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COMMENT

Importance of on-farm research 
for validating process-based models 
of climate-smart agriculture
Elizabeth Ellis1* and Keith Paustian1,2 

Abstract 

Climate-smart agriculture can be used to build soil carbon stocks, decrease agricultural greenhouse gas (GHG) emis-
sions, and increase agronomic resilience to climate pressures. The US recently declared its commitment to include 
the agricultural sector as part of an overall climate-mitigation strategy, and with this comes the need for robust, sci-
entifically valid tools for agricultural GHG flux measurements and modeling. If agriculture is to contribute significantly 
to climate mitigation, practice adoption should be incentivized on as much land area as possible and mitigation 
benefits should be accurately quantified. Process-based models are parameterized on data from a limited number 
of long-term agricultural experiments, which may not fully reflect outcomes on working farms. Space-for-time substi-
tution, paired studies, and long-term monitoring of SOC stocks and GHG emissions on commercial farms using a vari-
ety of climate-smart management systems can validate findings from long-term agricultural experiments and provide 
data for process-based model improvements. Here, we describe a project that worked collaboratively with com-
mercial producers in the Midwest to directly measure and model the soil organic carbon (SOC) stocks of their farms 
at the field scale. We describe this study, and several unexpected challenges encountered, to facilitate further on-farm 
data collection and the creation of a secure database of on-farm SOC stock measurements.

Introduction
While agriculture is a major source of GHG emissions, 
agriculture can also contribute to climate mitigation 
through avoided emissions and carbon sequestration 
by following conservation management principles [1, 6, 
7, 44]. The United States agricultural sector contributes 
approximately 10% of total US greenhouse gas (GHG) 
emissions. While only a small proportion of total agricul-
tural emissions (< 1%) currently come from the conver-
sion of grassland and forest to croplands [32], creation 

of new agricultural land and the release of soil carbon 
(C) as  CO2 was a significant historical source of emis-
sions to the atmosphere [60]. Thus, a significant C ‘defi-
cit’ remains in most US cropland soils due to historical 
land use change, generated through lower rates of plant 
C inputs to soil compared to native ecosystems, along 
with decades of intensive tillage and extended bare fallow 
periods [24, 55]. Restoring SOC lost from cropland soils 
can contribute to climate mitigation, reduce GHG emis-
sions associated with agricultural activities, and regener-
ate degraded land.

Practices that rebuild SOC stocks have the added ben-
efits of restoring soil fertility, reducing emissions associ-
ated with field activities, and increasing agroecosystem 
resilience to climate stressors, such as drought, flood-
ing, and pest pressures [6, 7, 25]. Thus, these practices 
fall under the umbrella of “climate-smart agriculture,” 
indicating they are tools to both mitigate atmospheric 
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C and adapt to the pressures of climate change [12, 44]. 
Soil carbon stocks can be replenished over time by man-
aging the balance between photosynthesis (C gain) and 
biological decomposition (C loss). During decomposi-
tion, the majority of plant residue C is lost as  CO2 to the 
atmosphere while a portion is stabilized in SOM as soil 
organic matter carbon (SOM-C or SOC). If the amount 
of C added to the SOC pool exceeds the amount lost as 
 CO2 during decomposition, cropland soils act as a net 
sink for atmospheric C. This can occur with changes in 
management practices that induce greater plant C inputs 
and/or reduce SOM decomposition rates, although there 
is a finite capacity or ‘saturation’ limit to the attainable 
size of C stocks in agricultural soils [63] There are sev-
eral climate-smart practices that can positively impact 
the soil C balance, such as no-till, cover crops, diversified 
crop rotations, integrating animals into crop systems, or 
a combination of multiple synergistic practices [2, 6, 21, 
43, 44].

