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Background
Sustainable forest management at the global, national, 
and regional scales requires timely and accurate forest 
inventory data that are georeferenced using a standard-
ized spatial unit with the appropriate location informa-
tion embedded. This need is particularly acute when it 
comes to measuring and estimating forest carbon stor-
age for climate change mitigation strategies [1–4]. Car-
bon storage is commonly estimated based on forest 
biomass volumes or growth rates being multiplied by 
the appropriate carbon index [5–7]. Beyond total carbon 
storage estimates, the spatial distribution of the carbon 
stored within a forest is necessary to manage forests for 
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Abstract
Background It is always a challenging job to compare forest resources as there is not a standardized spatial unit with 
location information. Google Plus Code, the newest alphanumeric geocoding system, uses 20 specifically selected 
letters and numbers to assign a unique global ID to every cell at different levels of a hierarchical grid system which 
is established based on latitude and longitude. It can be used as a standardized, unique global geospatial unit to 
segment, locate, quantitate, evaluate, and compare natural resources with area, boundary, and location information 
embedded.

Results For this proof-of-concept case study, forest inventory data from 1987, 2002, and 2019 for the Zijin Mountain 
National Forest Park in Jiangsu Province, China was analyzed based on Google Plus Code grid/cell. This enabled the 
quantification of carbon storage at each cell allowing for the comparison of estimated carbon storage at same or 
different locations over time.

Conclusions This methodology is used to quantify the impacts of changing forest conditions and forest 
management activities on carbon storage with high spatial accuracy through the 32-year study period. Furthermore, 
this technique could be used for providing technical support and validation of carbon credit quantification and 
management.
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optimum carbon storage [1, 6, 8]. From these spatial dis-
tribution patterns, a cartographical presentation of forest 
carbon storage can be useful to provide stakeholders and 
decision makers better tools for making the most appro-
priate policy decisions or economic investments. How-
ever, these cartographic analyses require widely available 
and accurate georeferenced spatial units.

Commonly used spatial units like street addresses are 
limited for defining stand conditions in forestry appli-
cations and latitude/longitude are applicable only to 
specific spatial points [9–11]. Techniques like the Krig-
ing geostatistical method have been successfully used to 
develop forest carbon storage maps [8]. In addition, the 
spatial error model (SEM) has been employed to relate 
the distribution of forest carbon storage to both forest 
stand parameters and topographic characteristics [12]. 
Geospatial regression has also been employed as a tool 
for relating the spatial distribution of biomass estimates 
and carbon storage in forests [6]. While Kriging, SEM, 
and geospatial regression have been applied for carto-
graphic representation of forest carbon storage, these 
previous carbon storage studies usually analyze a large 
area of forest all together without breaking the study area 
into comparable and geolocatable spatial units, thus they 
are not helpful for on the ground carbon storage moni-
toring and management.

A novel technique has recently become available for a 
wide variety of geospatial applications, the use of Google 
Plus Code as an alphanumeric geocoding hierarchical 
grid system. This system provides exact spatial locations 
and unique global identification over wide ranging areas. 
When comparing with traditional unregular plot or sub-
compartment boundaries, Plus Code cells provides for-
esters a more convenient and accurate geolocating way 
for on the ground monitoring and management. How-
ever, the applicability of this grid system for forest car-
bon storage has yet to be developed and demonstrated 
for temporal and spatial forest dynamics. Therefore, this 
research project was initiated utilizing forest inventory 
data from 1987 to 2019 in one of China’s most iconic sce-
nic natural areas, Zijin Mountain National Forest Park. 
These data were employed to determine georeferenced 
carbon storage utilizing Google Plus Code, with the pur-
pose of providing researchers and decision makers with 
an effective method for long-term forest carbon stock 
management.

