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Abstract 

Background  This article describes a new procedure to estimate the mean and variance of greenhouse gases (GHG) 
emission factors based on different, possibly conflicting, estimates for these emission factors. The procedure uses 
common information such as mean and standard deviation usually reported in IPCC (Intergovernmental Panel on Cli-
mate Change) database and other references in the literature that estimate emission factors. Essentially, it is a proce-
dure in the class of meta-analysis, based on the computation of S2a , a new estimator for the variance of the emission 
factor.

Results  We discuss the quality of this estimator in terms of its probability distribution and show that it is unbi-
ased. The resulting confidence interval for the mean emission factor is tighter than those that would have resulted 
from using other estimators such as pooled variance and thus, the new procedure improves the accuracy in estimat-
ing GHG emissions.

The application of the procedure is illustrated in a case study involving the estimation of methane emissions from rice 
cultivation.

Conclusions  The estimation of emission factors using S2a was demonstrated to be more accurate because it 
is not biased and more precise than alternative methods.

Keywords  Emission factors combination, Emissions uncertainties, Meta-analysis for emission factors, Pooling 
emission factors

Background
The bottom-up method to estimate the emission of GHG 
(greenhouse gases) of a process consists of measuring 
(A), the amount of an activity or material used during a 
time period, and multiplying this quantity by (F), the spe-
cific emission factor of that activity or material [3, 9, 38].

In agriculture, mining and many other economic activi-
ties, the uncertainty of both factors, A and F, are impor-
tant and the variance of the product is calculated using 

the error propagation formula, IPCC [18]. More impor-
tantly, if both factors are correlated, the expected value 
of the product is not simply the product of the expected 
values [29, 30]. See the Additional file Material for a sum-
mary of important concepts involved in the propagation 
of uncertainty.

Mukhigulishvili et  al. [31], argue that, in the context 
of estimating the emissions associated with activities of 
a company plant, the uncertainty about A may be small 
and it is reasonable to assume that A is known precisely 
and is not subject to uncertainty or random variations. 
Then, the possible variation in the volume of GHG emit-
ted is attributed to uncertainties related to F.

Emission factors are reported in platforms, such 
as IPCC [19] that compile and publish experimental 
results that follow specific protocols to guarantee the 
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homogeneity of methods and criteria. However, these 
factors may not be applicable in certain countries or 
regions due to unique conditions that are not always rep-
resented in the IPCC database [32].

Emission factors reflect the mean emission rate 
obtained from a set of available data, [10]. Therefore, it 
may not be a trivial task to verify if a tabulated emission 
factor is applicable to a specific situation [22]. Kono et al. 
[23] observed potential underestimations and overesti-
mations of GHG emissions in the German electricity grid 
which ranged from + 22% (October 2015 weeknights) to 
− 34% (May 2015 weekend daytime).

It is not unusual to observe emission factors differing 
strikingly over 50%, depending on who evaluates it, the 
conditions at the time of emission measurement, and 
other causes [40]. Pouliot et al. [35] analyzed a compila-
tion of air pollutant emission factors for combustion-
based NOx emissions, and they showed that, for a specific 
year, more than half of the emission factor values had not 
been updated with current data and that the quantitative 
uncertainty ranges were between 25 and 62%. According 
to Verma et al. [41] and Doiron et al. [8], an appropriate 
combination of estimates using secondary data called 
pooling of estimates (in contrast with pooling of data, 
which would be an aggregation of micro-level data) is a 
valuable tool to enhance the statistical power required to 
investigate relatively rare phenomena.

As Leito et  al. [27] demonstrated, an important issue 
in combining the results of different studies is the vari-
ance in the estimators. This becomes particularly evident 
when dealing with emission estimators as Fajgelj et  al. 
[11] show. Even when employing the most advanced 
techniques and rigorous data collection procedures, 
emissions associated with an activity are inevitably sub-
ject to uncertainty, due to numerous potential statistical 
disturbances. Consequently, different research groups 
may yield disparate results in estimating emission factors.

