover without reducing agri-
cultural yields or exceeding the ecosystem’s native level of 
tree cover. We attempt to control for the risk of displace-
ment of agriculture by emphasizing the maintenance of 
agricultural yields, recognizing that some changes in the 
configuration of the agricultural activities may occur 
to incorporate tree cover, but these changes should not 
cause displacement or ‘leakage’ of agricultural produc-
tion if the yield of the area at the field scale is maintained. 
Per [44], in a general sense, leakage occurs when the 
actions to reduce GHG emissions for a particular project 
cause responses outside the project boundaries that also 
have GHG consequences. At the scale of the farm fields, 
we allowed for trade-offs between m2 of agricultural land 
actually producing crops or non-tree forage within a 
field and yield per m2 of the remaining m2 not displaced 
within a field - as long as overall yield at the “field” scale 
was not reduced.

The ‘sharing vs. sparing’ debate [22] compares indus-
trial farming in some areas to preserve other areas (spar-
ing) vs. low intensity farming over all areas (sharing). 
‘Sharing’ is considered less desirable than ‘sparing’ for 
conservation because biodiversity decreases in ‘shar-
ing’ scenarios compared to protected (spared) areas [53]. 
TCA works in agricultural lands, without increasing their 
area, to attain the maximum extent of ‘sharing’ possible 
without displacement of agriculture, therefore it should 
not be a threat to ‘spared’ areas and will still rely on prox-
imity to ‘spared’ areas for biodiversity enhancement [7]. 
The trees are integrated into the agricultural system and 
cropping area at a field and farm scale, while the land use 
continues to be agriculture.
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While Tree Cover in Agriculture (TCA) is more spe-
cific than the broader categories of ‘trees outside of for-
ests; TOF’ (reviewed by Schnell et al. [59] and ‘trees in 
mosaic landscapes; TML’ [5], it does not dictate the 
spatial arrangements of the trees. TCA can lead to the 
establishment of many types of agroforestry systems, 
including silvopastoral grazing systems with scattered 
trees, trees planted as windbreaks and along field bound-
aries, and alley cropping with rows of trees (but not high-
density short-rotation trees for biomass- the trees must 
reach mature size in the system to be a part of this NCS). 
By this definition TCA includes shade-agroforestry sys-
tems, like traditional coffee production, but we have not 
been able to include them in this analysis because these 
systems cannot be reliably identified by existing glob-
ally available remote sensing techniques that this study 
depends on [30]. Hence, the findings of this paper are 
for tree incorporation into what are traditionally con-
sidered ‘full sun’ cropping systems. Other forms of tree 
crop cultivation, where the trees form the upper canopy 
and produce the crops (e.g. fruit trees or oil palm planta-
tions), are not included as these fully tree-based systems 
are included within other NCS pathways (e.g. improved 
plantations as described in Griscom et al. [6, 23].

Trees growing in TCA systems will be subjected to dif-
ferent conditions than trees in a forest, plantation, or nat-
ural regeneration setting. They will generally be spaced 
wider apart, and thus are more exposed to sun and wind 
and have less competition with other trees. Since these 
trees share land with agricultural production, they may 
experience corresponding land management that could 
benefit or harm them, such as fertilization, soil compac-
tion, irrigation, etc. Additionally, tree-crop relationships 
change over time and can only be considered stable when 
the tree has reached its final size. As such, we expect 
trees in agricultural lands to remove CO2 at a differ-
ent rate compared to trees in forests or areas of natural 
regeneration. However, there is no global dataset on the 
carbon accumulation rates of trees in agriculture, so we 
used Cook-Patton et al. [10]annual aboveground carbon 
accumulation of naturally regenerating forests as the best 
available and most relevant global dataset.

Ideal mature tree densities in agroforestry can vary 
greatly depending on climate and tree management 
[20]. Lasco et al. [38] showed that trees may not reduce 
food production while providing climate mitigation and 
adaptation, if the right combinations of trees and food 
systems are found. By limiting the integration of trees in 
agricultural landscapes to levels that avoid reductions in 
agricultural yields, we explore the global potential of a 
strategy for increasing tree cover that avoids a major cost 
barrier to restoration: the opportunity cost of deliver-
ing carbon removal at the expense of agriculture yields. 
For this research on the global carbon dioxide (CO2) 

removal potential of Tree Cover in Agriculture (TCA), 
we aimed to define thresholds for maximum tree cover 
that would be relevant across multiple tree/crop/grazer 
combinations, using ‘average’ mature tree characteristics 
to set general guidelines, within which farmers, agrono-
mists, and agroforesters can work to co-design tree-crop 
systems to maximize climate mitigation while ensur-
ing continued food security. To do this, we consulted 
with experts on the integration of trees into agricultural 
systems, and compared their estimations of maximum 
tree covers to current values, to calculate the poten-
tial increases in tree cover and its corresponding CO2 
removal potential.

Methods
There were two main components to this research. First, 
we conducted two Delphi method expert elicitations to 
set biome- and continent-specific thresholds for maxi-
mum percent tree canopy cover (hereafter “tree cover”) 
in 1: cropping and 2: grazing lands that would cause no 
decreases in agricultural yields. Then, we conducted a 
geospatial analysis of the additional CO2 removal poten-
tial by comparing the estimations of maximum tree cov-
ers to current levels and applying spatially explicit carbon 
accumulation rates.

Literature review and expert identification
We started with a literature review to evaluate the state 
of knowledge and identify experts. Using Google Scholar, 
we sought articles that quantified 4 parameters: tree 
cover or density, size, age, and agricultural yields with 
and without trees for common cropping systems (search 
terms “tree density” and “{either wheat/soybean/maize} 
yield” and “agroforestry” which yielded 161/52/324 arti-
cles, respectively). After excluding articles with newly 
establishing trees (too small to impact crops) and high-
density short-rotation plantings, 206 article abstracts 
and 75 full papers were reviewed. Only 22 of the papers 
included the four parameters we sought: it was rare for 
papers to quantify the tree size, and especially rare for 
them to include the comparison of crop yields with and 
without trees. The 22 studies did not seek a maximum 
tree density for maintaining yields, rather they tested 
one or a few tree densities for yield impacts, which only 
allowed us to extract suggested upper limits for tree 
cover for those systems (notably, Rivest et al. [2, 16, 17, 
32, 57, 64, 65, 67]. There was even less applicable litera-
ture for grazing systems. Therefore, an expert elicitation 
approach was necessary, due to these limitations of the 
literature. We invited the authors of the relevant articles 
to participate in the expert elicitation, and contacted 
agroforestry organizations for expert referrals, seeking 
representation for almost all biomes on all continents. 
The “Tundra” biome was excluded to avoid potential 
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albedo effects caused by relatively dark tree cover on a 
relatively light landscape, which may offset climate bene-
fits of increased tree cover [26]. We excluded “Mangrove” 
and “Flooded Grassland and Savanna” biomes given the 
complexity of their hydrology, and spatial resolution con-
straints of these fringing ecosystems, and their relatively 
small total areas at the global scale, but they could be 
included in regional follow-up studies where relevant.