Methods
Study area
Zijin Mountain National Forest Park is located in Nan-
jing, Jiangsu Province, China. The area’s latitude and 
longitude ranges from 32°01’57”N to 32°18’15”N and 
from 118°48’24”E to 118°53’04”E, respectively. The high-
est elevation in the park is 448.9 m and it has an area of 

3,008.8 ha. Approximately 76.8% (2,311.1 ha) is forested. 
Due to the mid-latitude location, the region has a typi-
cal northern subtropical climate with about 2,213  h of 
sunshine each year and an annual average temperature 
of 15.4℃. The rainy season is typically in June and July 
and average annual precipitation is 1,090.4 mm, with 70% 
occurring during spring and summer and 30% during 
fall and winter. Soils are mostly acid or weak acid yellow 
brown Dystric Cambisols and Eutric Planisols. Ever-
green broadleaf species are the dominant canopy trees 
in the forest with some deciduous broadleaf species and 
bamboo. The predominant species include Masson pine 
(Pinus massoniana Lamb), Formosan gum (Liquidam-
bar formosana Hance) and various oak species (Quercus 
spp.).

Forest inventory field data collection
The forest in this research is where there is a canopy 
within the park and forest management inventory were 
conducted in 1987 and 2002. These historic data were 
obtained from the Zijin Mountain National Forest Park 
administration database. From May to December in 
2019, a third forest inventory was conducted. In total, 
there were 777 sub-compartments or stands delineated 
within the study area (Figs.  1 and 2). Sampling or mea-
surement plots were 666.67 m2 (25.82 m x 25.82 m) with 
approximately one plot per three ha, based on compart-
ment size. At each measurement plot, aspect, slope, soil 
type, soil depth, species, age, age class, diameter at breast 
height (DBH), height, and canopy closure were recorded. 
Forest condition and tree volume were then estimated for 
each sub-compartment based on these measurements.

Estimation of forest biomass and forest carbon storage
For estimation of forest biomass, the method described 
by Fang et al. [4] was used with the biomass conversion 
continuous function with coefficients being described by:

 B = aV + b  (1)

Where B is the forest biomass (t, metric ton), V is the 
forest volume (m3), a and b are conversion coefficients 
which change depending on forest type or tree species. 
Measurements of litter, understory, and grass biomass 
were not available so only above-ground biomass was 
estimated in this study. The a and b values are adopted 
from researches done by Zhang et al. [13], Zhao et al. [14] 
and Fang et al. [5] and are summarized in Table 1.

Forest carbon content (qi, Table 1) was obtained from 
the Guide for Carbon Accounting and Monitoring in 
Afforestation Projects which utilized the Intergovern-
mental Panel on Climate Change (IPCC) reference values 
and bamboo forest carbon content of 0.50 [15, 16]. The 
formula used to calculate forest carbon storage (C) is:
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 C = qi × B  (2)

Forest carbon density is the forest carbon storage per 
unit area and was calculated as:

 ρ = C/S  (3)

ρ  is forest carbon density (tC/ha), C is carbon storage 
(tC) and S is the corresponding spatial area (ha).

Geospatial distribution of forest carbon storage using 
Google Plus Code
There is currently not a standard geospatial unit with 
embedded location information that is widely utilized 
for forest management. In recent years, alphanumeric 
geocoding systems, such as What3Words, Mapcode, and 
Placekey, were developed to locate any point on Earth. 
The newly available Google Plus Code has a similar 

Fig. 2 Google Plus Code level 3 grid (8-digit) and the forest sub-compartments of the Zijin Mountain National Forest Park in Jiangsu Province, China

 

Fig. 1 Google Plus Code level 0 (2-digit) and level 1 (4-digit) grids and location of the Zijin Mountain National Forest Park in Jiangsu Province, China
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utility and is based on the Open Location Code (OLC). 
Although none of these geocoding methods were 
designed for forestry applications directly, the hierarchi-
cal grid system of Plus Code enables foresters to have 
comparable cells for the entire world. Google Plus Code 
uses latitude and longitude to start the level zero grid (20° 
by 20°) and each cell has a two-digit (letter and number) 
ID. Only 20 specifically selected letters and numbers are 
used to prevent from confusion that can occur between 
certain alphanumeric pairings, such as lower-case L and 
the number one. Each 20° by 20° macro-cell is then sub-
divided into level one sub-grids (1° by 1°). At this level, 
each cell will have a unique four-digit ID (two digits from 
level zero and two digits for level one itself ). This sub-
division is further sub-divided until a level five (12 digits 
ID) is determined. A different structure is used for level 
six + divisions (Fig. 1). Thus, regardless of the level, every 
hierarchical cell on Earth has a unique global ID assigned. 
In other words, Google Plus Code established a refer-
ence system with unique ID for every cell in a hierarchi-
cal grid system. Google (google.com/maps or plus.codes/
map) can provide location and direction to any specific 
cell directly with its ID. For example, when searching 
“8P4W3VQC+”, Google Map will show the central point 
of the cell and plus.codes will show the cell boundary on 
the map. Along a similar latitude, the cells of this well-
defined grid system have same area and provide forest-
ers a useful spatial unit to locate, analyze and compare 
forest resources at the global level. Cell size does vary at 
different latitudes due to different ground distances cor-
responding to same unit of longitude. For example, the 
latitude ranges from 32.041° to 32.091° for our study area, 
cells area change from 65,455 m2 on the south side to 
65,430 m2 on the north side. The minor difference, 25 m2, 
is ignorable. A coefficient can be used if cells at significant 