This work aims to investigate procedures to combine 
information about emission factors to produce the most 
accurate estimate for the emission factor of an activity. 
The task is relevant because identifying or estimating the 
correct emission factor for an activity is crucial for the 
reliability of emission estimation results. The task is also 
non-trivial because in many practical instances, as shown 
in Whitaker et al. [43], emission factor estimates are sub-
ject to variance and uncertainty and may show rather dif-
ferent mean values that need to be combined.

As a case study, we considered the agriculture of rice in 
Central Vietnam and tested possible estimates for its GHG 
emission. In that case, there were three possible estimates 
for the emission factor of CH4. The application of the new 
procedure presented in this paper resulted at an estimate of 

the emission factor that was unbiased and of least variance, 
therefore, most accurate among several other methods.

Previous works
In 2006, several international agencies (APAT, IUPAC, 
BIPM, IAEA, ISO and UNIDO) organized a workshop 
to discuss the issue of combining analytical results [11]. 
As a result, they stated that analytical laboratories, work-
ing independently, using different analytical methods or, 
more likely, collaborative analysis, produce robust mean 
and robust standard deviation for each set of analytical 
results and that the “assigned values are then determined 
as the robust average of all laboratories mean values, while 
the expanded uncertainty range is calculated as reported in 
ISO 13528”.

Fajgelj et  al. [11] presented a review of the theoretical 
grounds for combining statistical results recognizing that 
the work of Cochran [6] had established the fundamentals 
for studies in this theme. The authors examined first the 
question of how to form an average of measurements con-
sidering only linear averages, called weighted means, and 
discussed reasons to adopt other possible weights.

The theme of combining statistical results receives dif-
ferent names, according to the context of the application. 
For statisticians, it may be referred to as meta-analysis. In 
the field of chemistry or physics, it is studied under the 
umbrella of interlaboratory studies; in human sciences, 
combining evidence. As an example of the application of 
this last category, Juchli [21] investigated the problem of 
combining different pieces of evidence to form a consensus 
in the context of forensic judgments.

In Kulinskaya et al. [24] the authors discuss several tech-
niques used to combine comparable studies in order to 
obtain a more precise estimate of an effect. Perhaps the 
most important lesson from the meta-analysis literature 
is that “if we combine measurements using weights that 
are inversely proportional to the variance of the measure-
ments, the weighted average is an efficient estimator of the 
measurand.” [25]. This is not hard to show using partial 
derivatives, as shown by Rabinovich [36]. Therefore, Eq. (1) 
and Eq. (2) present the unique minimum variance unbiased 
estimator (UMVUE) of μ under the normality assumption 
and the best linear unbiased estimator (BLUE) even with-
out normality.

where fi = 1
ni

∑ni
i=1

fij .

(1)µ̂ =
∑k

i=1wifi∑k
i=1wi

(2)wi =
ni

σ 2
i
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There is, however, a practical problem: the true value 
of each study variance σ 2

i  is typically unknown and we 
have to recur to their estimates S2i  . The problem becomes 
more intricate and there is no closed form solution for 
determining µ̂ , since we would have to use S2i  to compute 
µ̂ but the computation of those also depends on µ̂.

Bartlett and Frost [2] and, more recently, Huang [15] 
studied methods to determine the consensus of labora-
tory studies. The methods use approximations to esti-
mate variances. Some of these methods require iterative 
procedures.

Hahn and Raghunathan [13] proposed a Bayesian pro-
cedure that, from previous distributions and from new 
data, they determined the posterior probability distri-
butions for the estimate of the population mean. If one 
considers that all data represent previous information 
and that there is no conditioning event (representing new 
data), one could show that Bayes’ theory would result in a 
simple weighing method, as presented before.

From the literature review, one may conclude that 
the point estimation of the mean emission factor, using 
a combination of different estimates is well solved for 
the most relevant cases. Nevertheless, determining an 
interval estimation for this mean depends on the char-
acterization of the variance and distribution of the point 
estimator. That is the issue focused on the following 
Sections.

Absolute or relative variation
The use of absolute or relative standard deviations will 
depend on the characteristic of the random variable rep-
resenting the emission factor F. If we could model F as 
a normal random variable, then we should use absolute 
standard deviations. If F is better modeled as a log-nor-
mal random variable, then it is better to use relative vari-
ations. In this case, the expression of F in relative terms, 
usually in percentages, will be a normal random variable.