Delphi expert elicitations
We conducted separate Delphi expert elicitations for 
cropland and grazing land, each consisting of initial indi-
vidual consultations followed by a finalization round. The 
flow of the initial questionnaire is shown in Fig. 1 and its 
content can be found in Additional Files 1 and 2.

The questionnaire was available in English, Span-
ish, French, and Portuguese. Experts first confirmed the 
system of their expertise (biome, continent, and crop/
grazing system). They were then asked to give specifica-
tions on the “tree of reference” for which they would be 
providing estimations, including the tree species and its 
mature height and mature crown width. We also asked 
them to characterize the cropping or grazing system in 
their region for which they were making their recom-
mendations, with regards to the average field size and 
frequency of mechanization.

We collected expert estimations of percent tree canopy 
cover that would maximize tree density without signifi-
cantly reducing long-term agricultural yields within that 
cropping or grazing system. Estimations were made in 
one of 3 ways- trees/ha, row spacing, or percent tree 
cover, depending on the preference of the expert. The 
unit of analysis was the field level, and we requested 
specifications for field boundaries separately from trees 
in the fields themselves, with and without mechaniza-
tion, specific to their crop/grazer of expertise. Finally, 
we asked them for their estimation for the maximum 

overall percent tree cover in fields / grazing lands and 
their boundaries that could be applied “across all” of the 
crop/grazing land in their region without reducing long-
term agricultural yields. For details on the Delphi data 
processing please see Additional File 3.

To finalize the expert elicitation, we sent each expert 
a summary of their own responses, comparing them to 
the average response of all the experts for the same sys-
tem in the same continent, and the average response for 
that system, across all continents. We asked the experts 
to either revise or confirm their responses after reviewing 
average results from the other experts, to complete the 
Delphi expert elicitation process.

Geospatial data processing
We attached the mean expert elicited maximum tree 
cover values to their corresponding biomes [15]. We used 
the spatial extent, i.e., presence/absence, of cropland 
from Potapov et al. [54] and grazing land from Chapman 
et al. [9], at 30m2 and 1km2 pixel size, respectively. To 
avoid double counting, in cases where a pixel was marked 
both as crop and grazing land, we labeled those pixels as 
cropland because the cropland dataset is more recent in 
time and higher spatial resolution than the grazing land 
layer. While definitions of forests using tree cover differ 
(depending on the use and ecosystem, definitions range 
from 10 to 30%) and agriculture does occur in areas with 
> 25% tree cover, we used 25% tree cover as a cutoff in 
order to avoid any double counting of natural climate 
solution potential with forestry-based solutions (please 
see the following paragraph for further discussion of tree 
cover). This cutoff also avoids the need for distinguish-
ing high-shade agroforestry from natural forests using 
remote sensing, which is not yet available globally [30].

Within agricultural land we used forest cover ca. 2015 
[66] for croplands and forest cover ca. 2000 [25] for 
grazing lands as baseline tree cover. While the Potapov 

Fig. 1  Overview of expert questionnaire components. Experts were asked to provide identifying information, select their geography and tree(s) of refer-
ence, select their crop or animal for integration with trees, provide estimations of tree spacing or tree covers for trees in field boundaries, trees in fields 
with and without mechanization, and estimations across all cropland or grazing land
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cropland layer is from 2019, we used global tree cover 
from 2015 because there were no global tree cover prod-
ucts with a global extent available closer in time to 2019. 
We then calculated the per-pixel difference between the 
mean expert estimated maximum tree cover per biome 
and baseline tree cover. We only included pixels with 
positive values, i.e., where the mean expert estimated 
maximum tree cover exceeded baseline tree cover, where 
there was an opportunity for increasing tree cover.

We used a modified, gap-filled version of the 1-km 
resolution Cook-Patton et al. annual aboveground car-
bon accumulation rate dataset for naturally regenerating 
forests [10]. The filled gaps are areas of transition from 
forest to grassland, which were excluded in the original 
dataset, but because some of these areas naturally sup-
port tree cover, we included them in our study. Gaps 
in the original data were filled following the methods 
of Cook-Patton et al. [10]but use fewer model runs and 
predict outside the extent of the training data. To quan-
tify the potential aboveground carbon gains from the 
increase in tree cover per pixel, we multiplied the Cook-
Patton et al. [10]carbon accumulation rate by the margin 
for increase in tree cover as described above. We then 
estimated belowground carbon accumulation per biome 
using biome-specific root to shoot ratios [43]. We con-
verted results from “carbon” to “carbon dioxide (CO2)” by 
multiplying by 44/12, which is the molecular weight ratio 
of CO2 to carbon. We resampled the data to 30 m using 
the nearest neighbor algorithm to produce summarized 
baseline tree cover, mean tree cover increase, and poten-
tial CO2 removal (per hectare per year and per 30 years) 
by crop/grazing land, biome, and country. We calculated 
the uncertainty of the estimated potential biophysical 
CO2 removal as the 95% confidence intervals propagated 
from three of the four data sources: baseline tree cover, 
expert elicited maximum tree cover values, and carbon 
accumulation rates. We did not calculate uncertainty 
related to the spatial extent of cropland and grazing land, 
so we are only able to report the 95% confidence intervals 
for estimated annual CO2 removal per hectare per year. 
For analysis, we used Google Earth Engine [21]d Studio 
[55] [55], packages terra [27] and sf [52]. Figures were 
created using the ggplot2 package [68] or ArcGIS Pro 
Version 3.2.1 [1].

Results
Expert estimations for maximum percent tree cover
After inviting 148 experts for cropland and 224 experts 
for grazing land to participate, the Delphi Expert Elicita-
tion included 53 contributions from 35 experts (21 for 
croplands and 14 for grazing lands), representing 6 con-
tinents and 10 biomes. Experts include agronomic, envi-
ronmental, rangeland and rural development scientists 
and practitioners from 11 universities and 14 institutes 

for agriculture and/or forestry including CIFOR-ICRAF, 
CATIE, CNR/IRET in France, FAO, and IUCN. A list of 
the experts who agreed to be cited, along with their affili-
ations and regions of expertise can be found in Additional 
File 4. The final Delphi expert estimations for maximum 
tree cover in agricultural lands in each biome, across all 
crops/grazers, are summarized in Fig. 2.