With recent national and international commitments 
to agriculture as a climate mitigation strategy [33, 68], 
there is demand for reliable methods to measure and esti-
mate changes in SOC stocks and GHG fluxes under agri-
cultural management change. Ecosystem process-based 
models are increasingly used to estimate SOC stocks and 
GHG fluxes at the field and regional level. The applicabil-
ity of models is dependent on the degree to which they 
are parameterized, calibrated, and validated to reflect the 
environmental and management characteristics of the 
unique land use settings and soil characteristics encoun-
tered across the country [37]. Thus, to accurately quantify 
or estimate the climate mitigation potential of climate-
smart practices, it’s important that measurements and 
models reflect the variety of soil types, topography, and 
management systems encountered on cropland across 
the country. Here, we make the case for increased sam-
pling and activity data collection on commercial farms 
to test conclusions from long-term field experiments 
(LTEs), improve process-based models, and support the 
successful adoption of climate-smart practices at scale. 
We describe challenges in process-based modeling asso-
ciated with data availability, summarize recent studies of 
SOC stock change in commercial farm settings, and pro-
pose a method for integrating on-farm measurements 
and activity data to improve model simulations.

The US is committed to agriculture 
as a climate‑mitigation strategy, but available 
quantification tools need improvement
The US agricultural sector declared its commitment 
to agriculture as a climate-mitigation strategy with the 
announcement of USDA’s Partnerships for Climate Smart 
Commodities project [45] and the significant allocation 

of Inflation Reduction Act funds for currently oversub-
scribed agriculture conservation programs, like CSP and 
EQIP [23]. Collectively, these two initiatives appropriated 
$22.6 billion towards the creation of markets for climate-
smart commodities and to support agricultural produc-
ers in the adoption of climate-smart practices to both 
mitigate and adapt to the pressures of climate change. If 
climate-smart practices are adopted on all possible US 
agricultural land, it is estimated that 0.17 Gt  CO2e   yr−1 
could be sequestered over the following 20 years [61]. By 
the end of the century, a total mitigation of 110 Gt  CO2e 
might be achieved in the US through a range of nature-
based climate mitigation practices on managed lands, 
including C sequestration in soils and biomass and bio-
energy with carbon capture and storage [52]. However, 
catalyzing wide-spread management changes on mil-
lions of farms and ranches across the US continues to be 
a major challenge [53, 58]. Technical assistance, social 
change, and economic incentives are needed across 
scales and sectors to spread the use of climate-smart 
practices [28, 48]). One such incentive is the creation of 
markets for agriculturally-generated carbon credits that 
pay producers for C stored in their soil and/or reduced 
GHG emissions [39, 40], an otherwise unrewarded eco-
system service [50].

A common goal of private carbon credit markets and 
other climate-smart initiatives, such as ‘low-carbon’ 
supply chains, is to improve methods for monitoring, 
reporting, and verification (MRV) of the GHG emission 
reductions or C sequestration benefits of climate-smart 
practices. Most MRV protocols require a combination of 
direct soil measurements, modeling, and/or remote sens-
ing, but there are no industry or governmental standards 
to ensure the comparability of offsets generated through 
different protocols [39]. With current methods and tech-
nologies, laboratory measurement of soil carbon is too 
costly and time-intensive to be used on all desired fields 
and with the large sample sizes needed to detect small 
changes in carbon stocks [8, 62]. Thus, a combination of 
direct measurement and process-based biogeochemical 
modeling represents the “gold standard” for voluntary 
carbon-market MRV protocols [14, 43, 59].

Nearly all process-based model development processes 
are carried out using field activity data and SOC and/
or GHG flux measurements from LTEs with controlled 
and repeated management. Although LTEs are essential 
for basic agricultural research and model parameteriza-
tion, they are limited in their extent and representation 
of soil, climate, topography, field size, and management 
combinations, and therefore do not include the full 
range of activities, outcomes, and production challenges 
encountered on real commercial farms [5, 17, 18]. There 
is need for greater collaboration between researchers, 
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agricultural producers, and various entities developing 
MRV protocols to improve process based models using 
on-farm measurements and activity data [8, 40].