Olofsson [34] suggested that in some contexts, it is 
convenient to combine or pool sample variances not in 
absolute but in relative (or percentage) terms.

In the following developments, we consider that F can 
be appropriately modeled as a normal random variable, 
although the development could be easily accommo-
dated for the case of log-normal distribution. IPCC [18] 
suggests that, unless there is clear evidence to the con-
trary, the probability density function of emission factors 
should be assumed to be normal.

Methods
Point estimators for the mean emission factor μ
If we have k independent samples of the same population 
and each sample contains ni elements, then each sample 

mean fi is an unbiased estimator of μ. Combining the 
information in all available samples will provide another 
estimator of μ, the overall average, f  (Eq. (3)) that is also 
an unbiased and efficient estimator of μ:

Other estimators, using the median of fij , for example, 
would work better if the data contains outliers. Neverthe-
less, under the assumption of normality of F, we can say 
that f  is an estimator of good quality in the sense that 
this estimator is unbiased, has the smallest variance and, 
therefore, would enable us to construct a tight confidence 
interval for μ.

However, the computation of f  using Eq.  (3) may not 
be possible, for instance, if we do not know the number 
of elements in each sample. In such cases, an ad hoc pro-
cedure would have to be used. For instance, we could 
consider all sample sizes ni to be equal to each other. That 
assumption, of course, would be questionable if there is 
evidence to the contrary. According to Oliveira [26, 28, 
33] sample sizes for determining CO2 emission factors 
are in the range of 10 to 41.

Another issue to consider is the assumption of inde-
pendence. We must recognize that in many circum-
stances the assumption of independent samples taken 
randomly from the population may be violated. Never-
theless, we propose to continue using this statistically 
friendly assumption in the hope of producing useful 
conclusions and insights for this case and subsequently, 
investigating special methods for when this assumption 
is violated.

We advocate in favor estimating μ using f  , which cor-
responds to adopting weights wi = ni instead of the 
ones suggested in Eq. (2). The reason is that if we do not 
know σ 2

i  we must recourse to approximations and these 
approximations render the resulting estimator of a ran-
dom variable that is difficult to characterize. Two clas-
sical approximation methods are the Grabill and Dean 
(GD) and the Mandel and Paule (MP) procedures (See 
Additional file 1: Material).

The GD estimator of µ , µ̂GD has a variance that depends 
on expectations and variances of S2i  and, therefore, µ̂GD is 
not easy to determine [14] and require approximate and 
iterative procedures. Similarly, using the MP estimator 
would require iterative procedures and the distribution 
of the estimator is virtually impossible to determine.

We shall circumvent such difficulties of GD or MP esti-
mators by using weights wi = ni and, thus arrive at µ̂ as 
in Eq. (3).

(3)µ̂ = f =
1

∑k
i=1ni

∑k

i=1
nifi
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Another reason to prefer f  to estimate µ̂ is particularly 
relevant in the context of combining results for measure-
ments of GHG emissions. In such context, the inverse of 
the sample variance may not be a good measure of the 
accuracy of the ith result. Our argument is of a practi-
cal nature: When estimating GHG emissions, sample 
variances sometimes are the result of expert opinions 
and models, not exactly experimental values. Moreover, 
sample variance data might include outliers. If a sam-
ple variance is erroneously reported as close to zero, 
the weighting average of Eq. (2) will be far from the true 
mean. Therefore, we argue that it is justifiable to use the 
overall mean f  of Eq. (3) to form a point estimate of the 
emission factor.

Interval estimators for μ
Once we produce a point estimator for the mean emission 
factor, it is natural that we investigate the quality of that 
estimator. One important measure of the quality of an 
estimator is its possible bias. Under the common assump-
tions of independence of samples and homogeneity of the 
population, there would be no bias. Where these assump-
tions do not apply, one might need to investigate possible 
bias considering the specificities of the case.

Other two important measurements of the quality of 
an estimator are its variability and its confidence inter-
val. The construction of a proper confidence interval for a 
parameter depends not only on determining the variance 
of the estimator but also on its distribution profile.