Both Temperate and Tropical/Subtropical biomes were 
well represented in the expert pool, and overall, we had 
at least 3 experts for more than 90% of the included crop-
land and grazing land areas. We had no experts respond 
for coniferous forests, and none for croplands in Deserts 
& Xeric Shrublands, Montane Grasslands & Shrublands, 
or for grazing lands in Temperate Grasslands, Savannahs 
& Shrublands. Estimated values for these biomes, rep-
resenting < 5% of total tropical/subtropical cropland, 1% 
of total temperate cropland, < 10% of temperate grazing 
land, and approximately 1% of total tropical/subtropical 
grazing land, were extrapolated from the expert-derived 
averages for comparable biomes.

A large variety of reference trees were used by the 
experts, with 87 total species, the most common of which 
are included in Table 1. Of the 49 reference tree species 
from 34 genera in croplands, the most common were 
Populus deltoides x nigra (hybrid poplar, 8 times), Faid-
herbia albida (6 times), Quercus robur (5 times), Acacia 
tortillis (4 times) and Grevillea robusta (4 times). Com-
monly referenced genera in croplands included Quercus 
(8 different species), Populus (3 species), and 2 different 
species from Acacia, Alnus, Cordia, Malus, and Pinus. In 
grazing lands there were 50 reference tree species from 
31 genera, with the most common being Glircidia sepium 
(4 times), Balanites aegyptiaca (3 times) and Leuceaena 
leucocephala (3 times). Other species used as reference 
trees more than once in grazing lands included Acacia 
albida, Acacia nilotica, Brosimum alicastrum, Faidher-
bia albida, Morus alba, Prosopis cineraria, and Quercus 
petraea. The most common reference tree genera rec-
ommended in grazing lands were Quercus (6 different 
species), Acacia (5 species) and Pinus (5 species). Two 
different reference species were suggested from Balani-
tes, Cordia, Cratylia, Morus, Prosopis, and Pterocarpus 
genera in grazing lands.

Expert estimations for maximum tree cover (hereaf-
ter ‘estimated maximum’) were generally lower in drier 
biomes with the lowest values in Deserts & Xeric Shrub-
lands (6%), and then in Mediterranean Forests, Wood-
lands & Scrub (9.75% for croplands, 23% for grazing 
lands). The mean estimated maximum for grasslands, 
savannas, and shrublands are around 27% tree cover for 
temperate and tropical climates, and generally lower than 
the estimated maximum for the forest biomes within 
that same climate type, but there was a large amount 
of variation within each biome and cropping system, as 



Page 6 of 19Sprenkle-Hyppolite et al. Carbon Balance and Management           (2024) 19:23 

Table 1  Commonly used reference tree species. This table lists the reference tree species that were most used by the experts during 
the expert elicitation process in descending order. It includes all reference trees used three or more times and includes the tree species 
name, common name, average mature height, continent of origin, and frequency of use as a reference in croplands and grazing lands, 
as well as the total frequency of use. Information on the species comes from Agroforestree database [49] and Wikipedia
Reference tree species Common name Continent of origin Average mature 

height (m)
Frequency in 
cropland

Frequency in 
grazing land

Total 
fre-
quency

Populus deltoides Eastern cottonwood North America 20–30, up to 50 2 8 10
Faidherbia albida White acacia, apple ring Africa & Middle East 30 6 2 8
Quercus robur English oak Australia, Europe, North 

America
25, up to 40 5 1 6

Gliricidia sepium Gliricidia North & Central America 2–15 1 4 5
Leucaena leucocephala Leucena North & Central America 3–15, up to 20 2 3 5
Acacia nilotica Arabic Gum Tree Africa 2.5–25 2 2 4
Acacia tortilis Umbrella thorn Africa & Middle East 21 4 4
Grevillea robusta Silky oak Australia 12–25, up to 40 4 0 4
Robinia pseudoacacia Acacia locust North America 25 3 1 4
Alnus acuminata Alder South & Central America 30 3 0 3
Balanites aegyptiaca Jericho balsam Africa Up to 10 3 3
Calophyllum brasiliense Brazilian beauty-leaf South & Central America 20, up to 45 3 0 3
Castanea mollissima Chinese chestnut Asia Up to 20 3 0 3
Catalpa longissima Spanish Oak North America Up to 25 3 0 3
Markhamia lutea Markhamia Africa 10–15 3 0 3
Olea europa Wild olive Africa, Asia, Europe 18 3 0 3
Populus tomentosa Chinese white poplar Asia Up to 30 3 0 3

Fig. 2  Expert estimations for maximum tree cover in croplands and grazing lands. Each dot represents an expert estimate, color coded by cropland (gold) 
and grazing land (grey). Horizontal bars represent the mean expert estimate for that category. Hollow dots represent extrapolated estimates due to low 
sample size. Numbers at top of figure are sample sizes for that biome, color coded by crop (gold) or grazing land (grey). The dotted blue line represents the 
overall mean expert estimate (27%) while the solid blue line represents the overall mean baseline tree cover (7%). X-axis biome codes are as follows. DXS: 
Deserts and Xeric Shrublands. MF: Mediterranean Forests, Woodlands, and Scrub. MGSS: Montane Grasslands & Shrublands. TeBMF: Temperate Broadleaf 
and Mixed Forests. TeGSS: Temperate Grasslands, Savannas, and Shrublands. TrSDBF: Tropical and Subtropical Dry Broadleaf Forests. TrSGSS: Tropical and 
Subtropical Grasslands, Savannas, and Shrublands. TrSMBF: Tropical and Subtropical Moist Broadleaf Forests

 



Page 7 of 19Sprenkle-Hyppolite et al. Carbon Balance and Management           (2024) 19:23 

illustrated in Fig.  2. The mean estimated maximum in 
croplands in Temperate and Tropical/Subtropical Forest 
biomes range from 21% in Moist Broadleaf Forests up to 
42% for cropland in Dry Broadleaf Forests. Two experts 
estimated 100% maximum tree cover in the that biome, 
specifically suggesting a reverse-deciduous tree native to 
Africa, Faidherbia albida. We concluded it may not be 
appropriate to apply this estimation to other continents 
where the tree is not present. Hence, we excluded these 
values- which would have increased the mean estimation 
to 65%, while noting that there is a possibility for higher 
levels of tree integration within the native range of Faid-
herbia albida.

Potential increases in tree cover
The global differences between baseline and mean esti-
mated maximum tree cover are illustrated in Fig. 3. It is 
available as a global data layer in Google Earth Engine at 
30 m resolution (please see Data Availability section for 
access).

