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Abstract 

Background Global climate change is one of the major challenges facing the world today, and forests play a crucial 
role as significant carbon sinks and providers of ecosystem services in mitigating climate change and protecting 
the environment. China, as one of the largest developing countries globally, owns 60% of its forest resources collec-
tively. Evaluating the carbon sequestration cost of collective forests not only helps assess the contribution of China’s 
forest resources to global climate change mitigation but also provides important evidence for formulating relevant 
policies and measures.

Results Over the past 30 years, the carbon sequestration cost of collective forests in China has shown an overall 
upward trend. Except for coastal provinces, southern collective forest areas, as well as some southwestern and north-
eastern regions, have the advantage of lower carbon sequestration costs. Furthermore, LSTM network predictions 
indicate that the carbon sequestration cost of collective forests in China will continue to rise. By 2030, the average car-
bon sequestration cost of collective forests is projected to reach 125 CNY per ton(= 16.06 Euros/t). Additionally, there 
is spatial correlation in the carbon sequestration cost of collective forests. Timber production, labor costs, and labor 
prices have negative spatial spillover effects on carbon sequestration costs, while land opportunity costs, forest accu-
mulation, and rural resident consumption have positive spatial spillover effects.

Conclusion The results of this study indicate regional disparities in the spatial distribution of carbon sequestration 
costs of collective forests, with an undeniable upward trend in future cost growth. It is essential to focus on areas 
with lower carbon sequestration costs and formulate targeted carbon sink economic policies and management 
measures to maximize the carbon sequestration potential of collective forests and promote the sustainable develop-
ment of forestry.
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Introduction
Human activities have caused significant greenhouse 
gas emissions, leading to the global challenge of climate 
change [1–3].The negative externalities and spillover 
effects of these emissions necessitate international coop-
eration among governments to address climate change  

[4, 5]. In September 2020, China introduced the “Dual 
Carbon” goals: peaking carbon emissions by 2030 and 
achieving carbon neutrality by 2060. This involves two 
mechanisms: emission reduction and carbon seques-
tration [6, 7]. Industrial emission reduction technolo-
gies can mitigate around 80% of carbon emissions, but 
the remaining 15–20% reduction poses significant cost 
challenges [8, 9]. In contrast, forest carbon sequestra-
tion within the carbon sequestration mechanism offers 
cost-effective solutions and positive externalities, such 
as water conservation, air purification, and environmen-
tal improvement [10–12]. Therefore, promoting forest 
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carbon sinks and harnessing their potential presents an 
economically viable solution to offset the remaining 
15–20% of carbon emissions [13, 14].

In China, collective forests refer to forest resources col-
lectively owned and managed by farmers, who possess 
rights to their use, management, and benefits. These for-
ests play a crucial role in China’s ecosystem and hold sig-
nificant socioeconomic importance for rural livelihoods 
and development [15]. Therefore, in this paper, ‘‘collec-
tive forests’’ denote forest resources owned and managed 
collectively by farmers [16]. Based on the data from the 
Ninth National Forest Resource Inventory, the collective 
forests in China cover an area of 133.9 million hectares, 
accounting for 61.3% of the total land area. However, the 
forest stock in these collective forests is 6935.2 billion 
cubic meters, representing only 40.7% of the total. One 
of the reasons for the relatively high proportion of collec-
tive forest area but low forest stock is the lack of sound 
management strategies, resulting in poor forest quality 
and low carbon density in collective forests. Data indi-
cates that the forest stock per hectare in collective for-
ests is merely 51.8 cubic meters, compared to 119.9 cubic 
meters in state-owned forests, highlighting a significant 
disparity. In terms of forest age, young and middle-aged 
forests account for 44.3% and 31.8% respectively in col-
lective timber forests, indicating their significant poten-
tial for carbon sequestration.The new round of collective 
forest tenure reform implemented since 2003 has clarified 
property rights and activated the management vitality of 
farmers in collective forests [16]. This provides an institu-
tional foundation for realizing their carbon sequestration 
potential. Compared to state-owned forests, collective 
forests have more flexible management forms and unique 
advantages in carbon sequestration, with higher marginal 
sequestration and greater overall potential. However, 
as collective forests are managed by farmers who act as 
rational economic agents, the cost of carbon sequestra-
tion significantly influences their sequestration potential. 
Furthermore, spatial spillover effects are also important 
factors influencing carbon sequestration in collective 
forests. For example, the implementation of effective car-
bon sequestration policies in certain areas may generate 
positive spatial spillover effects, prompting neighboring 
regions to take corresponding measures, thereby further 
enhancing the carbon sequestration capacity of the entire 
area.

This paper examines the carbon sequestration poten-
tial on China’s collective forests, in particularl addressing 
the economic potential of carbon sequestration costs in 
China’s collective forests. With China spanning tropical 
and sub-frigid zones, there are significant natural varia-
tion in land quality and growth potential. We thus also 
consider how this regional variation affects the costs of 

developing carbon sequestration resources. This analysis 
allows us to determine which regions have advantages for 
concentrated development of forest carbon sequestra-
tion. By addressing these factors and leveraging the inno-
vative approach of applying deep neural network models 
to forecast carbon sequestration costs, we are able to 
consider the future prospects and long-term cost trends 
for carbon sequestration in collective forests. Finally, we 
examine spatial correlation and spillover effects in Chi-
na’s forest carbon sequestration resources. In particular, 
gaining insight into potential spatial spillover effects in 
the carbon sequestration costs of collective forests will 
provide practical help for policy makers developing car-
bon sequestration resources, improving the effectiveness 
of forest carbon management, and achieving the ‘‘Dual 
Carbon’’ goals in the forestry industry in China.