Model‑based simulations of SOC stocks could be 
improved with further on‑farm measurements.
Simulation of ecosystem processes for estimation of 
changes in SOC stock and GHG emissions are, and will 
continue to be, an essential aspect of climate-smart agri-
culture MRV protocols. Process-based biogeochemical 
models, such as DayCent [41], DNDC [19], and RothC 
[13], rely on measurement data to improve simulations 
of agroecosystem processes occurring above and below-
ground and their subsequent impacts on biogeochemi-
cal stocks and fluxes, including SOC stocks and GHG 
emissions. SOM models and modeling approaches incor-
porate new experimental data to reflect the latest under-
standing of SOM dynamics, such as saturation kinetics, 
permanence, priming, measurable SOM fractions, sub-
soil SOM, and specific microbial processes [3, 10, 11, 57, 
69]. Despite improvements in the ability of process-based 
models to simulate observed soil C dynamics, uncertain-
ties remain high when estimating SOC stock change at 
the field and regional scale. For example, uncertainties 
for simulating past SOC stock change in the Century 
model were as high as ± 118% and ± 739% at subregional 
and site scales, respectively [38]. Bayesian model analy-
sis frameworks and intermodal comparisons have proven 
useful for reducing uncertainty [22, 64], but the limited 
amount of measured data for model calibration and vali-
dation remain the largest bottle-neck for further reduc-
ing uncertainty in quantifying SOC stock changes [4, 10, 
14, 22, 47].

New modeling techniques incorporating artificial 
intelligence and multi-model ensembles may improve 
simulation accuracy and uncertainty estimations if the 
necessary data are available. For example, machine learn-
ing (ML) algorithms have the potential to incorporate 
large quantities of data to model ecological processes 
with superior performance to traditional process-based 
models [4]. Furthermore, multi-model ensembles that 
incorporate the strengths of several models simultane-
ously are shown to improve C flux simulations and are 
currently being pursued by collaborative groups through-
out the process-based modeling community [51, 56, 64]. 
Even more so than traditional process-based models, the 
performance of ML algorithms and multi-model ensem-
bles is strongly dependent on the quantity and quality 
of measurement data used for training, calibration, and 
validation.

Most data available for model development are gener-
ated at LTEs and LTE networks representing a narrow 
range of agricultural regions, crop production systems, 

climate-smart practices, topographical settings, and 
soil types [49]. While LTE data are essential for gener-
ating high-control, low-variability, time series data for 
model parameterization, applicability of experimental 
results to the broader range of commercial farm settings 
is uncertain. When modeling outcomes on commercial 
farms, accurately simulating biomass input (crop yields), 
impacts of historical land use, and baseline SOC stocks is 
important [31]. Furthermore, available data must repre-
sent the full range of pedo-climatic and landscape-level 
variables (including topography and soil erodibility) that 
affect SOC baseline stocks, SOC accrual, and SOC sta-
bility in commercial farms settings [9, 65, 69]. In the fol-
lowing sections, we provide examples of on-farm studies 
that help to address the lack of data from commercial 
farm settings. We then outline how on-farm direct and 
remotely-sensed measurements could be incorporated 
into a secure data platform to facilitate further model 
improvements.

Observational experimental techniques popular 
in other subfields of ecology can be used 
to generate on‑farm measurement data.
To effectively use process-based models and decision 
support tools to quantify SOC stock change and GHG 
emissions on commercial farms, we need more measured 
soil data from real farms using a variety of management 
systems to supplement LTE data. On-farm monitoring 
data (i.e., measurements across multiple time points, ide-
ally including baseline measurements) are essential to 
improve model calibration and validation, particularly as 
process-based model results are increasingly used in vol-
untary C market MRV protocols.