The mean expert estimated tree cover increases (here-
after ‘mean increase’) generally ranged from 16 to 18% 
across the biomes, with two exceptions on the low side: 
Deserts & Xeric Shrublands had a very low baseline 
value and a 3% mean increase, and Tropical & Subtropi-
cal Dry Broadleaf Forest which contrarily had a high esti-
mated maximum and a high baseline, resulting in a mean 
increase of only 12%. The greatest mean increase was 25% 

Fig. 3  Opportunities for tree cover increases in Earth’s agricultural systems. The mean difference between baseline and expert-estimated maximum 
percent tree cover in (A) croplands c. 2015 and (B) grazing lands c. 2000. Biomes with hatching are biomes that had low sample size of expert estimates 
(n < 3). Boreal areas are included in mapping but were excluded from total global potential estimated to avoid changing albedo in a way that may offset 
the climate benefits of increased tree cover
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in Temperate Broadleaf & Mixed Forests. Figure 4 illus-
trates an area with high potential increase in both crop-
land and grazing land resulting from a large difference 
between baseline and expert estimated maximum tree 
cover for the Temperate Broadleaf Mixed Forest biome. 
This area is on the driest end of that biome’s extent, 

which is evident in the low potential CO2 removal associ-
ated with these changes in percent tree cover (Fig. 4b). In 
contrast, in a more humid area like the Brazilian Ama-
zon, the mean increase and CO2 removal potential are 
both high (Fig. 5).

Fig. 5  Detail of high potential tree cover increase and high additional carbon density in tropics.(A) High additional tree cover potential in croplands 
(purple) and grazing lands (blue-green). (B) Potential increase in CO2 removal from additional tree cover. (C) Inset map of region in Central South America. 
(D) Photo illustrating a cattle ranch in the Amazon (Credit: Ben Sutherland, CC BY 2.0 license)

 

Fig. 4  Detail of dry temperate zone with high potential for tree cover increase and low additional carbon density. An arid Temperate Broadleaf Mixed For-
est in the Northern Zagros Mountains shows (A) High additional tree cover potential in croplands (purple) and grazing lands (blue). (B) Potential increase 
in carbon density from additional tree cover. (C) Inset map of region in Middle East. (D) Photo from the Fars Province illustrating natural tree cover outside 
of agriculture and grazing areas (Credit: Alireza Javaheri, CC BY 3.0 license)
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The mean increase by country can be found in the 
country data table in Additional File 5 and the mean 
increase by biome are summarized in Tables 2 and 3.

Carbon dioxide removal potential of tree cover in 
agriculture
Taking into account the mean expert estimated maxi-
mum tree cover increases (‘mean increase’), the result-
ing estimated maximum technical CO2 removal potential 
(hereafter ‘potential’) varied greatly from biome to biome 
along an annual rainfall gradient, as shown in Fig. 6. The 

estimated per-hectare values were highest for cropland 
in Tropical/Subtropical Dry Broadleaf Forest, and then 
Tropical/Subtropical Grasslands, Savannahs, and Shrub-
lands. However, there is a large uncertainty associated 
with these values, a result of the accumulated uncertainty 
from the expert elicitation steps and the multiple spatial 
layers used in the calculation, as shown with error bars 
for the 95% confidence intervals in Fig. 6.

When we extrapolate these per hectare values across 
the total global area of opportunity, the biome with 
the greatest total estimated potential in croplands is 

Table 2  Summary of the estimated carbon dioxide removal potential of tree cover in croplands by biome. Includes total crop area 
in hectares that had tree cover increase opportunity based on the expert estimate in the biome, the mean baseline tree cover in 
croplands in the biome, the mean maximum tree cover increase, and the equivalent potential CO2 removal over 30 years. The table is 
ordered from largest to smallest cropland potential. *The Boreal Forests/Taiga potential is excluded from the total global potential
Biome Total crop-

land area (ha)
Cropland area 
with tree cover 
increase oppor-
tunity (ha)

Mean 
baseline 
% tree 
cover

Mean 
increase 
% tree 
cover

Estimated an-
nual CO2removal 
potential Pg CO2 
Yr− 1

Estimated 30-
year CO2remov-
al potential Pg 
CO2 30 Yr− 1

Temperate Broadleaf & Mixed Forests 287,073,304 269,841,429 7.7 27.8 0.48 3.96
Tropical & Subtropical Grasslands, Savannas & 
Shrublands

190,255,033 156,210,738 5.8 19.4 0.46 3.80

Tropical & Subtropical Dry Broadleaf Forests 79,099,917 74,050,141 6.0 36.0 0.34 2.8
Temperate Grasslands, Savannas & Shrublands 289,876,393 255,281,258 3.9 23.8 0.30 2.42
Tropical & Subtropical Moist Broadleaf Forests 132,683,746 123,031,420 10.0 11.1 0.19 1.59
Montane Grasslands & Shrublands 23,117,456 20,411,537 4.6 23.1 0.05 0.43
Mediterranean Forests, Woodlands & Scrub 70,992,016 49,631,509 3.3 6.7 0.02 0.12
Temperate Conifer Forests 8,453,397 7,816,659 6.6 13.2 0.01 0.05
Deserts & Xeric Shrublands 102,914,900 81,865,410 4.3 1.1 0.01 0.05
Boreal Forests/Taiga* 11,949,741 11,467,286 6.0 2.9 0.00 0.01
Tropical & Subtropical Coniferous Forests 1,315,942 1,249,706 9.2 10.5 0.00 0.01
Total 1,185,782,103 1,039,389,807 6.1 17.3 1.86 15.22

Table 3  Summary of the estimated carbon dioxide removal potential of tree cover in grazing lands by biome. Includes total grazing 
area in hectares that had tree cover increase value based on the expert estimation in the biome, the mean baseline tree cover in 
grazing lands in the biome, the mean maximum tree cover increase, and the equivalent potential CO2 removal over 30 years. The table 
is ordered from largest grazing land potential to smallest grazing land potential. *The Boreal Forests/Taiga potential is excluded from 
the total global potential
Biome Total grazing 

area (ha)
Grazing area 
with tree cover 
increase oppor-
tunity (ha)