Literature
Forest carbon sequestration costs encompass the eco-
nomic losses or opportunity costs incurred to achieve 
forest carbon sequestration goals [17–19]. Typically 
measured in monetary units per ton of carbon dioxide, 
these costs vary due to differences in calculation meth-
ods, geographical scope, and underlying assumptions 
[20]. Existing literature on forest carbon sequestration 
costs can be categorized into two main perspectives.The 
first approach adopts an engineering cost perspective, 
utilizing income and production cost data from repre-
sentative land types or locations to determine the costs 
of forest carbon sequestration. This includes consider-
ing profit losses from converting land from agricultural 
to forestry use and the dynamic income from the timber 
market [21–23]. The second method estimates carbon 
sequestration costs based on evidence of landowners’ 
behavior when confronted with the opportunity costs 
of alternative land uses [24]. Despite differences, both 
methods share common components, such as the oppor-
tunity cost of land conversion and the present value of 
future revenue from forestry products.Moreover, stud-
ies have explored strategies to minimize the costs of 
forest carbon sequestration, offering practical insights 
into optimizing carbon sequestration in forest ecosys-
tems [25, 26]. These methodologies have been widely 
applied, providing valuable recommendations for future 
forest carbon sequestration projects [27–31]. They have 
also been instrumental in comparing the costs of for-
est carbon sequestration with other industrial emission 
reduction and carbon storage technologies [32, 33]. For 
instance, scholars have evaluated the economic feasibility 
of Clean Development Mechanism (CDM) carbon offset 
projects under different rotation conditions, employing 
an engineering perspective [34].
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Forest carbon sequestration costs are influenced by 
forest resource endowment, technological progress, and 
economic development. Research on the factors affecting 
forest carbon sequestration costs is one of the key themes 
in current studies [35]. Forestry management technology 
is a critical anthropogenic factor in forest carbon seques-
tration [36, 37]. Improved management technology 
can enhance forestry operational efficiency and reduce 
operational costs. Conversely, poorly managed forests 
with imbalanced stand structures, excessive foliage, and 
accumulation of forest litter and deadwood can lead 
to increased forest carbon emissions, accompanied by 
increased management costs [38, 39]. The level of input 
costs for land, labor, materials, and other resources in 
forest carbon sequestration activities is closely associated 
with the level of socioeconomic development. Regions 
with higher economic development often incur higher 
costs for forestry operations, labor, and seedling nur-
turing, resulting in relatively higher total forest carbon 
sequestration expenses compared to regions with lower 
economic development levels [40]. The abundance of for-
est resources to some extent determines the feasibility 
of carbon sink resource development. Regions endowed 
with abundant forest resources are often naturally advan-
taged areas, where superior natural conditions contribute 
to higher productivity and lower forest carbon sequestra-
tion costs. Moreover, the spatial concentration of forest 
resources leads to spatial spillover effects among various 
factors [41–43].

Compared to existing literature, this article makes 
three contributions. First, regarding ownership, Chi-
nese forests are classified into state-owned forests and 
collectively-owned forests, which may have different car-
bon sequestration costs due to variations in management 
entities. Existing studies estimate the carbon sequestra-
tion costs as a “mixture” of both types, whereas this arti-
cle focuses on calculating the carbon sequestration costs 
specifically for collectively-owned forests. It evaluates the 
costs by considering afforestation and opportunity costs 
over the past 30 years.

Second, based on the calculations presented in this 
paper, we further utilize a deep neural network model 
to forecast the future trends and prospects of carbon 
sequestration costs in China’s collective forests.

Third, taking a spatial spillover perspective, this article 
examines the spatial spillover effects of forest manage-
ment techniques, socioeconomic development, and for-
est resource endowment on the carbon sequestration 
costs of collectively-owned forests. It analyzes how dif-
ferent factors impact carbon sequestration costs across 
provinces.

Methodology and data sources
Carbon sequestration costs in collectively‑owned forests
The article employs a net present value model based on 
opportunity costs to calculate the carbon sequestration 
costs of collective forests. It is important to clarify that 
the carbon sequestration costs calculated in this study 
refer to a series of costs generated by the afforestation 
project under the afforestation cost method. Drawing 
from Benítez’s computational approach, the fundamen-
tal idea is that the profit from managing forest products 
should be at least equal to the profit from agricultural 
products under the same land conditions. Otherwise, the 
rational decision for operators would be to produce agri-
cultural products rather than forest products. Under con-
ditions where the two profits are equal, the equilibrium 
state of carbon sequestration prices is determined. This 
price represents the minimum theoretical cost of con-
ducting forest carbon sequestration operations[22].

Assuming Fi represents the profit from managing forest 
products and Ai represents the opportunity cost, i.e., the 
profit from agricultural operations, then

The profit from managing forest products consists of 
three components: afforestation costs, timber income, 
and carbon sequestration income.

In Eq. (2), fi represents the net present value of forest 
management income for plot i . cai  denotes afforestation 
costs, pwi  represents the average market price for tim-
ber, vi represents timber volume per unit area estimated 
based on the proportion of collective forest stock, ri rep-
resents the discount rate or the general social capital 
return rate, Ui represents the rotation period of the forest 
land, and Bi represents carbon sequestration income.

Taking into account the periodic nature of timber 
harvesting, the carbon sequestration net present value 
is calculated based on the rotation period. The carbon 
sequestration net present value is a function of the pre-
sent value of carbon sequestration income, the present 
value of carbon sequestration from forest products, and 
the carbon emissions during the harvesting period.

In Eq. (3), Bi represents the net present value of carbon 
sequestration from collective forest management during 
the rotation period. θi is the carbon sequestration pro-
portion of forest products. pci  is the carbon sequestration 

(1)Fi ≥ Ai

(2)fi = −cai +
pwi vi

(1+ ri)
Ui

+ Bi

(3)Bi = pci

Ui
∑

t=1

ωi

(1+ ri)
t
−

(1− θi)p
c
iωiUi

(1+ ri)
Ui
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price. ωi is the yeariy rate of carbon uptake(linear forest 
growth is considered), calculated based on the conver-
sion equation of forest volume-biomass-NPP (Net Pri-
mary Productivity) using data from the National Forest 
Inventory. Other parameters remain the same as men-
tioned above. In order to reasonably estimate the carbon 
sequestration of collective forests, this study incorporates 
relevant data of collective forests from the National For-
est Inventory and applies them to the conversion equa-
tion. The conversion equation is as follows:

Equation (4) represents the volume-biomass-NPP con-
version equation, where V  denotes the forest volume per 
unit area of collective forests. k is the root-stem ratio. Y  
represents the forest age, while c, d are parameters spe-
cific to different tree species. S represents the forest area.
The coefficient 1.63 is used to convert NPP to CO2, and 
the coefficient 12/44 is used to convert CO2 to carbon. 
The selection of these parameters is based on the biomass 
equation method in the “Forest Carbon Sequestration 
Management Methodology” and the studies by Liu et al. 
(2017). The specific values can be found in Table 1. The 
dominant tree species data for each province are sourced 
from the “National Forest Inventory.” Moreover, we adopt 
50% of NPP as the carbon uptake rate [22].