While LTEs enable us to quantify the impacts of spe-
cific management variables in comparison to a no-treat-
ment control, the application of experimental results to 
real-world agronomic conditions has limitations [17, 18]. 
First, the agricultural inputs of LTEs (such as biocides, 
fertilizers, and organic amendments) are often held con-
sistent from year to year, while commercial farms vary 
their management based on input prices, weather, suc-
cess of previous years management, and personal agro-
nomic goals [20]. Further, LTEs prioritize management 
consistency over maximizing yields, so yields of LTE 
plots often do not reflect yields on nearby commercial 
farms [26]. This discrepancy may impact the biomass 
input calibrations in process-based models. Perhaps most 
importantly, there are few existing LTEs that measure the 
impacts of multiple synergistic management practices 
applied to the same field. For example, a Midwest farmer 
dedicated to soil regeneration may use no-till in combi-
nation with winter cover crops, manure injection, diver-
sified rotations, and reduced synthetic N inputs. LTEs are 
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not designed to fully reflect the real-world complexity of 
annual crop production under various economic, social, 
and ecological pressures.

Establishing new LTEs that reflect region-specific cli-
mate-smart management changes at the systems-level 
(i.e., multiple practices used simultaneously) would allow 
us to understand the synergistic outcomes of complex 
management systems [43], but in the absence of such 
experiments in the short term, we can adopt observa-
tional experiment techniques popular in other subfields 
of ecology, such as space-for-time substitution and paired 
field studies [46]. For example, space-for-time substi-
tution experiments can be used to generate chronose-
quences of SOC stocks and/or GHG flux measurements 
from adjacent farms using contrasting management 
systems [26, 29, 46]. Additionally, recent studies have 
worked collaboratively with agricultural producers across 
select regions to sample commercial fields represent-
ing a broader range of climate-smart practices than are 
currently established in LTEs or to compare LTE results 
to on-farm realities [5, 17, 18, 34, 54, 66]. Table 1 sum-
marizes several studies using one of the following 
approaches to generate and evaluate on-farm data: (1) 
space-for-time substitution, (2) paired fields, (3) compar-
ison between commercial farms and LTEs, or (4) diver-
sity of commercial farm management across a region.

Of course, the greatest limitation of paired farm com-
parisons and chronosequence designs is that they are not 
randomized, controlled experiments and thus, are asso-
ciated with a high degree of variability, unpredictability, 
and study design challenges. Common challenges noted 
in the studies presented in Table 1 include accounting for 
spatial variability in SOC stocks at the field-level, iden-
tifying producers willing to allow access to their farms, 
obtaining reliable and complete activity data, and site 
selection to control for variability between sites. On-farm 
studies rely on the implicit assumption that differences 
between paired-fields or categorically grouped farms are 
attributable primarily to management system differences, 
and that the variables of interest (i.e., SOC stocks) were 
similar before the management change occurred, but this 
assumption is difficult to verify. Careful site selection can 
be used to ensure sampled fields have similar soil types, 
topographic position, and long-term management his-
tories, but some uncertainty about the influence of non-
management induced differences in soil carbon stocks 
often remains.

While on-farm analyses are essential for understanding 
the impact of management change as it is applied at the 
commercial farm scale, evaluating more than one man-
agement practice simultaneously, along with environ-
mental co-variates that also impact SOC stocks, makes it 
difficult to determine which practice (i.e., cover cropping, 

tillage regime, manure additions, or fertilizer reduction) 
is driving the results. Thus, there is still great value in 
controlled experiments that manipulate one management 
variable at a time. On-farm measurement data should be 
used in combination with measurements from LTEs to 
evaluate the extent to which LTEs reflect on-farm out-
comes and whether process-based models are biased to 
LTE measurements.

In the following section, we describe our personal 
experience designing and executing an on-farm study 
of SOC stock differences between conventional and cli-
mate-smart farms across a portion of the Upper Corn 
Belt region (Iowa and Southern Minnesota). In addition 
to the studies cited in Table  1, we hope our experience 
can serve as a case study of the benefits and challenges of 
on-farm research and provide a road map for further on-
farm data collection efforts.