Mean 
baseline 
% tree 
cover

Mean 
increase 
% tree 
cover

Estimated an-
nual CO2removal 
potential Pg CO2 
Yr− 1

Estimated 30-
year CO2remov-
al potential Pg 
CO2 30 Yr− 1

Tropical & Subtropical Grasslands, Savannas & 
Shrublands

719,865,647 542,968,290 8.8 18.1 0.81 6.63

Tropical & Subtropical Moist Broadleaf Forests 147,459,225 91,620,636 13.6 17.7 0.24 1.99
Temperate Grasslands, Savannas & Shrublands 389,541,265 346,075,603 3.3 16.7 0.17 1.38
Montane Grasslands & Shrublands 159,605,026 128,989,142 4.0 16.1 0.10 0.82
Temperate Broadleaf & Mixed Forests 95,479,664 56,201,739 10.5 24.5 0.07 0.54
Tropical & Subtropical Dry Broadleaf Forests 41,557,919 32,367,139 11.6 11.8 0.04 0.36
Deserts & Xeric Shrublands 680,700,563 302,317,889 2.3 3.2 0.03 0.21
Temperate Conifer Forests 48,928,428 35,201,103 6.5 18.7 0.02 0.20
Mediterranean Forests, Woodlands & Scrub 68,237,835 46,352,613 5.7 17.3 0.02 0.18
Tropical & Subtropical Coniferous Forests 9,392,467 6,690,699 12.2 16.0 0 0.03
Boreal Forests and Taiga* 5,055,482 3,273,913 6.5 1.2 0 0
Total 2,360,768,040 1,588,884,854 7.85 16.0 1.50 12.29
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Temperate Broadleaf Mixed Forests, with a potential of 
0.48 Pg CO2 yr− 1 from a mean increase of 28% tree cover, 
followed by Tropical & Subtropical Grasslands, Savan-
nas & Shrublands and Dry Broadleaf Forest biomes, 
with potentials of 0.46 Pg CO2 yr− 1 and 0.34 Pg CO2 yr1, 
respectively (Table  2). However, with large 95% confi-
dence intervals for each biome, the differences between 
biomesmay be smaller than what is suggested based on 
this analysis of mean values.

It was estimated that the Tropical & Subtropical Dry 
Broadleaf Forest biome had the highest mean increase 
(36%) over a smaller extent (74 Mha) than the two more 
extensive biomes (269 Mha & 156 Mha) with the high-
est total potential. Temperate Grasslands, Savannas & 
Shrublands came in fourth overall in potential, with 
0.30 Pg CO2 yr− 1 over a large extent of 255 Mha. The 
last biome with potential > 0.1 Pg CO2 yr− 1 is Tropical & 
Subtropical Moist Broadleaf Forests, with 0.19 Pg CO2 
yr− 1. We note that this tropical rainforest biome has the 

highest baseline tree cover (10%) and the lowest mean 
increase of the top 5 biomes (11%), which limits its total 
potential.

In grazing lands, the total potential is dominated by 
Grasslands, Savannas & Shrublands (GSS), with tropical/
subtropical GSS comprising more than half of the global 
potential at 0.81 Pg CO2 yr− 1 over the largest number of 
hectares (543 M), with a mean tree cover increase of 18% 
(Table 3). The estimated potential in this biome, for graz-
ing lands alone, is greater than the total potential of crop-
lands and grazing lands in any other biome. However, 
increasing tree cover to maximum levels as a Natural 
Climate Solution would rely on the use of trees that do 
not require additional water, and without the tree density 
exceeding the natural amount for the system (expected to 
be higher in savannahs compared to grasslands, within 
the biome, for example), so this potential may be difficult 
to realize. Tropical/Subtropical Moist Broadleaf Forests 
followed with an estimated potential of 0.24 Pg CO2 yr− 1 

Fig. 6  Estimated annual carbon dioxide removal potential per hectare (MgCO2Ha− 1Yr− 1) from increasing to maximum tree covers in croplands and graz-
ing lands by biome and climate zone, considering annual rainfall. Error bars represent 95% confidence intervals. Error bars were not included in biomes 
with extrapolation due to low sample size of expert estimates. The secondary y-axis and line represent mean annual rainfall (from 1950–2000) for each 
biome [28]. The shading on either side of the line is the 95% confidence interval. X-axis biome codes are as follows. DXS: Deserts & Xeric Shrublands. 
MF: Mediterranean Forests, Woodlands, & Scrub. MGSS: Montane Grasslands & Shrublands. TeBMF: Temperate Broadleaf Mixed Forests. TeGSS: Temperate 
Grasslands, Savannas, & Shrublands. TrSDBF: Tropical/Subtropical Dry Broadleaf Forests. TrSGSS: Tropical/Subtropical Grasslands,Savannas, & Shrublands. 
TrSMBF: Tropical/Subtropical Moist Broadleaf Forests
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over 91 Mha of grazing lands, followed by Temperate 
GSS with 0.17 Pg CO2 yr− 1 over 346 Mha, and Montane 
Grasslands & Shrublands with 0.10 Pg CO2 yr− 1 over 128 
Mha.

The distribution of the potential follows the distribu-
tion of the mean increases, but concentrates in tropical 
regions where carbon accumulation tends to be faster 
and of greater magnitude. However, there are some nota-
ble areas of high estimated potential in temperate crop-
lands, especially in northern Europe (Fig. 7).

According to our estimations, tropical/subtropical 
biomes are likely to contain slightly over half (54%) of the 
global potential for TCA in croplands at 1.0 Pg CO2 yr− 1; 
with more than double the per hectare carbon accumula-
tion rate at 2.8 Mg CO2 ha− 1 yr− 1 (SD = 0.45) in tropics 
vs. 1.2 Mg CO2 ha− 1 yr− 1 (SD = 0.22) in temperate. Tropi-
cal/subtropical biomes also contain an estimated 73% of 
the potential from TCA in grazing lands at 1.1 Pg CO2 
yr− 1 with 3.5 times the per hectare carbon accumulation 
rate at 1.6 Mg CO2 ha− 1 yr− 1 (SD = 0.47) in tropics vs. 
0.4 Mg CO2 ha− 1 yr− 1 (SD = 0.19) in temperate. Figure 8 
illustrates the global potential of TCA in grazing lands.

Within countries, we have estimated the total poten-
tial and the per hectare potential, illustrated in Fig.  9. 
The countries with the highest estimated total poten-
tial across croplands and grazing lands have large areas 
with industrialized agriculture, such as India, China, the 
U.S.A., Brazil, Australia, and Russia. Countries with high 
potentials included Brazil with 0.30 Pg CO2 yr− 1 / 2.4 Mg 
CO2 ha− 1 yr− 1 (SD = 0.21) in grazing land and India with 
0.24 Pg CO2 yr− 1 / 1.85 Mg CO2 ha − 1 yr− 1 (SD = 0.1) in 
croplands. The top three countries for cropland potential, 
India, China, and the U.S.A., contain 31% of the global 
potential in croplands. Similarly, the top three countries 
for grazing land potential, Brazil, China, and Australia, 
comprise 37% of the global potential in grazing lands. 
Full results by country are included in Additional File 5.

Central and West Africa appear to contain hotspots of 
CO2 removal potential in croplands, with the top four 
countries globally in terms of potential per hectare of 
cropland being Gabon, Benin, Republic of Congo, and 
Togo. The countries with the highest potential per hect-
are of grazing lands are also concentrated in Central and 
West Africa, with only one country in South America, 
listed here in descending order: Gabon, The Republic of 
Congo, Guyana, Ghana, and Burundi. Gabon, Ghana, and 
The Republic of Congo also appear in top 10 rankings for 
total cropland potential per hectare. Figure  9 illustrates 
that according to our estimations, the countries with the 
highest total potential generally have lower CO2 removal 
rates per hectare, and vice versa, except for Brazil for 
grazing lands and Nigeria and Thailand for croplands, 
which contain both large potential per hectare and large 
total potential.