Forest carbon sequestration management must 
adhere to the principle of additionality, which means 
the carbon captured above what would have happened. 
When calculating additional carbon, the baseline car-
bon needs to be subtracted from the project carbon 

(4)ωi =
aV b(1+ k)S

cY + d(aV b(1+ k)S)
× 1.63×

12

44

before calculating the cost of carbon sequestration 
management. Here, ei represents the deduction ratio of 
baseline carbon sequestration.

Therefore, the final net present value of carbon 
sequestration management income is given by the fol-
lowing equation:

To calculate the revenue for an infinite rotation 
period based on the given market carbon trading price 
and rotation cycle, we can use Eqs. (2) and (5).

The opportunity cost of engaging in agricultural pro-
duction under the same land conditions is determined 
by the Cobb–Douglas production function in Eq. (7). K  
and L represent the production factors, while α and β 
denote the output elasticities of the respective factors. 
tech represents technological progress in production.

Substituting Eqs. (5), (6), and (7) into Eq. (1), we can 
derive the carbon sequestration price for forest carbon 
management. This price represents the equilibrium 
cost of carbon sequestration that forest managers aim 
to achieve equal returns to agricultural production.

(5)Bi = pci (1− ei)
Ui
∑

t=1

ωi

(1+ ri)t
−

(1− θi)(1− ei)pciωiUi

(1+ ri)Ui

(6)Fi = fi[1− (1+ ri)
−Ui ]−1

(7)Ai = techKαLβ

(8)pci =
Ai

[

1− (1+ ri)−Ui
]

+ cai − pwi vi(1+ ri)−Ui

ωi
(

1− ei
)

{

r−1
i

[

1− (1+ ri)−Ui
]

− Ri(1− θi)(1+ ri)−Ui
}

Table 1 Description and Source of Parameters Related to Model

Parameter Unit Parameter description and source

cpi 104CNY/hm2 Forestry investment/afforestation area, from “the "China Forestry Statistical Yea”book’’

pwi CNY/m3 Average market price for timber.According to “the ‘‘China Forestry Statistical Yea”book’’

vi m3/hm2 Timber volume per unit area of collective forests.According to the National Forest Resources Inventory

ri % Bank deposit interest rate for the same period announced by the Monetary Department of the P’ople’s Bank of China

Ri Year Rotation period of the forest land.Tropical forest, subtropical forest, and temperate forest are respectively 20 years, 25 years, 
and 30 years

V m3/hm2 Forest volume per unit area of collective forests.According to the National Forest Resources Inventory

k % Root-stem ratio.Greenhouse Gas Inventory of Land Use Change and Forestry from’hina’s Second National Information 
Notification

Y Year Forest age.Take the median age group of different forest types according to “the ‘‘Age Class and Age Group Classification 
of Main Tree Sp”cies’’

c Constant Referring to Liu JQ et al. relevant research achievements [44]

d Constant Referring to Liu JQ et al. relevant research achievements [44]

θi % Carbon sequestration proportion of forest products.Referring to Zhong WZ et al. research, use the default value of 82.43% 
[44]

ei % Deduction ratio of baseline carbon sequestration.Referring to Benítez et al. research, use the default value of 5%

Ai 104 CNY The ratio of agricultural output value to cultivated land area, from the China Statistical Yearbook
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Kernel density estimation
Kernel Density Estimation (KDE) is a non-parametric 
method for estimating probability distributions. It does 
not rely on prior knowledge and instead fits the distribu-
tion based on the data characteristics. The KDE formula 
is as follows:

N  represents the number of observations, Xi denotes 
independent and identically distributed observations, 
and x represents the mean value. Ke is the kernel func-
tion, and h is the bandwidth. The Gaussian distribution is 
chosen as the kernel function in this study, which is for-
mulated as:

Deep neural network
We have employed a novel approach utilizing Long 
Short-Term Memory (LSTM) networks for modeling car-
bon dynamics within forest ecosystems. LSTM networks 
offer unique advantages in capturing complex temporal 
dependencies and nonlinear relationships in the data, 
facilitating a more accurate understanding of carbon 
dynamics.The structure of an LSTM network is illus-
trated in the figure below:

Figure 1 presents the structure and mathematical equa-
tions of the LSTM network. The forget gate, denoted as 
f
(t)
i  , controls content retention or forgetting from the 

(9)f (x) =
1

Nh

N
∑

i=1

K (
Xi − x

h
)

(10)Ke(x) =
1

√
2π

exp

(

−
1

2
x2
)

previous cell. The input gate, represented by g (t)i  , deter-
mines which parts of the new cell content are written 
into the cell. The output gate, q(t)i  , controls the output of 
cell contents to the hidden state. The hidden state, h(t)i  , 
reads or outputs content from the final cell. W  and U are 
weight matrices, and b is the bias variable. h is the hid-
den state. The model has 150 iterations, 50 neurons, and 
a 5% forget rate. The training data consists of a 2:1 split, 
with 1992–2011 as the training set and 2012–2021 as the 
testing set. The trained LSTM model is evaluated on the 
testing set. Finally, the LSTM model is used to predict the 
trend of collective forest carbon sequestration costs in 
China until the carbon peak in 2030.