different latitudes need to be compared. It is worth men-
tioning that the open source nature of Plus Code enables 
it to be directly used within any Geographic Information 
Systems (GIS), such as ArcGIS® and QGIS. Level 3 Plus 
Code grid (8 digits ID) is used for the study area in this 
research in order to compare the spatial change of forest 
carbon storage.

The forest carbon storage CV index (Coefficient of 
Variation) can be used to represent the relative stability 
of a cell’s forest carbon storage. The larger the CV index, 
the less stable the cell’s forest carbon storage is. On the 
contrary, the smaller CV index means a more stable for-
est carbon storage. CV index can be calculated with the 
equation below:

 
CV =

√
1
n

∑n
i=1

(
Ci − C

)2

C
 (4)

Ci is the forest carbon storage at year i and C  is the aver-
age forest carbon storage for each cell from 1987 to 2019.

Level 2, 3, and 4 grid cells have an area of 2,630, 6.6 
and 0.016  ha, respectively. For carbon storage and for-
est management, level 3 cells of Plus Code were used as 
the location and unit boundary for this study. There are 
588 cells and each cell has an area of 66,123 m2 (237 m × 
279 m). At this level, the ID for each cell has 8 digits, such 
as 8P4W3VQC (Fig. 2). For every forest inventory survey 
year, the carbon storage of each cell was estimated with 
ArcGIS 10.5® based on the methodology described in this 
section. Proportional method was applied for cells with 
multiple sub-compartments.

Results
Forest carbon storage change
Forest area in the park (including all tree species and 
bamboo forest) increased from 1791.5  ha in 1987 to 
2,311.1  ha in 2019 (Fig.  3). This increase in forest area 
is noteworthy particularly given the increasing number 
of visitors per year to the park and the rapid urbaniza-
tion and population growth in the Nanjing metropolitan 
area over that time period. The rate of increase in forest 
area from 2002 to 2019 (207 ha) is lower than that from 
1987 to 2002 (312 ha) due to the higher initial reforesta-
tion efforts that occurred in the park in the late 20th cen-
tury. Mixed conifer and broadleaf forest area increases 
accounted for most of this change. Forest carbon storage 
also increased for the study area (Fig.  2). However, the 
rate of forest carbon storage from 2002 to 2019 is higher 
than that from 1987 to 2002 due to the forest type and age 
structure. For the 32-year study period, the net increase 
in forest carbon storage was 43,740.7 tC. The average 
annual increase in forest carbon storage was 1,197.6 tC/

Table 1 Biomass conversion equations and carbon content 
rates for forest cover types in the Zijin mountain national forest 
park in Jiangsu Province, China
Forest type Equation Carbon 

content 
(qi)

Locust (Robinia pseudoacacia) B = 0.7564 V + 8.3103 0.480
Oak (Quercus) B = 0.7848 V + 16.715 0.500
Formosan gum (Liquidambar formo-
sana Hance)

B = 0.4754 V + 30.6034 0.497

Masson pine (Pinus massoniana 
Lamb)

B = 0.6632 V + 7.2656 0.460

Mixed conifers B = 0.7442 V + 26.806 0.510
Mixed broadleaves B = 0.7393 V + 43.21 0.490
Mixed (Mixed Conifers and 
broadleaves)

B = 0.4385 V + 52.905 0.498

Bamboo (Phyllostachys pubescens) Bb=81.9Sb 0.500
*B is the forest biomass (t), V is the forest volume (m3), Bb is the bamboo biomass 
(t), Sb is the total area of bamboo forest (hm2) [17]
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year and 1,365.5 tC/year for the period of 1987 to 2002 
and 2002 to 2019, respectively.