If f  is the average of a normally distributed random 
variable of mean μ and variance σ 2 and if S2 is an estima-
tor for σ 2 computed according to Eq.  (4), then, for 
N =

(∑k
i=1ni

)
, the ratio (N − 1)S2/σ 2 has probability 

distribution Chi-square with (N − 1) degrees of freedom. 
Therefore, T = (f − µ)/(S/

√
N ) , is a standardized varia-

ble distributed as a Student’s T with  (N − 1) degrees of 
freedom [5].

Consequently, the confidence interval for the true 
mean value of F is formed using critical values, t(N−1), α

2
, 

of the Student’s T random variable as in Eq. (5).

Estimators for the variance of the emission factor σ2

There are many possible estimators for the true variance 
σ 2 . We will present two classic estimators and propose a 
third one, called S2a.

(4)S2 =
1

(
∑k

i=1ni)− 1

(∑k

i=1

∑ni

j=1
(fij − f )

2
)

(5)f − t(N−1),
α
2

s
√
N

≤ µ ≤ f + t(n−1), α
2

s
√
N

In the following paragraphs, we will present a summary 
for the properties of estimators S2p and nS2m . The Addi-
tional file Material contains the details of the derivations 
of these properties.

Pooled variation estimator S2p
Under certain circumstances, the estimation of the vari-
ance of F could use a procedure called pooled variance. 
The technique is applicable if we believe that there are 
unforeseen variations in the mean, but not in the variance 
of the emission factor from one sample to another. For 
example, if fij is modeled by a function of an explanatory 
variable xi and a random component εij : fij = axi + εij . 
Then, if we can estimate a and have control on the value 
of xi , the only random variation is embedded in εij and 
our interest is the estimation of the variance of εij.

From each sample, we could find an estimator for the 
population variance using S2i  defined Eq.  (4). If fij  are 
independent observations of random variable F, it is easy 
to show that S2i  is an unbiased estimator of σ 2 [5].

We are interested in estimating the variance of a popu-
lation based on a pool of samples. In this case, the litera-
ture suggests that the variance of the population can be 
estimated by the pooled variation S2p (Eq. 6) [20].

Following Cochrane’s theorem [39], it is possible to 
verify that, under the condition that the emission factor 
F is a normally distributed random variable with variance 
σ 2 , then S2i  would follow a scaled chi-square distribution 
with (ni − 1) degrees of freedom [5] 1

Three conditions are necessary to characterize S2p 
precisely as a scaled chi-square random variable with 
df p =

∑k
i=1(ni − 1) degrees of freedom. We refer to 

these conditions as the “independence, normality and 
homogeneity” criteria: (i) independent simple random 
samples; (ii) normally distributed populations and (iii) 
equal population variances [1, 4].

Assuming that all samples are independent, or simply 
not correlated, it can be shown that S2p is unbiased and is 
the most efficient estimator in the form of linear combi-
nations of the sample variances [7].

Thus, we can construct the confidence interval for σ 2 . 
This confidence interval would be the non-symmetrical 
interval in Eq. (7).

(6)S2p =
1

∑k
i=1(ni − 1)

∑k

i=1
(ni − 1)S2i

1  Si
2 is a scaled chi-square random variable when C2

i
= (ni−1)S2

i

σ 2
 is a chi-

square random variable.
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where S2p is the point estimator for σ 2 , 
df p =

∑k
i=1(ni − 1) and χ2

1− α
2
;df

p
 and χ2

α
2
;df

p
 are the criti-

cal values of a chi-square distribution with appropriate 
degrees of freedom.

The variance of S2p is given by Eq. (8).

The population F, however, may not be normally dis-
tributed. In this case, the point estimates for μ and σ2 
are still valid but the distributions of their estimates no 
longer follow, respectively, Student’s T and chi-square 
distributions.

Variance estimator (nS2m) : using sample’s means only
In this section, we will overview the possibility of esti-
mating σ 2, the variance of the population of random vari-
able F if we only know the value of the averages of a set of 
samples.

Consider that the number of elements in each sample 
is ni and that ni equals n for all i. Let us call F  the random 
variable representing the average of n random variables 
F. Since F is supposed to be a normal random variable, F  
is also a normal random variable with variance equal to 
σ 2/n and, thus, σ 2 = nVar

(
F
)
.