Discussion
The mean expert estimations for maximum tree cover 
(hereafter ‘mean estimation’) varied by biome, following a 
climate driven expected density of trees across the land-
scape; the mean estimations for forested biomes were the 
highest overall, and deserts the lowest, with Grasslands, 
Savannas & Shrublands falling in the middle. Neverthe-
less, the mean estimations for forested biomes appear 
to be strongly limited by the need to maintain agricul-
tural production, which is to say, they did not follow the 
increasing trend and approach typical forest tree cover. 
The mean estimation across forested biomes was around 
35%, a level that is sometimes considered shade-agro-
forestry, so these estimations must be applied with cau-
tion and close monitoring of agricultural yield impacts 
on shade-intolerant crops. The mean estimation across 
all biomes and agricultural systems was 27% with a rela-
tively large standard deviation of 16%. We note that the 
only significant (p < 0.001 by Wilcoxon rank sum test) dif-
ference in means was between Temperate/Tropical/Sub-
tropical biomes (29%) and the drier biomes (14%).

Our expert selection methods may have resulted in 
an over-estimation bias since the selected experts may 
have a disciplinary interest in the integration of trees 
and crops. Moreover, the questionnaire left “without 
significantly reducing long-term agricultural yields” to 
the interpretation of the experts, which should be more 
precisely defined in future consultations to ensure pro-
tection of agricultural yields, production, or outputs. The 
variance observed in the expert estimations also indicates 
that there is a large range of maximum values, depending 
on specific tree-crop systems. The authors acknowledge 
that some specific crops and forages are more shade-tol-
erant than others and that different species have differ-
ent canopy and rooting architectures that impact the way 
that they interact with crops, and coming up with mean, 
generalized values was the most important design chal-
lenge that this study faced. Generalizations across crop-
lands and grazing lands were necessary for this initial 
global study, but more specific parameterization will be 
necessary for specific agricultural systems and locations, 
as well as careful monitoring of agricultural yield and 
production impacts.

Within the forest biomes, there were higher estima-
tions for tree covers in croplands in dry forest compared 
to moist forest. This could be due to a maximization of 
the water-balance related advantages of agroforestry, 
such as reduced temperature and evapotranspiration 
[38], in climates with seasonal droughts including the 
Mediterranean biome [2, 64]. The climate adaptation 
benefits of agroforestry are also clear in seasonally dry 
Tropical/Subtropical Dry Forest [62], and Tropical/Sub-
tropical Grasslands, Savannas & Shrublands, especially 
in Africa [36, 41]. The CO2 removal potential in Africa 
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Fig. 7  Potential increases in carbon density in Earth’s agricultural systems from tree cover in croplands. Total potential includes average aboveground and 
belowground carbon density in one year within the first 30 years of growth. Inset maps show example areas in (A) Eastern U.S.A. (B) Northern Europe (C) 
Nigeria and (D) India. Native resolution is 30 m but for the purposes of visualization, these figures were resampled to 1000 m. Biomes with hatching are 
biomes that had low sample size of expert estimates
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Fig. 8  Potential increases in carbon density in Earth’s agricultural systems from tree cover in grazing lands. Total potential includes average aboveground 
and belowground carbon density in one year within the first 30 years of growth. Inset maps show example areas in (A) Southern Brazil/ Northern Argen-
tina & Paraguay (B) Cote d’Ivoire and Ghana in Western Africa (C) Madagascar and (D) Northeast Australia. Native resolution is 30 m but for the purposes 
of visualization, these figures were resampled to 1000 m. Biomes with hatching are biomes that had low sample size of expert estimates
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may be higher than our estimations if Faidherbia albida, 
a reverse-deciduous tree that only has leaves in the dry 
season, is used across its native range.

The Desert biome contains large areas of agricul-
ture and grazing totaling more than 810 M ha, with low 
baseline percent tree cover, but its total estimated CO2 
removal potential is comparably low. In desert croplands, 
the (extrapolated) estimation for tree cover increase is 
extremely low (1%) and its total potential (0.02 Pg CO2 
30 yr− 1) was the second lowest. The Desert biome had 
the second largest number of hectares in grazing lands, 
and so even with the smallest mean increase of all of the 
biomes for grazing lands (3%), it had a higher total poten-
tial (0.75 Pg CO2 30 yr− 1) and annual CO2 removal rate 
(0.03 Pg CO2 yr− 1) than Mediterranean Forests/Wood-
lands/Scrub, Boreal, and Conifer Forests. Our global 
total potential estimate excludes the values from Boreal 
climate domains, 0.0002 Pg CO2 yr− 1 from grazing lands 
and 0.001 Pg CO2 yr− 1 from croplands, where local bio-
physical effects (i.e. albedo) may offset climate benefits of 
increased tree cover [26], although it may be possible to 
mitigate this effect by using deciduous versus evergreen 
tree species [29].

The largest estimated tree cover increases (hereafter 
‘increases’) are generally found in the global North and 
other areas where industrialized agriculture is prevalent 
and agroforestry practices are limited, with increases 
from 20 to 25%, very close to the mean estimated maxi-
mum, indicating that the baseline tree covers are very 
low. Agroforestry system designs have been made for 

mechanized agriculture, for example modifying the 
spacing of lines of trees to meet the turning radii and/
or width of the equipment and restoring and reinforcing 
windbreaks (for example see the extension work recom-
mendations of Rivest et al. [57]in Canada), which would 
allow for integration of some tree cover with minimal 
disruption to the farming systems. In any case, significant 
education and extension will likely be required to foster 
the adoption and scaling of this NCS in areas where agro-
forestry is practically nonexistent.

On the other hand, tropical/subtropical regions and 
countries where agroforestry is more common have sig-
nificant climate mitigation potential even with their gen-
erally smaller margins for increasing tree cover, and they 
may have the potential to achieve scale for this NCS more 
rapidly due to more prevalent traditional knowledge 
and practice of the systems. They could be very impor-
tant areas for rapid climate mitigation actions that could 
also serve to counteract the loss of intergenerational 
traditional knowledge about agroforestry systems. Fur-
thermore, because we excluded areas with baseline tree 
cover > 25% to avoid overlap with forestry-related NCS 
pathways, this means that there could be ‘hidden’ poten-
tial; for example, in dry forest biomes where areas with 
a baseline tree cover > 25% could increase up to the esti-
mated maximum value of 36%, but this is not included 
in our estimates of potential because of the exclusion 
of areas with baselines > 25%. Further research could 
develop more complex rules for definitions of opportu-
nity areas to include pixels with > 25% tree cover while 