Changes in forest carbon corresponded to different 
forest types and varied among measurement periods 
(Table  2). For example, broadleaf forests accounted for 
just over half (51–54%) of the carbon stored per ha com-
pared to conifer which accounted for approximately a 
quarter (24–28%). Bamboo remained relatively constant 
throughout the study period both in terms of area (2%) 
and the percentage of the carbon stored per ha (11–14%). 
The mixed conifer/broadleaf forest type increased the 
most in terms of forest area, from 8% (126 ha) of the park 
in 1987 to 31% (443  ha) by 2019. This mostly occurred 
as stands of pure Masson pine forests were converted 
into mixed forest types, with Masson pine area decreas-
ing from 444  ha in 1987 to 32  ha in 2019 due to insect 
mortality. However, the mixed conifer/broadleaf forest 
type accounted for the lowest proportion of carbon stor-
age, ranging from only 8–9% of the tons of carbon per ha 
from 1987 to 2019. This lower percentage of the per ha 
carbon storage can in part be explained by the younger 
age class of this forest cohort, as noted below.

Across all forest types, the mixed conifer class had the 
greatest increase in carbon storage per ha, increasing by 
17.1 tC/ha from 37.4 tC/ha in 1987 to 54.5 tC/ha in 2019. 
For the broadleaves forest, oak had the greatest increase 
in rate of carbon storage, steadily increasing by 15.7 tC/
ha from 44.2 tC/ha in 1987 to 59.9 tC/ha 2019. The rate 
of carbon storage for Masson pine increased by 13.7 
tC/ha and 8.6 tC/ha locust from 1987 to 2019. Formo-
san gum remained fairly consistent in its rate of carbon 

storage, decreasing slightly by 1.6 tC/ha. Carbon storage 
rates are related to stand age structure in addition to spe-
cies, as noted below. Bamboo was the most consistent 
cover type in the park in terms of carbon storage per ha 
in part because of its more rapid maturation rate when 
compared with tree species.

Forest carbon storage by age cohort
As noted above, forest carbon storage is dependent on 
forest age structure. Age classification is based on tree 
species and cover type which were derived from province 
level forest management practices (Table 3).

Forests in this park are primarily managed for their 
scenic value and recreation opportunities for visitors and 
there was no forest harvesting in the study area during 
this 32-year study period. Overall, stand cohorts aged 
by 32 years and there was an estimated net increase in 
total accumulated carbon in the park with this increase 
in biomass (Table  4; Fig.  4). For example, young forest 
carbon density increased from 17.7 tC/ha to 22.5 tC/ha 
and 31.0 tC/ha for 1987, 2002, and 2019, respectively. 
This can be attributed to hardwood reforestation in the 
study area over the years. Similarly, in 1987, middle-
aged and mature forests covered 76.7% of the area and 
correspondingly, their carbon storage accounted for 
about the same proportion: 76.4% of the total storage. 
In 1987, over-mature forest occupied only a small area 
with little carbon storage (0.2%). By 2002 and 2019, the 
over-mature forest area increased as did the total carbon 
stored in these forests, accounting for 16.5% (2002) and 
30.0% (2019) of total storage. These results are consistent 

Fig. 3 Change of forest area and forest carbon storage in the Zijin Mountain National Forest Park from 1987 to 2019
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with those reported by Chen et al. [18] for southeastern 
China. For the current study, the rate of accumulation by 
forest type for over-mature forests was not evaluated due 
to data limitations. That said, consistent with the find-
ings of Chen et al. [18], as over-mature forests begin to 
senesce in growth rate, the rate of carbon accumulation 
per ha will likely continue to decrease. This may neces-
sitate some forest harvesting and management to prevent 
these over-mature forests from releasing this stored car-
bon as they decay in the coming decades [19].