Observe that Var
(
F
)
 can be estimated by the sample 

variance of F , here called S2m , that is computed from a 
sample of elements, f1, f2, . . . , fk   as in Eq. (9).

Therefore, we produced another unbiased estimator for 
σ 2 , the product ( nS2m).
S2m can be recognized to be a scaled chi-square random 

variable 2 with df m = (k − 1) degrees of freedom.
In Kulinskaya et  al. [24], one could also confirm that, 

under the normal model, the between group sum of 
squares is distributed as a chi-square random variable. 
Although ( nS2m) is unbiased and is the simplest estima-
tor of σ 2 to compute, it cannot be computed if we do not 
know n. In fact, if we have all values of fi, but we do not 
know the value of n, we could not find bounds or limits to 
( nS2m) since it increases linearly with n.

(7)
df pS

2
p

χ2
1− α

2
;df

p

≤ σ 2 ≤
df pS

2
p

χ2
α
2
;df

p

(8)Var
(
S2p

)
=

2σ 4

∑k
i=1(ni − 1)

(9)S2m =
1

(k − 1)

∑k

i=1
(fi − f )

2

The precision of (nS2m) as an estimator of σ2 may be 
evaluated by its variance. After some simple algebraic 
developments presented in Additional file Material, such 
variance is given in Eq. (10).

Observe that Var
(
nS2m

)
 is considerably higher than 

Var
(
S2p

)
 for any n greater than two.

We will now define S2a and show that it has better prop-
erties than S2p and 

(
nS2m

)
.

Variance estimator S2a
The estimator S2a is meant to be applicable when the vari-
ation within each group and the variation intergroups 
are both relevant to estimating the population variance. 
The idea of this estimator S2a , is to use a combination of 
previous estimators S2p and (nS2m) , thus, considering both 
sources of variations.

We define S2a using the weighted average of S2p and 
(nS2m) as in Eq. (11), with specific values of w1 and w2 that 
we will define conveniently.

In our model, we suppose that there are k research 
groups that estimated the mean and variance of F. Each 
group might work with a subset of the population and 
arrive at a different estimate for the mean and variance of 
what we assume to be a homogeneous population F.

We shall consider that the only reason for different 
means in each group is the existence of variance in the 
population. In order to mark this condition, we state 
Assumption 1, that we use throughout the following 
sections.

Assumption 1 there is a unique population F with a 
unique mean μ and unique variance σ2.

The estimation of σ2 and its distribution is our immedi-
ate goal and we shall use a procedure based on ANOVA 
and the total variance formula [36].

Probability distribution of estimators of intragroup 
and intergroups variances
We have determined that S2p , the pooled variance esti-
mator is a scaled chi-square random variable because S2p 
is linked to the chi-square random variable C2

p with df p 
degrees of freedom.

In the second part of the S2a formula, 
(
nS2m

)
 is also 

linked to a chi-square random variable with df m degrees 
of freedom. In this case, C2

m.

(10)Var
(
nS2m

)
=

2σ 4

k − 1

(11)S2a = w1S
2

p + w2nS
2
m

2  Observe that 
C
2
m = (k−1)S2m

(σ 2/n)

  is a chi-square random variable with df m = 

(k-1) degrees of freedom.
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However, the weighted sum of C2
p
 and C2

m,
 two chi-

square distributed random variables, is not necessarily a 
chi-square distributed random variable.

This observation is of major importance since it pre-
cluded us from using a well-known theorem of Statistics 
to establish the functional form of the probability distri-
bution of S2a.

The combination of chi-squared variables is a chal-
lenge that Ferrari [12] proposed to solve using approxi-
mate expressions. The problem is especially intricate 
when the variables involved are correlated. In our case 
the possible correlation between C2

p and C2
m would have 

to be investigated and then, approximate formulas 
would have to be used to characterize the distribution 
of the sum w1S

2
p + w2nS

2
m.

The key to resolve this challenge is to define weights 
w1 and w2 conveniently, rendering meaningful S2a and 
providing S2a with statistical properties that would allow 
us to determine its probability distribution without 
determining the correlation between C2

p and C2
m.