On‑farm SOC stock measurement and activity data 
collection is challenging, yet necessary.
To help address the paucity of SOC stock data from com-
mercial farms, we conducted on-farm sampling and col-
lected detailed management activity data from 22 farms 
across Iowa and Southern Minnesota. We describe our 
study design and activity data acquisition efforts, along 
with unexpected challenges encountered, to facilitate 
future on-farm sampling and activity data collection. A 
more comprehensive discussion of the measured data 
results and model simulations is currently in preparation 
and will be published in future papers.

Spatial variability in management systems allowed us 
to design a paired, space-for-time substitution experi-
ment, where we identified neighboring producers using 
different management practices on the same soil type 
for “across-the-fence” comparisons of the soil C and N 
stocks and agronomic impacts of different management 
systems with a range of years since practice adoption. 
Despite a recent relative increase in cover crop adop-
tion across the Midwest [70], there is still a high degree 
of variability in management systems across the  region 
and between neighboring farms. Cover crops are used on 
about 4.2% of acres and no-till on 30% of acres in Iowa 
[35], indicating that climate-smart management is still far 
from the norm. Given the heterogeneity in regional prac-
tice use, it was possible to identify neighboring producers 
using contrasting management systems for a paired com-
parison of outcomes.

After harvest in the fall of 2022, we sampled 22 paired 
corn and soybean farms throughout Iowa and South-
ern Minnesota using one of two management systems: 
(1) “climate-smart” (defined as greater than 8  years of 
no-till and at least 4 years of cover crop use, along with 
other best management practices), or (2) “conventional” 
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(defined as annual or biannual tillage and winter bare 
fallow, which is typical of most row crop production 
systems in Iowa). All farms were planted in a corn and 
soybeans rotation, while some also raised livestock and 
used manure as an input. To reduce variability associ-
ated with crop-year, all fields selected for sampling were 
planted to soybeans in 2022. Rather than isolating one 
management practice as the study “treatment”, such as 
tillage or cover crops, the study design allows us to evalu-
ate the impact of common management systems that 
use complementary practices simultaneously and vary 
management from year to year. For each of the 22 farms 
we obtained a series of soil cores for four depth incre-
ments (0–15, 15–30, 30–60, and 60–100  cm) to enable 
direct measurements of soil organic C and N and other 
soil properties (including bulk density, pH, textural class, 
inorganic C content, and microbial community composi-
tion). Our paired, across-the-fence approach used space-
for-time substitution to measure and model the impact 
of management change, where the conventional farms 
represent soil conditions pre-management change. The 
climate-smart farms adopted conservation practices at 
different times, allowing us to generate a chronosequence 
of measurements representing different times since prac-
tice adoption (while accounting for management dif-
ferences and regional variability in soil properties and 
climate). We buried ball markers at each sampling loca-
tion to enable precise resampling at the same location at 
a future time [15]. Long-term monitoring of each farm 
will be used to establish a time series of measurements 
documenting the impact of long-term practice use (i.e., 
SOC change with 5 vs. 15 years of cover crop use). Addi-
tionally, we asked each farmer to voluntarily provide 
year-by-year management information (going back to 
2013 or further, if available) needed to schedule events in 
the DayCent model and the COMET-Farm decision sup-
port tool (Table 2).

It is important to note the tradeoffs and challenges 
associated with an on-farm study of this kind: First, it 
is challenging to attribute differences in measurements 
between farms to a particular soil characteristic or man-
agement practice used. Lack of experimental control 
leads to other challenges such as a higher degree of varia-
bility across a single field and between pseudo-replicates, 
making it difficult to quantify effect size. While we did 
our best to control for variations in soil type, topography, 
and land use history at the study design phase, there were 
often uncontrolled differences between the pairs that 
were not identified until after SOC stock and activity data 
were analyzed. For example, after receiving unexpectedly 
low SOC stock measurements from a regenerative farm 
field, we learned from the producer that that field was 
highly degraded and low yielding when he transitioned it 

to no-till 30  years ago. In this case, the conventional vs 
regenerative pair had quite different management and 
erosive histories, violating the assumption that the base-
line SOC stocks were similar. This issue could have been 
avoided through more careful field selection, perhaps 
through in-depth farmer interviews or remote sensing of 
historic land use.