Spatial econometric models
Forest carbon sinks exhibit spatial spillover effects 
due to the interaction of natural endowments, forestry 
resources, and policies across regions. This means that 
carbon resources in one province may be spatially cor-
related with neighboring provinces, impacting the costs 
of carbon sequestration in collective forests. Given the 
spatial interdependence in the study domain, the spatial 
Durbin model is adept at capturing spatial dependence 
and autocorrelation, thereby enhancing predictive and 
explanatory capabilities. Furthermore, compared to tra-
ditional regression models, the spatial Durbin model bet-
ter addresses endogeneity and omitted variable issues in 
spatial data, thereby improving model fit and prediction 
accuracy.The specific econometric model is as follows:

lncc = α + ρWlncc + β0WTech+ β1WSocial

+ β2WNature + β4X + γ + ν+ µ

+
( )

+ ℎ )

+
( )

+ ℎ )

+
( )

+ ℎ )

( )
ℎ )

ℎ

ℎ

LSTM cell

Fig. 1 LSTM neural network structure diagram and equation system
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Equation  (10) presents a generalized spatial nested 
model, known as the spatial Durbin model (SDM). It 
incorporates the natural logarithm of the collective forest 
carbon cost (lncc) for each province. The model includes 
a spatial weight matrix ( W  ) and factors such as forestry 
management technology ( Tech ), socio-economic indica-
tors ( Social ), and natural endowment factors ( Nature ) 
specific to each province. The set of explanatory variables 
is represented by X.

The model accounts for various effects, including time 
fixed effects ( γ ), individual fixed effects ( ν ), and a spa-
tial error term ( µ ). The spatial autocorrelation coeffi-
cients are denoted by ρ , β , and ϕ , representing the spatial 
dependency of the dependent variable, independent vari-
ables, and error term, respectively.

By constraining the parameters, different spatial 
dependency conditions can be explored within the spa-
tial econometric framework. For instance, setting ρ = 0 , 
β = 0 , and ϕ = 0 yields a linear regression model. When 
β = 0 and ϕ = 0 , the model simplifies to a spatial autore-
gressive model (SAR). Similarly, if ρ = 0 and β = 0 , it 
becomes a spatial error model (SEM).

Data sources
Parameters for calculating carbon sequestration costs
The core variable of interest in this study is the carbon 
sequestration cost of collective forests. During the calcu-
lation process, variables accounting for inflation effects 
were adjusted using a price index with 1992 as the base 
year. Due to data limitations, the sample excludes Tibet, 
Hong Kong, Macau, and Taiwan regions. Additionally, 
the data for Chongqing Municipality is combined with 
that of Sichuan Province. Therefore, the study focuses 
on the remaining 29 provinces, covering the period from 
1992 to 2021. Missing data for specific years were supple-
mented using interpolation techniques. The parameters 
used in the carbon sequestration cost calculation, along 
with their default values, are presented in Table 1.

Factors influencing carbon sequestration costs
Based on existing literature, this study focuses on the 
core variable of carbon sequestration cost in collective 
forests. Factors influencing this cost are selected from 
three aspects: forestry management technology, social 
economy, and Ecological variables.

Forestry management technology variables: Forestry 
GDP, timber production, and afforestation area serve as 
proxies for forestry management technology. Forestry 
GDP reflects operational effectiveness and development 
levels in the forestry sector. Timber production indicates 

(11)µ = ϕWµ+ ε, ε ∼ N
(

0, σ2I
) regional output levels, with advanced forestry manage-

ment techniques maintaining optimal forest structure 
and enhancing growth and yield. Afforestation area 
reflects expansion and measures production technol-
ogy. Data for these variables are sourced from the annual 
‘‘China Forestry Statistical Yearbook.’’

Socio-economy variables: Labor cost, land use oppor-
tunity cost, and rural resident consumption are chosen 
as proxies for the social economy. Labor cost directly 
affects carbon sequestration management expenses as it 
increases. Land use opportunity cost co-varies with car-
bon sequestration cost due to land scarcity, guiding opti-
mal land allocation. Rural resident consumption provides 
a comprehensive measure of social and economic factors. 
Labor cost data are represented by the average salary of 
forestry employees, while land use opportunity cost is 
derived from agricultural income under similar condi-
tions. Data for rural resident consumption and land use 
opportunity cost are obtained from the annual ‘‘China 
Statistical Yearbook,’’ while labor cost data are sourced 
from the annual ‘‘China Forestry Statistical Yearbook.’’

Ecological variables variables: Forest stock volume 
and population density act as proxies for natural envi-
ronmental factors. Regions abundant in forest carbon 
sequestration resources are typically remote, with under-
developed infrastructure and low population density. 
This may increase the cost of resource development, 
but also reduce the opportunity cost of labor engage-
ment in forestry due to limited non-agricultural employ-
ment opportunities. Forest stock volume data come from 
the "National Forest Resources Inventory" for the years 
1992–2021, with missing data interpolated using natural 
growth rates. Population density data are obtained from 
the "China Statistical Yearbook."

The meaning and descriptive statistics of the above var-
iables are shown in Table 2.

Overview of collective forests in China
From a spatial perspective, significant disparities exist 
in the volume of collective forest reserves among differ-
ent regions (Fig. 2 left). Provinces like Yunnan, Sichuan, 
Guangxi, and Fujian exhibit higher volumes of collective 
forest reserves, likely due to their geographical location, 
climatic conditions, and abundant forest resources. These 
regions typically boast extensive forest cover, which fos-
ters forest growth and accumulation. Following closely 
are provinces such as Anhui, Jiangxi, Hubei, Hunan, 
Gansu, and Zhejiang, where forest reserves range from 
millions to tens of millions. These provinces form the 
backbone of collective forest resources in the southern 
forest region.

Regarding temporal changes, from 1988 to 2018, both 
the area and volume of collective forest lands have seen 
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continuous growth, with the volume growth rate even 
surpassing that of the area(Fig. 2 right). This trend likely 
reflects the growth and accumulation of trees. Particu-
larly notable is the significant acceleration in the growth 
rate of collective forest lands after 2008, attributed to 
reforms granting forest management rights to house-
holds following the collective forest tenure reform. Over-
all, these data underscore the effectiveness of measures 
for protecting and managing collective forest lands and 
their positive impact on the ecosystem.