The definition of the weights we propose in this paper 
is the result of an analysis of the degrees of freedom of 
the statistics involved and is inspired by the success of 
the development of the formula of pooled variance.

The resulting weights are simple and compatible 
with ANOVA procedures used in classical tests of dif-
ferences of means. Also, it presents what we think is a 
remarkable property: they produce an estimate of total 
variability that combines intragroup variability esti-
mates with intergroups variability estimates to produce 
a statistic S2a that is a scaled chi-square distribution. 
The guarantee that S2a is a scaled chi-square distribution 
is essential to determine confidence intervals for the 
true total variance.

Formula for S2a and its distribution
We define w1 and w2 by expressions Eqs. (12), (13).

In the following derivations, we will use the familiar 
notation of “sum of squares”: SST, SSW and SSB:

SST =
k∑

i=1

ni∑
j=1

(
fij − f

)2
 : representing the total sum of 

squared deviations from each observation to the global 
sample mean

(12)w1 =
∑k

i=1(ni − 1)
∑k

i=1(ni)− 1

(13)w2 =
k − 1

∑k
i=1(ni)− 1

SSW =
k∑

i=1

ni∑
j=1

(
fij − fi

)2
 : representing the sum of the 

variations within each group

SSB =
∑k

i=1 ni
(
fi − f

)2
 : representing the intergroups 

or, between groups variation.
Recall that, using the “law of total variance”, we have: 

SST = SSW + SSB. If we expand the formula for S2a of 
Eq. (15), we get equations Eq. (18) to Eq. (21).

Therefore, if we use the proposed weights w1 and w2 , 
we arrive at a very simple expression for S2a . From this 
expression of S2a , it is also easy to determine its prob-
ability distribution: following Cochrane´s theorem, 
if F is a normal random variable, then S2a is made of a 
sum of squared standard normal variables and, thus, C2

a 
defined as in Eq. (18), is distributed as a chi-square ran-
dom variable with df a degrees of freedom (Eq. 19) [1].

S2a is proven to be an unbiased estimator for σ2 for the 
usual condition of normality, homogeneity, and inde-
pendence of samples [7]. It is important to note that 
we have shown that C2

a is a chi-square random variable 
even though we have not shown the non-correlation 
between S2p and (nS2m).

Computation of S2a
In Eq.  (17), the formula proposed for S2a , the summa-
tion SST involves information about each measurement 
fij . If we had information regarding each fij we could 
also use stratified sampling, bootstrapping, or other 

(14)

S2a = w1

∑k
i=1

∑ni
j=1

(
fij − fi

)2

∑k
i=1 (ni=1)

+ w2

∑k
i=1

∑ni
j=1

(
fi − f

)2

k − 1

(15)S2a = w1

SSW
∑k

i=1(ni − 1)
+ w2

SSB

(k − 1)

(16)S2a =
SSW

∑k
i=1(ni)− 1

+
SSB

∑k
i=1(ni)− 1

(17)S2a =
SST

∑k
i=1(ni)− 1

(18)C2
a =

[(∑k
i=1ni

)
− 1

]
S2a

σ 2

(19)df a =
(∑k

i=1
ni

)
− 1
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resampling methods to improve the quality of the esti-
mator for the emission factor. However, this informa-
tion is seldom available in the IPCC database or in the 
literature where experimental results for emission fac-
tors are published.

This is the point where the estimator S2a is 
advantageous: if we use the formula of Eq.  (11), 
S2a = w1S

2

p + w2nS
2
m , we can easily compute S2a since the 

values involved are usually available.

Precision of estimator S2a
The precision of S2a as an estimator of σ2 may be evalu-
ated by its variance. The variance of S2a is determined 
by recognizing that Var(C2

a) = 2df a and is written as in 
Eq.  (20). The confidence interval for the true parameter 
σ2 is expressed as in Eq. (21).

where:
χ2

α
2
;df a

= Inverse cumulative distribution, for probabil-
ity equal to α/2, of a chi-square distribution with df a 
degrees of freedom,
χ2
1− α

2
;df a

= Inverse cumulative distribution, for proba-
bility equal to (1-α/2), of a chi-square distribution with 
df a degrees of freedom.