Fig. 9  Tree Cover in Agriculture’s estimated total annual carbon dioxide removal potential per country compared to its estimated annual carbon dioxide 
removal potential per hectare. For cropland (left) and grazing land (right). Each point represents a country, with different colors indicating whether the 
majority of the country falls within the tropics (red) or outside of the tropics (blue). Dotted lines indicate the 90th percentiles
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avoiding double counting and overlap with other NCS. 
The 1.86 Pg CO2 yr− 1 estimated maximum technical 
CO2 removal potential in croplands is more evenly dis-
tributed than the potential in grazing lands; 54% of crop-
land potential occurs in the tropics (which contain 34% 
of global cropland area), whereas 73% of grazing land 
potential occurs in the tropics (which contain 66% of 
global grazing land area). Biomes with high potential for 
TCA are found in both temperate and tropical climates. 
The uncertainty associated with the annual CO2 removal 
rates per hectare per biome indicate the overall level of 
uncertainty across biomes and limit our ability to make 
speculations on the differences between biomes and even 
between cropping and grazing systems. The goal of this 
study was to build on the previously vague concept of a 
“Trees in Agriculture” NCS and get an improved, expert-
informed global estimate of the potential of this NCS. 
This analysis has improved our understanding of the 
sources and types of uncertainty, and we see this work 
as a first step towards setting up further research and 
deeper investigations of the climate mitigation potential 
of Tree Cover in Agriculture (TCA) in different countries 
and regions.

It is notable that out of the 87 tree species chosen by 
the experts as reference trees, only 13 were used for both 
cropland and grazing land. The three most commonly 
used reference trees, Populus deltoides (Eastern cotton-
wood), Faidherbia albida (White acacia), and Quercus 
robur (English oak) are representative of three different 
regions: North America, Africa, and Europe, respectively. 
Two Central American species, Gliricida sepium and 
Leucaena leucocephala, round out the top 5 reference 
trees used in both cropland and grazing land, reflecting 
a good general global distribution with the exception of 
Asia, which also had the lowest expert representation. 
The spatial arrangement of the trees can have very impor-
tant effects on agricultural production within a fixed can-
opy cover threshold. For example, the orientation of tree 
rows (i.e. N/S or E/W) can mitigate competition for solar 
radiation at high latitudes and has huge implications for 
crop production in agroforestry systems at high latitudes 
[17]. Tree cover may also be concentrated in less produc-
tive areas of fields such as field edges or boundary areas, 
which may be enough to attain the optimum threshold in 
landscapes with lower targets. Further research is needed 
on the optimal spatial arrangements in different tree-
crop-climate combinations, at regional and more local-
ized scales.

We found that the lowest potentials were in drier areas 
including deserts, coniferous biomes, and Mediterra-
nean regions, partially due to their biophysical limits of 
tree cover and partially because carbon accumulation 
rates are slower in drier areas. This is important to note, 
because the biggest differences between our estimates 

and Chapman et al. [9] occur in grasslands and deserts, 
areas with low precipitation and that tend to use irriga-
tion. In total, our estimates are less than a third of the 
prior maximum scenario estimation of the carbon miti-
gation potential of trees in agriculture by Chapman et 
al. [9], which found a maximum global (aboveground) 
potential of 181.13 Pg CO2 (49.4 Pg C) in croplands and 
163.17 Pg CO2 (44.5 Pg C) in grazing lands, however, 
our results are within the range of their lower levels of 
integration scenarios. We estimate the annual maximum 
technical CO2 removal potential at 1.86 Pg CO2 yr − 1 in 
croplands and 1.5 Pg CO2 yr − 1 in grazing lands, includ-
ing aboveground and belowground biomass. Our results 
are influenced by patterns of annual carbon accumula-
tion rates and the relationship between tree cover and 
carbon accumulation, compared to previous estimates. 
Whereas Chapman et al. [9] and Zomer et al. [71] used 
projections up to an upper quartile of observed biomass, 
we used predicted, climatically adjusted rates of carbon 
accumulation [10]. The differences in our findings sug-
gest that drier areas may take much longer than 30 years 
to achieve their maximum unbounded CO2 removal 
potential. Additionally, the grazing land area in the Des-
ert biome used by Chapman et al. [9] is slightly more than 
twice the amount of area in the same biome in this study. 
Chapman et al.’s methods are based on field- and lidar- 
derived aboveground biomass. Therefore, our results 
would bias towards fast growing areas while Chapman et 
al.’s results would bias towards overall high biomass accu-
mulation areas. Finally, there could be discrepancies in 
results due to some of our underlying data layers being 
at 1  km resolution, compared to Chapman et al.’s 30  m 
resolution.

Our use of the Cook-Patton et al. [10] natural regen-
eration growth rates may result in an under-estimation 
of the carbon accumulation of trees in agricultural fields 
which will be less crowded, receive more light, and more 
nutrients and weed control, compared to naturally regen-
erating trees. This should result in fewer, larger individu-
als holding more carbon, more like the CO2 removal 
rates of trees in plantation forestry. At the same time, 
the Cook-Patton et al. [10] rates use linear averages, 
whereas the real growth function is more of a sigmoidal 
(s) curve of slow, fast, then slow growth rates. This could 
result in an over-estimation of the very early growth/
establishment phase. The estimated maximum poten-
tials therefore represent the average rate across a 20–30 
year timeframe. Agroforestry-specific tree allometries 
and carbon accumulation spatial layers are an important 
research frontier to refine these estimates.

Establishing trees in grazing systems requires grazing 
exclusion during the tree establishment phase. This may 
benefit localized CO2 removal and biodiversity [69], but 
it can be challenging in extensive rangelands that are 
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typically lightly managed, so cost-effective methods will 
be important [60]. One strategy would be farmer-man-
aged natural regeneration, a practice that takes advantage 
of trees with existing root systems, such as those that are 
coppiced, to prune and cultivate them into larger trees in 
agricultural or grazing systems [37].

We constrained the potential extent of TCA to existing 
farmland and grazing lands, with the latest global map-
ping available at the time of the study (2015 data available 
in 2023). The large time lag in availability of agricultural 
land use maps is a major constraint of this study, as areas 
under cultivation are likely to change, and total areas 
under cultivation have been increasing over time. Addi-
tionally, our baseline tree cover estimates could be sub-
ject to error due to the known difficulties of estimating 
low-density tree cover using large-scale remote sensing 
datasets; however, the literature is inconclusive whether 
these datasets consistently over-estimate or under-esti-
mate tree cover in open-canopy, heterogeneous land-
scapes [4]. We recognize the potential inaccuracies of 
using low canopy cover values from global remote sens-
ing products and that these inaccuracies could result in 
under or over estimation of our maximum tree cover 
increase values and resulting carbon dioxide mitigation 
estimates.