Analysis of forest carbon storage distribution based on 
Plus Code cells
As mentioned before, 588 Plus Code level 3 grid cells 
(237  m × 279  m) were used as the location and unit 
boundary for the study area. For every forest inventory 
survey year, the carbon storage of each cell was calcu-
lated and classified into 8 categories (Fig.  5). The entire 
area was then grouped into low storage area (less than 
200 tC/cell), medium storage area (200–400 tC/cell) 
and high storage area (400–800 tC/cell) (Table  5). For-
est carbon storage is greater for the northern cells which 
is more heavily forested since there is a greater propor-
tion of scenic sites and tourist areas in the southern 
part. From a temporal aspect, carbon storage contin-
ued increasing, especially for the southern cells during 
the past 32 years. The coverage of medium storage area 
increased from 44.8% (1987) to 49.4% (2002) and 52.0% 
(2019). The coverage of high storage area increased from 
0.3% (1987) to 4.5% (2002) and 8.3% (2019). In summary, 
the total forest carbon storage increased from 1987 to 
2019, as would be expected given the forest restoration 
efforts and improved management practices in the park.

Plus Code cells were classified into 5 categories based 
on carbon storage CV index, with low stability (13.3%), 
low-medium stability (12.8%), medium stability (12.9%), 
medium-high stability (33.1%), and high stability (25.1%) 
(Table 6; Fig. 6). In terms of stability, 71.1% of the forest is Ta
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Table 3 Forest age classification (years) for forest cover types in 
the Zijin Mountain National Forest Park in Jiangsu Province, China
Forest type Young 

forest
Middle 
aged 
forest

Near 
mature 
forest

Mature 
forest

Over 
ma-
tured 
forest

Locust ≤ 10 11–20 21–30 31–50 > 50
Oak ≤ 20 21–40 41–50 51–70 > 70
Formosan gum ≤ 10 11–20 21–30 31–50 > 50
Masson pine ≤ 10 11–20 21–30 31–50 > 50
Mixed conifers ≤ 10 11–20 21–30 31–50 > 50
Mixed 
broadleaves

≤ 20 21–40 41–50 51–70 > 70

Mixed (mixed 
Conifers and 
broadleaves)

≤ 10 11–20 21–30 31–50 > 50
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in the category of medium stability or greater, indicating 
that the forest carbon storage of the entire park is rela-
tively stable. Most of the cells with low stability cells are 
on the south facing slopes, where forest carbon storage 
increased most from 1987 to 2019. Cells with relatively 
small CV Index tend to be located on the north facing 
slope where rates of change have been lower. Thus, forest 
carbon storage changed less and is relatively stable.

Discussion
As pointed out by Nabuurs et al. [20], to mitigate climate 
change, there are still knowledge gaps in the monitoring 
and modeling of restoration efforts. We need to under-
stand the interaction of forest management and carbon 
storage better through historical data and new technol-
ogy. This research tried to closing the knowledge gap 
by quantification of forest carbon storage with the new 
Google Plus Code spatial grid unit. The temporal and 
spatial dynamics of forest carbon storage and density 
were evaluated in the Zijin Mountain National Forest 
Park based on the three forest inventories in 1987, 2002 
and 2019. A newly available alphanumeric geocoding 
method, Google Plus Code, was used to define spatial 
units and these forest inventories were analyzed to esti-
mate carbon storage across the park by location. Con-
clusions drawn from this analysis include first, from a 
temporal aspect, forest coverage, carbon storage and 
carbon density all increased from 1987 to 2019. Car-
bon storage increased by 43,740.7 tC and the average 
annual increase was 1,325.5 tC. Overall, Zijin Mountain 
National Forest Park became a more stable carbon sink. 
From 1987 to 2019, carbon storage in broadleaf forests 
increased the most. Coniferous forest decreased, espe-
cially Masson pines, mainly due to the heavy mortality 
of pines from insects and the subsequent regeneration 
of broadleaf species such as oaks and Formosan gum. By 
age cohort, middle-aged and mature forests accounted 
for most (more than 60%) of the carbon storage in 1987 
and 2002. Forests continued to age and mature as a 
result of forest restoration and protection efforts. Thus, 
middle-aged forests became mature and/or over-mature 
and carbon storage reached 59.5% of the total amount. In 
the past 32 years, the carbon density of young, middle-
aged and near-mature forests increased constantly while 
the carbon density of matured and over matured forests 
declined. Additional forest inventories should be con-
ducted to determine the age at which over-mature forests 
transition from carbon sinks to potential carbon sources. 
Forest conservation and management management mea-
sures should be used to maintain and enhance carbon 
storage along with the other ecosystem services that the 
forests provide in this park.