Connecting with willing farmer participants was an 
additional unforeseen challenge of our study and may 
prove difficult for future research aiming to collect on-
farm data. We identified farms using “snowball” sam-
pling techniques, where each producer who agreed to 
participate in the study recommended nearby produc-
ers who might be willing to participate as well. Connect-
ing with farmer networks such as Practical Farmers of 
Iowa, attending local field days, and gaining connections 
through agronomic consultants were helpful strategies in 
the participant recruitment process. Identifying neigh-
boring producers with the same soil type, topography, 
and management history was challenging when connec-
tions could only be provided to specific neighbors.

Reaching a level of trust with each participant (in 
most cases, by visiting their farms before data collec-
tion began) or gaining an introduction through a trusted 
organization or individual was a necessary element of the 
recruitment process. When asking participants to divulge 
detailed management information and to talk openly 
about their farming expertise, it was important that par-
ticipants knew how the data collected would be used and 
kept secure. Institutional Review Board (IRB) approval 
was required to collect this information and was used to 
establish structures for data security and confidentiality.

Beyond data security concerns, our data collection 
experience brought to light other difficulties associ-
ated with collecting management data from producers 
for process-based modeling. Process-based modeling at 
the field level requires detailed yearly activity data (ide-
ally going back 20 or more years) and knowledge of his-
toric land use practices, which must be provided by the 
land managers or ascertained through remote sensing. 
For example, scheduling management events in the Day-
Cent model and the COMET-Farm decision support tool 
requires data on tillage practices, fertilization rates, crop 
cultivars, organic matter addition, grazing events, among 
other field activities, including the dates of each manage-
ment action. Even with substantial efforts to build rela-
tionships and trust, obtaining detailed activity data from 
the producers involved in our study was still difficult. 
Commonly unreported or incompletely reported data 
included historic management practices, planting/harvest 
dates, tillage dates, tillage implement/intensity, fertilizer 
application dates, and detailed liming practices. Only one 
producer was able to provide activity data for all ten years 



Page 7 of 12Ellis and Paustian  Carbon Balance and Management           (2024) 19:16  

Table 2 Yearly management data needed to schedule events in the DayCent process-based model and the COMET-Farm GHG 
accounting tool, along with the number of producers who were able/willing to provide data for each requested data point in our 
on-farm study

Period data are needed for Data category Specific activity data needed to 
schedule model events

# of producers 
reporting ≥ 10 years 
activity data

# of producers 
reporting ≥ 5 years 
activity data

Pre 1980 and 1980-2000s Historic management • Pre-1980s land use (grazing, 
cropland, upland vs. lowland)

• 0/22 • 0/22

• Pre 2000 enrollment in CRP (yes 
or no)

• 0/22 • 0/22

• 1980–2000 management: 
irrigated vs. non-irrigated, 
crop type vs. grazing, tillage 
practices

• 0/22 • 0/22

Baseline (2000 to start of man-
agement change scenario)

Crop planting and harvest • Cash crop type/rotation • 15/22 • 19/22

• Planting date • 10/22 • 19/22

• Harvest date • 8/22 • 19/22

• Yields • 10/22 • 19/22

• Residue removal (% dry matter) • 1/2a • 2/2a

Cover crops • Presence of cover crop • 11/11 • 11/11

• Cover crop type or mixture • 9/11 • 9/11

• Seed population • 6/11 • 8/11

• Planting date • 6/11 • 8/11

• Planting equipment • 7/11 • 8/11

• Termination/harvest date • 6/11 • 7/11

Grazing practices • Start and end date • 1/2a • 1/2a

• Rest period (days) • 0/2 • 0/2

• Daily utilization % • 0/2 • 0/2

Tillage and other implement 
passes

• Date of each implement pass • 8/22 • 11/22

• Tillage intensity (intensive, 
reduced, no-till)

• 12/22 • 19/22

• Other implement passes (roller 
crimping, mowing, herbicide 
application)