Results
Dynamic analysis of cost distribution of collective forest 
carbon sequestration in China
To identify the heterogeneity and dynamic trends of 
carbon sequestration costs in collective forests at the 
regional level, this study uses kernel density estimation to 
plot kernel density maps for different provinces. Figure 3 
shows Gaussian kernel density estimates of collective for-
est carbon sequestration costs in China for 1992, 2002, 
2012, and 2021.

Nationally, the peak of the carbon sequestration cost 
curve gradually decreases, and the range extends to the 
right. This indicates increasing carbon sequestration 
costs over time, but with varying magnitudes. The elon-
gated right-tail distribution suggests significant differ-
ences among provinces. In 1992 and 2002, the cost curve 
distributions were concentrated with a single prominent 
peak, ranging from CNY 0–50 per ton (= 6.42 Euros/t). 
This indicates relatively low and similar carbon seques-
tration costs in most provinces’ collective forests. In 
2012 and 2021, the distributions changed noticeably, 
with lower peak heights and extended right-tail distribu-
tions. The range extended to around CNY 250 per ton 
(= 32.13 Euros/t), indicating a substantial increase in 
costs for some provinces, resulting in a wider gap among 
provinces.

Regionally, the main peak of carbon sequestration cost 
curves in the eastern region gradually shifted to the right, 

Table 2 Data description and descriptive statistics

Variable Unit Obs Mean Std

Carbon sequestration cost CNY/tco2e 870 32.382 35.381

Forestry GDP billion 870 84.612 97.493

Wood production 104tons 870 251.021 322.912

Afforestation area hm 870 197.821 175.024

Labor price CNY 870 4000 3700

Land use opportunity costs CNY 870 26,000 24,000

Rural residents’ consumption CNY 870 6476 6843

Forest stock 104m3 870 20,000 24,000

Population density people/km2 870 421.011 593.521

Fig. 2 Spatial Distribution and Temporal Changes of Collective Forest Resources in China (Left: Spatial Distribution of Collective Forests 
from the Ninth National Forest Resources Inventory (2018); Right: Temporal Changes in Area and Volume of Collective Forests in China)
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showing a pattern of “slight increase followed by signifi-
cant decrease.” The range expanded from CNY 50 per 
ton in 1992 to nearly CNY 250 per ton in 2021, indicat-
ing an overall increase in costs and growing disparity. 
In the central and western regions, the cost curves were 
concentrated in 1992 and 2002, with clear peaks rang-
ing from CNY 0–20 per ton (= 0–2.57 Euros/t). In 2012 
and 2021, the curves flattened, and in 2021, they shifted 
further right compared to 2012. However, the central 
region’s costs remained below CNY 50 per ton, while 
the western region’s costs extended to CNY 120 per ton 
(= 15.42 Euros/t) in 2012 and nearly CNY 250 per ton in 
2021. This shows a significant increase in costs for some 
provinces in the western region, leading to internal polar-
ization, while the central region’s costs remained rela-
tively low.

Spatio‑temporal evolution of collective forest carbon 
sequestration costs in China
To visually illustrate the spatial pattern evolution of col-
lective forest carbon costs, Fig. 4 presents the spatial dis-
tribution of collective forest carbon costs in China for the 
years 1992, 2002, 2012, and 2021. From Fig. 4, it can be 

observed that the regions with advantageous collective 
forest carbon costs in China exhibit a west-to-east migra-
tion trend.

Regarding the spatial pattern of collective forest carbon 
costs in 1992, the average national carbon cost is below 
CNY 50. The Beijing-Tianjin-Hebei region has the high-
est carbon cost, followed by eastern coastal provinces. 
The lowest carbon costs are observed in western regions 
such as Qinghai, Gansu, Yunnan in the southwest, as well 
as Heilongjiang and Jilin in the northeast. The spatial dis-
tribution of carbon costs in 2002 exhibits similar charac-
teristics to 1992, but with an overall increase in carbon 
costs. Guangxi, Guizhou, and Sichuan provinces experi-
enced relatively decreased carbon costs.

During the late 20th and early twenty-first centuries, 
China was in a phase of rapid development. A significant 
labor force migration occurred from west to east, and the 
eastern regions had already undergone industrialization, 
leading to increased land and labor prices. This resulted 
in higher implementation costs for forest carbon in the 
eastern coastal regions, while carbon costs remained rel-
atively lower in inland provinces.

Fig. 3 Kernel Density of Carbon Fixation Costs for Collective Forests in Various Regions of China in 1992, 2002, 2012, and 2021
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In 2012, notable changes occurred in the spatial dis-
tribution of forest carbon costs. The eastern coastal 
provinces still had higher carbon costs, while the south-
ern inland, southwest, Heilongjiang, and Jilin provinces 
experienced a relative decrease in carbon costs. In 
2021, the spatial distribution of carbon costs further 
reinforced these patterns. The southeastern non-coastal 
regions exhibited a distinct advantage in carbon costs 
compared to other areas, while the western provinces 
saw a continuous increase in carbon costs. The west-
to-east migration trend of carbon costs between 2012 
and 2021 intensified, reversing the distribution pattern 

of lower costs in the west and higher costs in the east 
during the 1990s. Currently, the provinces with advan-
tageous collective forest carbon costs are primarily 
concentrated in the northeastern, central, and southern 
non-coastal regions.

LSTM network prediction of China’s collective forest 
carbon sequestration cost
This study employs the LSTM deep neural network 
model to forecast the carbon sequestration costs of Chi-
na’s collective forests before the 2030 carbon peak. Fig-
ure  5 illustrates the training set, testing set, and future 
prediction trends of the LSTM model. It demonstrates 

Fig. 4 Temporal and Spatial Evolution of Carbon Fixation Costs for Collective Forests in China
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that the LSTM model accurately predicts the training set, 
capturing data trends and fluctuations. The testing set 
predictions also align with the data’s changing trends and 
fluctuations. Overall, the LSTM training results indicate 
that the network structure learns the data’s variations and 
volatility, enabling predictions of future carbon seques-
tration cost trends.