In addition, from the geospatial aspect, Google Plus 
Code was found to be an effective grid system for Ta
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analyzing temporal and spatial trends in carbon storage. 
Using this system, it was found that the southern portion 
of the study area had less carbon storage than the north-
ern portion in 1987 and 2002. However, carbon storage 
increased by 2019. Medium and high carbon storage area 
coverage increased from 45.1% (1987) to 53.9% (2002) 
and 60.3% in 2019. The Google Plus Code analysis indi-
cated that perhaps future restoration and forest protec-
tion efforts should be focused in this area. Pairing Google 
Plus Code with the CV index showed that the carbon 
storage stability is relatively high for entire study area.

One last thing worth mentioning is that Google Plus 
Code is a system in the new field of Discrete Global Grid 
System (DGGS) which is supported by the Open Geospa-
tial Consortium (OGC) and the International Organiza-
tion for Standardization (ISO) [21]. We hope this case 
study can lead to more applications of global grid system 
for spatial-temporal information, such as carbon distri-
bution and storage.

Conclusions
In conclusion, foresters are increasingly needing to man-
age forests for enhanced carbon sequestration potential 
as this ecosystem service increases in both economic and 
environmental value. From the forest management and 
monitoring aspect, this case study illustrates how forest-
ers and land managers can overcome a persistent prob-
lem that results from the boundaries of compartments 
and sub-compartments being modified by changing for-
est conditions, from natural disasters to forest fragmen-
tation that occurs with land ownership changes. Google 
Plus Code grid has geospatial location/area information 

Table 5 Areas of forest carbon storage at different levels in the Zijin Mountain National Forest Park from 1987 to 2019
Carbon storage (tC) level 1987 2002 2019

Area (ha) Percentage (%) Area (ha) Percentage (%) Area (ha) Percentage (%)
(0,200) Low 983.3 54.9 970.1 46.1 918.4 39.7
(200,400) Medium 803.2 44.8 1038.3 49.4 1200.6 52.0
(400,800) High 5.1 0.3 95.2 4.5 192.1 8.3

Table 6 CV Index classification of forest carbon storage in the 
Zijin Mountain National Forest Park from 1987 to 2019
CV Index Stability Area (ha) Coverage (%)
(0.8,1.4) low 400.5 13.3
(0.6,0.8) low-medium 384.8 12.8
(0.4,0.6) medium 388.0 12.9
(0.2,0.4) medium-high 993.6 33.1
(0,0.2) high 753.4 25.1

Fig. 5 Forest carbon storage by Plus Code level 3 cell in the Zijin Mountain National Forest Park from 1987 to 2019

 

Fig. 4 Dynamic changes of area, carbon storage and carbon density of each age group in the Zijin Mountain National Forest Park from 1987 to 2019
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embedded with a unique global ID to which forest con-
ditions can be locked to a particular spatial unit in time. 
This enables more efficient quantification of changes 
in land use and forest conditions. This case study was 
focused an important concern for China, carbon stor-
age and sequestration through forest restoration in one 
of its iconic natural areas, Zijin Mountain National For-
est Park. Google Plus Code can be a valuable tool to help 
foresters to understand and monitor the impact of forest 
management activities on carbon storage with high-res-
olution temporal and spatial accuracy. This methodolgy 
can also provide technical support for carbon credit 
management. Additional studies are needed to assess 
the potential of Google Plus Code for the other aspects 
of ecosystem management, including but not limited to 
the biomass of litter, understory, grass, below-ground 
biomass, and water resources to provide a more compre-
hensive picture of the eco-function that forests provide. 
Future research can include but not limited to uncer-
tainty analysis, applying this method to compare carbon 
storage at different locations at different scale, and study-
ing the impact of forest management practices on carbon 
storage.
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