• 0/22 • 3/22

Irrigation • Presence of irrigation NA NA

• Irrigation start and end date

• Irrigation amount (inches 
per application)

• Days between irrigation events

Manure application • Presence of manure • 0/5a • 0/5a

• Date applied • 4/5 • 4/5

• Manure type and form (solid, 
slurry)

• 3/5 • 3/5

• Manure application rate • 0/5 • 0/5

• Moisture % (if known) • 0/5 • 0/5

• Total N and C/N ratio (if known)

Fertilization • Date applied • 2/22 • 9/22

• Fertilizer type applied • 12/22 • 15/22

• Total N applied (kg/ha) per event • 11/22 • 14/22

Liming • Liming date • 2/5a • 4/5a

• Liming material and amount 
applied

• 0/5 • 2/5

Burning • If burning occurred, did it 
occur before planting or after 
harvest?

NA NA
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and all applicable management categories, and this pro-
ducer owns an agronomic consulting business that helps 
producers collate their management data for carbon 
crediting programs, among other applications. In most 
cases, a lack of detailed yearly record keeping or unwill-
ingness to spend the time required to collate data from 
multiple sources prevented farmer participants from pro-
viding the requested data, rather than data security con-
cerns. It is possible that many producers do not maintain 
management records with the level of detail required for 
process-based modeling, or the effort required to collate 
management data from various sources puts an undue 
burden on producers. As stipulated by our IRB, report-
ing data was voluntary, thus whether unreported catego-
ries were due to lack of records, data privacy concerns, or 
the time/efforts required to collate records is unknown. 
In the absence of farmer-reported activity data, default 
management assumptions based on county- or regional-
averages or agronomic recommendations can be used to 
specify model inputs. In some cases, use of default activ-
ity data such as planting or fertilizer application dates 
may not affect model outcomes, but missing manage-
ment data for sensitive variables such as fertilizer appli-
cation rates or manure amendments will result in greater 
uncertainty in model results.

According to previous studies, producers express con-
cern about data security when there is a lack of trust 
between the agricultural community and the entity ask-
ing for the data, which may deter producers from par-
ticipating in C crediting programs or research efforts 
[36]. To overcome this challenge, we recommend initi-
ating collaborations between C accounting projects and 
data management software commonly used by produc-
ers, such as John Deere’s farm management software 
(APEX™). There is potential to align the data recorded 
automatically by advanced agricultural equipment soft-
ware and the data needed to accurately and precisely 
model biogeochemical fluxes from cropland manage-
ment. As precision agriculture and AI continue to 
expand, the viability of this option will increase. Further, 
the use of remote sensing tools to remotely monitor field 
activities and estimate soil properties using hyperspectral 
imagery can help overcome both soil measurement and 
management data challenges [59]. With these emerging 
technologies, data privacy and security to protect pro-
ducer’s anonymity should be prioritized.

Furthermore, data that are timely and relevant to 
farmer’s management choices, such as changes in   

profitability  potential  or fertilizer requirements, should 
be provided to farmer participants whenever possible. 
On-farm research has the potential to benefit all par-
ties involved when the data production process becomes 
more collaborative and reciprocal. For example, farmer 
participants should be consulted in the study design 
phase to ensure the study is evaluating production sys-
tems most relevant to the region. Additionally, farmer 
participants should be provided with timely data reports 
describing the research findings relevant to their man-
agement decisions, including SOM and N stocks, water 
holding capacity, or profitability estimates. We propose 
the term “reciprocal research” to describe studies that 
are designed with the farmer participant’s interests in 
mind, rather than extracting information from agricul-
tural communities without considering how the research 
can benefit the participants in the short-term. Recipro-
cal research, following principles of participatory action 
research common in the social sciences, has the poten-
tial to motivate system change by involving groups often 
excluded from the research process in the creation of 
new knowledge [16, 27].