The carbon sequestration cost curve exhibits an elon-
gated ‘‘S’’ shape, currently experiencing rapid growth but 
expected to gradually slow down before the 2030 carbon 
peak. The projected trend suggests a continuous increase 
in carbon sequestration costs for collective forests, with 
an average price of approximately CNY 125 per ton 
(= 16.06 Euros/t).

The rise in labor force, land use costs, and forest accu-
mulation are significant factors contributing to the 
continuous growth of carbon sequestration costs for col-
lective forests. As the policy-driven carbon peaking pro-
cess advances, the demand for forest carbon sinks in the 
carbon market increases. However, limited available land 
for afforestation as a carbon sink, due to land resource 
constraints, necessitates a shift towards intensive 

management of existing carbon sink forests. This shift 
results in increased operational costs for forest carbon 
sequestration. Furthermore, from an alternative perspec-
tive, as industrial emission reduction costs increase with 
emission volume, enterprises seek more cost-effective 
alternatives. Forest carbon trading, compared to engi-
neering emission reductions, emerges as a preferable 
option, leading to an increase in forest carbon seques-
tration costs. Additionally, macroeconomic conditions 
impact forest carbon sequestration costs. Currently, there 
is a low return on social capital, and major developed 
countries have entered a zero interest rate era. Changes 
in interest rates affect the calculation of net present value 
for forest carbon sinks, contributing to increased carbon 
sequestration costs.

Spatial spillover effects of collective forest carbon 
sequestration costs in China
Benchmark regression results
The regression results of the panel data with a two-way 
fixed effects model, ignoring spatial correlation, are 

Fig. 5 LSTM neural network prediction of the ‘‘carbon peak’’ carbon sequestration cost of collective forests in China in 2023
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presented in Table 3. The results indicate significant neg-
ative effects of forest accumulation, forestry gross value 
added, and timber production on the carbon sequestra-
tion costs of collective forests. Land opportunity cost, 
rural household consumption, population density, and 
afforestation area show significant positive effects on car-
bon sequestration costs. However, the impact of labor 
force price on carbon sinks in collective forests is not sig-
nificant. The results of the spatial correlation test, as indi-
cated by the robust LM test statistics, are all significant 
at the 1% level, suggesting that the model specifications 
cannot reject the presence of spatial lag and spatial error 
effects.

Spatial Durbin model regression results
The LM test conducted earlier revealed the presence of 
spatial effects among sample entities, indicating a poten-
tial misspecification issue in the conventional panel data 
model. Therefore, we employed the spatial Durbin model 
to analyze the factors influencing carbon sequestra-
tion costs in China’s collective forests and their spatial 

spillover effects. The regression results of the spatial Dur-
bin model are presented in Table 4.

Table 4 shows that the spatial autoregressive coefficient 
for carbon sequestration costs is significant, indicating 
notable spatial correlation among neighboring provinces. 
Forest accumulation, forestry gross value added, and tim-
ber production have significant negative effects on car-
bon sequestration costs in the respective provinces. On 
the other hand, land opportunity cost, rural household 
consumption level, and population density exhibit signifi-
cant positive effects on carbon sequestration costs.

Provinces with higher forest accumulation, represent-
ing abundant forest resources, experience lower carbon 
sequestration costs, demonstrating a "diminishing mar-
ginal cost" nature of carbon sequestration benefits. Prov-
inces with higher forestry gross value added and timber 
production tend to have advanced forestry techniques 
and operational efficiency, leading to lower carbon 
sequestration costs.

Land, as a necessary input for carbon sequestration 
in collective forests, becomes more constrained and 
costly when its opportunity cost rises due to alternative 

Table 3 Regression results of non spatial correlation panel data econometric model of carbon sequestration cost

The significance level is *p < 0.1, **p < 0.05, ***p < 0.01, with t-statistic in parentheses. Year FE represents a fixed time effect, while Prov FE represents a fixed provincial 
effect, as shown in the following table

(1) (2) (3) (4)

Forestry GDP − 8.493*** − 24.873*** − 7.822*** − 25.456***

(− 6.935) (− 8.753) (− 5.914) (− 6.817)

Wood production − 0.081 − 3.702*** − 0.626 − 4.568***

(− 0.137) (− 5.130) (− 1.010) (− 6.123)

Afforestation area 9.900*** 1.429 11.842*** 1.828*

(12.300) (1.633) (12.932) (1.889)

Labor Price − 0.309 − 2.558*** 2.929* − 2.178

(− 0.294) (− 2.787) (1.866) (− 1.496)

Land use costs 34.337*** 39.607*** 37.198*** 57.210***

(18.260) (14.441) (18.004) (13.606)

Rural residents’ consumption 7.728*** 16.576*** 15.485*** 19.739***

(5.128) (6.875) (4.928) (4.336)

Forest stock − 7.281*** − 12.033*** − 7.291*** − 11.142***

(− 11.530) (− 11.610) (− 11.462) (− 10.635)

Population density − 2.961*** 47.994*** − 4.093*** 55.289***

(− 4.486) (6.321) (− 5.281) (6.404)

Year FE No No Yes Yes

Prov FE No Yes No Yes

N 870 870 870 870

r2 0.668 0.831 0.683 0.844

Spatial error Lagrange multiplier 0.409

Spatial error Robust Lagrange multiplier 18.284***

Spatial lag Lagrange multiplier 11.973***

Spatial lag Robust Lagrange multiplier 29.848***
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economic activities such as industrial or urban develop-
ment. The increased rural household consumption and 
population density indicate resource competition and 
limited land supply, resulting in higher competition costs 
for collective forest carbon sequestration.

The spatial lagged terms of the independent vari-
ables, including forest accumulation, land opportunity 
cost, timber production, rural household consumption, 
and labor force price, exhibit significant spatial spillover 

effects. Notably, the indirect spatial spillover effect of for-
est accumulation differs from the direct effect discussed 
earlier, while the indirect effect of labor force price is sig-
nificant despite the insignificant direct effect.