Conclusion
The estimated maximum technical CO2 removal poten-
tial of Tree Cover in Agriculture (TCA) over the next 30 
years, 100.8 Pg CO2, would exceed global annual emis-
sions from cars. Compared to the previous works on this 
topic based on observations of standing biomass on agri-
cultural lands, this estimate is based on new input from 
agricultural experts, and the best available knowledge on 
actual CO2 removal rates (Cook-Patton 2020).

There are regions of high potential in both tropical and 
temperate zones, with the Tropical/Subtropical Grass-
lands, Savannas & Shrublands (GSS) biome showing the 
highest estimated potential of 1.3 Pg CO2 yr− 1. We cau-
tion that GSS biomes cover a very wide range of natu-
ral tree cover, and further research should seek separate 
maximum tree cover estimations for the 3 sub-types 
within the biome (grasslands, savannas, shrublands) 
to ensure that afforestation (which is not an NCS), is 
avoided, particularly in grasslands. Further research at 
regional or national scales could use more accurate local 
crop extent databases and include a larger variety of 
crops and grazing systems. Moreover, technology is rap-
idly advancing and the application of more accurate car-
bon accumulation curves specific to agroforestry systems 
and more up-to-date data on tree cover (e.g., Brandt and 
Stolle [5] could further refine future analyses.

The large variation in estimated maximum tree covers 
within each biome reflects the diversity of agricultural 

systems and the complexity of interactions taking place 
within them, but it limits the potential application of 
these results in two important ways. Firstly, we used the 
mean of the expert recommendations after seeking con-
sensus among the experts in an effort to capture what 
we could expect to be an average level of maximum tree 
cover over the entire landscape. Recognizing that these 
mean values approached the “do not exceed” thresholds 
we were able to extract from the literature, we treated the 
mean expert recommendations as the maximum values 
throughout the analysis.

Secondly, the large variation in expert estimations also 
reduces our ability to draw conclusions on broad spatial 
patterns and drivers in the resulting CO2 removal poten-
tials, which have a high level of uncertainty due to the 
propagation of multiple types of error from different data 
sources over extremely large areas. We will, however, 
note that the estimated potentials seem to be driven by 
two main characteristics: (1) the opportunity for increase 
in tree cover which in turn varies depending on cultural 
factors, including dietary and aesthetic landscape pref-
erences, the inherent traits of the cultivars, and techni-
cal agricultural practices especially including the level 
of mechanization, and (2) bioclimatic factors affecting 
the natural biophysical limits to non-irrigated tree cover, 
CO2 removal rates, and their influence on underlying 
tree-crop-forage interactions. We note an interaction in 
climates with seasonal droughts which may have higher 
maximum levels of tree cover that may counterbalance 
their lower CO2 removal rates. It is a very important find-
ing, overall, that the potential is spread across biomes in 
both temperate and tropical/subtropical climates, for dif-
ferent reasons such as high industrialization, deforesta-
tion, or potential for climate adaptation benefits, to name 
a few. A deeper analysis of regional spatial patterns and 
drivers would require modeling.

Tree species selection can be critical to supporting bio-
diversity within natural climate solutions. The principles 
of TCA suggest the selection of locally native species and 
incorporating a diverse mixture of tree species to the 
maximum extent feasible to protect against homogeniza-
tion of agroforestry system design. We want to highlight 
the diversity captured by the expert’s use of 87 different 
reference tree species and underscore that the common 
reference tree species should in no way be taken as a pro-
scriptive list. There are publicly available tools for agro-
forestry tree selection such as the Agroforestree Database 
from the Center for International Forestry Research and 
World Agroforestry (CIFOR-ICRAF) that should be used 
for localized system designs [49].

It is generally challenging to find land for restoration 
when agricultural production is excluded. Tree Cover 
in Agriculture (TCA) opens new territories for restor-
ative climate mitigation with trees as a Natural Climate 
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Solution by ‘sharing’ space within the boundaries of the 
world’s extensive agricultural systems, as long as agri-
cultural production continues to be protected by design, 
properly managed, and carefully monitored in concur-
rence with external factors such as extreme weather, pests 
and disease. The 2.9 B ha of agricultural land we estimate 
to have a margin for sustainable increase in tree cover, 
making up more than half of global agricultural land, 
provides an enormous opportunity for achieving inter-
national restoration policy targets while contributing to 
global climate mitigation targets. It far exceeds the Bonn 
Challenge target of 350 Mha and could be instrumental 
in achieving the 100 Mha target of the Great Green Wall 
in Africa’s Sahel region while improving drought resil-
iency of agricultural systems [64]. The potential addi-
tional associated benefits to faunal and floral biodiversity, 
ecosystem services, and influences on regional climatic 
patterns, remain to be analyzed.

The key to the large total estimated potential of this 
NCS is the vast hectarages of agricultural land. It repre-
sents a relatively small change per hectare, the addition 
of 2–6 trees per hectare on average, scaled over large 
areas. Even so, the potential displacement of crops by the 
tree basal areas, and whether or not this is fully compen-
sated for in yield improvements around the trees, and 
whether any leakage occurs as a result of TCA, must be 
investigated further in ways that can take into account 
the different scales of landscape-level impacts of the 
trees on local climates and production. Trees may be 
placed in less productive agricultural areas such as field 
boundaries and riparian areas, and may be concentrated 
on steep slopes especially in grazing lands as suggested 
by Iñamagua-Uyaguari et al. [31]. Across all landscapes, 
a strategy maximizing the use of unproductive spaces in 
fields such as fence lines or field edges, should be the first 
step towards increasing tree cover in agriculture because 
it will be the least likely to interfere with cropping and 
grazing systems.

There is a higher trees per hectare potential increase in 
tropical/subtropical regions, considering average mature 
reference tree sizes and mean increases, of 5.2 trees 
ha− 1 in croplands and 4.6 trees ha− 1 in grazing lands, 
vs. 3.8 and 2.3 trees ha− 1, respectively, in non-tropical 
areas. Distributed among the hectares with a margin for 
increase, this equates to 184  M trees in cropland and 
396  M trees in grazing lands in non-tropical areas, and 
68 M trees in croplands and 145 M trees in grazing lands 
in tropical areas, totaling 793 M trees. This is, however, 
< 0.1% of the Trillion Tree pledge, suggesting that plant-
ing trees at much higher densities would be required to 
meet that goal. Scaling and acceleration of Tree Cover in 
Agriculture (TCA), including carbon methodology devel-
opment that properly accounts for leakage, exploration 
of its potential to contribute to Scope 3 insetting, policy 

work including but not limited to increasing incorpora-
tion into NDCs, and direct technical assistance to farm-
ing and grazing land managers, should be prioritized. 
This may be especially beneficial in both countries with 
large total estimated maximum technical CO2 removal 
potentials, and in the hotspots of TCA potential identi-
fied in this paper.
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