On‑farm measurements can be assembled 
into a database to facilitate model improvement
We propose a framework for integrating on-farm meas-
urements and activity data into a secure, anonymized 
database to facilitate process-based model validation 
and improvements. As more on-farm studies are con-
ducted, likely by private sector companies and research 
institutions, these data could be curated into an open-
source database  (Fig.  1). This database could facilitate 
model intercomparisons, multi-model ensembles, and 
systematic comparisons of LTE results to on-farm stud-
ies. Further, this database could provide a data source 
for model testing of decision support tools designed 
to easily quantify the benefits of climate-smart practice 
adoption, such as COMET-Farm and COMET-Planner. 
COMET-Farm was developed as a decision support tool 
that includes the DayCent process-based biogeochemical 
model, as well as a number of other greenhouse gas emis-
sion models and databases, to provide everyday users 
the ability to estimate agricultural GHG emissions and 
soil C sequestration through a web-based tool that does 
not require any modeling or other technical expertise 
[42]. Like most process-based models, DayCent and the 
associated COMET tools were developed mostly using 
data from LTEs. With improved sources of on-farm data, 

Table 2 (continued)
Bold text = properties that can be remotely-sensed given current technologies
a assumed only to be applicable to specific farms and years
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process-based models and decision support tools could 
be improved to better serve the end users and ensure the 
platform represents the range of agricultural manage-
ment systems used across the country.

A key element of the proposed data platform should 
be providing the information needed to incentivize and 
facilitate the adoption of climate-smart practices on as 
many acres as possible. This means ensuring a diversity 
of cropping systems are represented, the model results 
are easy to interpret, and information provided is rel-
evant to the producer. As the diversity and complexity of 
agricultural practices evaluated using these simple tools 
increases, there will be continual need to parameterize 
new practices and validate model results against meas-
ured data. Further, models that integrate socio-economic 
variables and environmental outcomes are needed to 
assess the system-level outcomes of management change 
[67]. Following the idea of reciprocal research, practice 

outcomes that are more relevant to management deci-
sion making, such as profitability, resilience to weather 
extremes, or fertilizer requirements, should be provided 
to support adoption of new practices more effectively. 
Additionally, the burden of reporting data should be 
alleviated from the producer. Integrated data acquisition 
through farm data management software or remote sens-
ing of field activities could be used to reduce the report-
ing and survey burden on producers [30]. Data privacy, 
security, and anonymization will continue to be chal-
lenges under this framework, as this is a top concern for 
many producers interested in participating in carbon 
markets and related programs [36] 

Conclusion
Improved management of cropland soils has the poten-
tial to be a significant climate mitigation and adaptation 
tool, one that private markets and federal programs are 

Fig. 1 System framework for integrating on-farm measurements (directly measured, proximally sensed, and remotely sensed) into a secure 
and anonymized database that can be used for model improvements. Activity data is obtained from producers when readily available and remotely 
sensed whenever possible. Activity and measurement data are used simultaneously to improve existing model performance, conduct model 
intercomparisons, and build new models/ multi-model ensembles using artificial intelligence. Improved models can support decision support tools 
like COMET-Farm, which are expanded to include data of immediate relevancy to the producer following the principle of “reciprocal research.”
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heavily investing in. Measuring and modeling changes 
in cropland SOC stocks and GHG emissions associated 
with adoption of climate-smart practices is a challenging, 
yet necessary, aspect of agriculture GHG accounting or 
carbon offset generation. To test, validate, and improve 
process-based models and decision support tools, more 
direct soil measurements from commercial farms can 
complement data from LTEs while providing manage-
ment-relevant data to facilitate scaled adoption. Detailed 
management data (obtained from producers or remotely 
sensed) paired with direct field measurements can sup-
port model-readiness for the diverse management sce-
narios encountered on diverse agricultural lands, which 
is of particular importance as interest in modeling SOC 
stocks on commercial farms continues to proliferate. We 
suggest the creation of a secure and anonymized data-
base of on-farm measurements and activity data to facili-
tate model improvements and our understanding of what 
drives the successful adoption of climate-smart practices.
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