Additionally, we examined the influence of unob-
servable factors on the model results. Model (4), which 
includes two-way fixed effects, shows larger absolute 
values for regression coefficients compared to Model 
(2), which only considers individual fixed effects. This 

Table 4 Regression Results of Panel data Spatial Durbin Model of Carbon Fixation Cost

(1) (2) (3) (4)

Forestry GDP − 28.446*** − 26.356*** − 6.734*** − 24.152***

(− 9.421) (− 7.892) (− 5.000) (− 6.836)

Wood production − 2.317*** − 3.206*** − 0.700 − 5.044***

(− 3.041) (− 4.487) (− 1.160) (− 7.332)

Afforestation area 2.310** 1.259 10.483*** 0.610

(2.413) (1.389) (12.124) (0.687)

Labor Price 0.947 − 0.749 5.134*** − 0.438

(0.733) (− 0.616) (3.507) (− 0.323)

Land use costs 47.626*** 46.831*** 31.860*** 54.240***

(11.947) (11.590) (14.037) (13.613)

Rural residents’ consumption 7.795* 11.268*** 20.160*** 16.143***

(1.777) (2.682) (5.876) (3.724)

Forest stock − 10.287*** − 10.969*** − 6.842*** − 11.136***

(− 9.532) (− 10.568) (− 10.958) (− 11.258)

Population density 16.831** 47.243*** − 3.590*** 68.675***

(2.156) (5.693) (− 4.879) (8.156)

W × Forestry GDP 4.256 0.002 14.980*** 0.220

(0.900) (0.000) (5.423) (0.027)

W × Wood production − 5.278*** − 4.414*** − 7.638*** − 11.437***

(− 4.869) (− 4.059) (− 7.687) (− 9.322)

W × Afforestation area − 1.075 − 0.412 5.172*** − 0.992

(-0.780) (− 0.303) (2.687) (− 0.569)

W × Labor Price − 2.858** − 1.727 -0.901 − 5.460**

(− 1.992) (− 1.244) (− 0.321) (− 2.163)

W × Land use costs − 3.391 − 1.505 − 1.748 53.097***

(− 0.599) (− 0.262) (− 0.356) (5.830)

W × Rural residents’ consumption 8.589 6.449 39.658*** 24.594***

(1.630) (1.233) (5.497) (2.696)

W × Forest stock 4.829** 4.244** 4.522*** 6.333***

(2.452) (2.098) (3.052) (2.923)

W × Population density − 14.398 − 48.095*** − 9.381*** 11.131

(− 1.472) (− 3.008) (− 6.696) (0.579)

Spatial rho − 0.077 − 0.049 − 0.132** − 0.220***

(− 1.272) (− 0.828) (− 2.148) (− 3.576)

Year FE No No Yes Yes

Prov FE No Yes No Yes

N 870 870 870 870

r2 0.379 0.214 0.522 0.240
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suggests the presence of policy shocks or time-varying 
factors that have led to an underestimation of the spatial 
spillover effects on carbon sequestration costs. Moreo-
ver, compared to Model (3) with only time fixed effects, 
Model (4) incorporating spatial lagged terms demon-
strates increased absolute coefficients, highlighting the 
importance of accounting for individual differences to 
avoid underestimating the spatial spillover effects on car-
bon sequestration costs.

Spatial spillover decomposition
The spatial econometric model analyzed in the previous 
section indicates that the coefficient of the spatial lag 
term does not directly reflect the marginal changes of 
the independent variables on the dependent variable. To 
explain the marginal effects of the independent variables 
from neighboring provinces on the dependent variable, 
namely spatial spillover effects, it is necessary to decom-
pose the coefficients into direct and indirect effects. 
Table 5 presents the results of the spatial spillover effects 
decomposition.

The decomposition of indirect effects reveals the fol-
lowing: Firstly, both the timber production and labor 
price exhibit negative spatial spillover effects, indicat-
ing that an increase in timber production and labor 
price in neighboring provinces would reduce the carbon 
sequestration cost of collective forests in the focal prov-
ince. An increase in timber production in neighboring 
provinces may lead to a higher inflow of timber into the 
focal province, thereby restraining its timber harvest-
ing. Given the established forest age structure and forest 
management inputs, a lower timber harvesting volume 
results in higher carbon sequestration in forests, lead-
ing to a reduction in carbon sequestration costs of col-
lective forests in the focal province [36]. Labor is mobile, 
and an increase in labor prices in neighboring provinces 
creates a suction effect on labor outflow from the focal 
province, which contributes to the scale effect of forest 

management through land circulation. Consequently, it 
leads to a decrease in carbon sequestration costs of col-
lective forests.

Secondly, the opportunity cost of land use, rural house-
hold consumption, and forest stock exhibit positive spa-
tial spillover effects on the carbon sequestration costs of 
collective forests. The rise in land use opportunity cost is 
often associated with urbanization. If a particular region’s 
land use shows higher economic benefits, surrounding 
areas may also be influenced as resources are attracted to 
that location, thereby increasing the opportunity cost of 
land use and, consequently, the cost of carbon sequestra-
tion.Forests not only provide timber as building materi-
als but also offer ecological products, such as protecting 
water sources, purifying air, and maintaining biodiver-
sity. Areas in the later stage of urbanization have a higher 
demand for ecological products and pay more attention 
to the environment, thereby emphasizing the protec-
tion of forest resources. Consequently, it leads to higher 
carbon sequestration costs [15]. The upgrading of rural 
household consumption in neighboring provinces is usu-
ally accompanied by an increase in demand for ecologi-
cal and timber products, triggering resource competition. 
Competition, in turn, raises the prices of factors of pro-
duction for collective forest management, resulting in an 
increase in carbon sequestration costs in the focal prov-
ince[43]. The forest stock in a specific province partly 
reflects the effectiveness of forest conservation policies 
and quota-based harvesting systems. A higher forest 
stock in neighboring provinces may be the result of for-
estry policies, which induces an increase in forest har-
vesting in the focal province and consequently leads to an 
increase in carbon sequestration costs [45].

Robustness check
The benchmark regression and spatial Durbin model 
regression results in this study both indicate the presence 
of spatial spillover effects in the carbon sequestration 

Table 5 Decomposition of direct and indirect effects of carbon sequestration cost spatial spillover

Total effect Indirect effect Direct effect

Effect T‑value Effect T‑value Effect T‑value

Forestry GDP − 19.423** − 2.377 4.205 0.646 − 23.628*** − 6.848

Wood production − 13.537*** − 11.726 − 8.252*** − 8.228 − 5.285*** − 7.870

Afforestation area − 0.365 − 0.227 − 0.939 − 0.688 0.574 0.623

Labor Price − 4.871** − 2.009 − 4.271** − 2.132 − 0.600 − 0.471

Land use costs 88.601*** 11.063 33.567*** 4.647 55.034*** 14.363

Rural residents’ consumption 33.242*** 3.817 16.724** 2.244 16.519*** 4.049

Forest stock − 3.775** − 2.051 7.122*** 4.335 − 10.896*** − 10.794

Population density 65.900*** 3.706 − 3.527 − 0.219 69.427*** 8.254
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costs of collective forests. However, there may still be 
some underlying factors that could affect the robustness 
of the regression results. Therefore, this study conducts 
robustness tests on the specification of the spatial weight 
matrix in the spatial econometric model by construct-
ing geographic distance and economic distance matrices. 
The aim is to examine and decompose the spatial spillo-
ver effects of the spatial Durbin model.

After replacing the spatial weight matrix with the eco-
nomic distance and geographic distance matrices, the 
spatial Durbin model is once again used to decompose 
the spatial spillover effects. Other model specifications 
remain consistent with the previous analysis. The results, 
as presented in Table 6, demonstrate that the spatial spill-
over effects decomposition results of the spatial Durbin 
model under the specifications of the economic distance 
matrix and geographic distance matrix are consistent 
with the previous findings obtained using the adjacency 
spatial matrix.

Conclusion
This study estimates the changes in carbon sequestration 
costs of collective forests in China over the past 30 years, 
using the forest carbon sequestration cost model. It ana-
lyzes the spatiotemporal evolution characteristics and 
predicts the carbon sequestration costs of collective for-
ests before the carbon emissions peak in 2030 using a 
deep neural network model. The spatial Durbin model 
is applied to explore the spatial spillover effects of car-
bon sequestration costs. The key research findings are as 
follows:

The regions with advantages in carbon sequestration 
costs of collective forests in China have shifted from west 
to east over the past 30  years. Initially, cost advantages 
were mainly concentrated in the northwest and northeast 
provinces, while in the later period, the southern collec-
tive forest areas, excluding coastal provinces, had lower 
carbon sequestration costs.

The carbon sequestration costs of collective forests in 
China have shown an increasing trend since 1992. Pre-
dictions indicate that by 2030, the average carbon seques-
tration cost of collective forests in China will reach CNY 
125 per ton(= 16.06 Euros/t).

Forest stock volume, total forestry production value, 
and timber production have a significant negative impact 
on the carbon sequestration costs of collective forests 
in respective provinces. Conversely, land opportunity 
costs, rural resident consumption levels, and population 
density have a significant positive impact on the carbon 
sequestration costs.

Carbon sequestration costs exhibit significant spa-
tial correlation. Land opportunity costs, rural resident 
consumption levels, and forest stock volume have posi-
tive spatial spillover effects on the carbon sequestration 
costs of collective forests. Conversely, timber production 
and labor costs have significant negative spatial spillover 
effects.

Based on the research findings, the following policy 
implications are derived:

Priority should be given to developing forest carbon 
sink resources in southern collective forest areas, which 
currently have lower carbon sequestration costs. This 
involves encouraging carbon sequestration projects, pro-
moting afforestation on suitable land, incentivizing car-
bon sequestration management on existing forested land, 
and enhancing forest carbon absorption.

Efforts are needed to balance the utilization and pro-
tection of forest resources and to strengthen the sus-
tainable management of collective forests. This includes 
adopting sustainable forest management measures to 
improve timber production efficiency and quality, reduce 
waste and losses, and decrease carbon sequestration 
costs. Additionally, forest resource management and pro-
tection should be enhanced, encompassing improved for-
est management planning, conservation, and restoration 

Table 6 Robustness test results of other spatial weight matrice

The significance level is * p<0.1, * * p<0.05, * * * p<0.01, with t-statistic in parentheses

Economic distance matrix Geographic distance matrix

Direct Indirect Total Direct Indirect Total

Forestry GDP − 21.524*** − 0.879 − 22.403*** − 21.524*** − 0.879 − 22.403***

Wood production − 2.355*** 3.828*** 1.473 − 2.355*** 3.828*** 1.473

Afforestation area 4.314*** − 4.445*** − 0.132 4.314*** − 4.445*** − 0.132

Labor Price − 2.468** 2.565 0.097 − 2.468** 2.565 0.097

Land use costs 55.929*** 20.436*** 76.365*** 55.929*** 20.436*** 76.365***

Rural consumption 19.591*** − 37.330*** − 17.739*** 19.591*** − 37.330*** − 17.739***

Forest stock − 8.163*** 7.800*** -0.364 − 8.163*** 7.800*** − 0.364

Population density 59.884*** − 53.651*** 6.233 59.884*** − 53.651*** 6.233
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projects, as well as sustainable forestry operations aimed 
at increasing forest stock volume.

Interprovincial forestry exchange should be enhanced 
to coordinate regional forest resource development and 
afforestation activities. Given the spatial spillover effects 
of carbon sequestration costs in collective forests, pro-
moting cross-regional cooperation and coordination is 
essential to facilitate resource sharing and flow. It is cru-
cial to foster resource sharing and technology transfer to 
reduce carbon sequestration costs and achieve synergis-
tic effects between regions, ultimately improving overall 
carbon sequestration benefits.

In methodology, Long Short-Term Memory (LSTM) 
networks outperform traditional forecasting models by 
capturing nonlinear factors in the carbon market. This 
enhances our ability to predict carbon sequestration 
costs, considering the market’s complexity and uncer-
tainty comprehensively. By adeptly handling various non-
linear relationships, we aim for a more accurate portrayal 
of underlying patterns and regularities within the carbon 
market, providing carbon market participants with effec-
tive decision support and risk management strategies.
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