Observe that Var
(
S2a
)
 is smaller than Var

(
S2p

)
 that, in 

turn, is smaller than Var
(
nS2m

)
.

Results
Simulations to confirm the quality of the estimators of σ2

Each of the three methods previously presented provide 
an estimator for σ2. Depending on the estimator for σ2 
and its probability distribution, we can draw a confidence 
interval for μ.

The method of S2a , based on the law of total sum of 
squares, requires more information but provides esti-
mates that do not neglect the intergroups variation (dis-
regarded in the S2p method) nor neglect the intragroup 
variation (disregarded in the (nS2m) method).

Because each method uses different pieces of data, it is 
not clear how to compare their quality. Therefore, we use 
a simulation exercise to illustrate the differences in pro-
cedures and results of the three methods. We consider a 
population of observations of a normal random variable 

(20)Var
(
S2a

)
=

2σ 4

(∑k
i=1ni

)
− 1

(21)
df aS

2
a

χ2
1− α

2
;df a

≤ σ 2 ≤
df aS

2
a

χ2
α
2
;df a

F with zero mean and variance equal to 1. In each simu-
lation run, we generate 20 pseudo-random numbers and 
divide them into 4 groups of equal size n = 5 each. We 
then compute the sample’s means, sample’s variances and 
the estimators for the variance S2p , S2a , and nS2m . For the 
computation of nS2m , even though the value of n would 
not be known, we used n = 5.

The point estimates of μ are the same for the three 
methods and were obtained using (Eq. 7). We run 1000 
simulations. The average estimates for σ2 using S2p , S2a , 
and nS2m were, respectively: 1.0017; 1.0055 and 1.0258. 
These values seem very close to one another and confirm 
the unbiased characteristic of the three estimators. How-
ever, the qualities of these estimators are different. The 
probability distribution of the three estimators of σ2 are 
scaled chi-squares, but with different degrees of freedom, 
implying different variances in these estimators.

For the example with σ2 = 1; ni = n = 5 and k = 4 , we 
computed Var(nS2m) = 2/3 , much higher than 
Var

(
S2p

)
= 2/16 which is also a little higher than 

Var
(
S2a
)
= 2/19 . The simulation results confirmed that 

S2a has the smallest variance of all. The pooled variance S2p 
has an intermediate value of variance and (nS2m) has the 
highest variance. Therefore, when comparing these meth-
ods, we consider S2a to be the preferable estimator for σ2. 
The three estimators are unbiased, but S2a has a smaller 
variance (Eq. (22)).

Since 
(
nS2m

)
 has the largest variance, we consider it the 

least preferred method.
Figure 1 shows the histograms of the point estimates of 

σ2 obtained by the three methods in the simulations. The 
histograms confirm the theoretical conclusion that the 
variability of S2a was the smallest.

Observe that Table 1 shows that the averages of all esti-
mators were close to the real parameter σ2 and the vari-
ance of these estimators in the simulations were in the 
order we expected, with the least variation for S2a .

We must remember that we used the right value of n in 
the computation of nS2m . In practice, the value of n would 
not be known, and an arbitrary choice of n could greatly 
alter the results. Even in the event of chance where we 
choose the right n, the estimated variance of (nS2m), con-
firmed in the histograms for the simulations, shows that 
it is spread over a large interval and therefore, an instance 
of such an estimator could be far off the real value of σ2. 
This means that (nS2m) should be used only when there is 
no alternative.

(22)Var
(
S2a

)
≤ Var

(
S2p

)
≤ Var

(
nS2m

)
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Case study
We considered the study of Vo et al. [42]. They analyzed 
the methane emission factors from Vietnamese rice 
production in flooded fields. One of their conclusions 
was that the season is more important than the edapho-
hydrological characteristics of the zones for explaining 
differences in emission factors.

From that study we collected the statistics relative to 
means and standard deviations of observations of meth-
ane emissions in several field sites and cropping seasons 
(early, mid and late-year seasons).

The emission factors were developed from field meas-
urements using the closed chamber technique. The 
fluxes of CH4 (and N2O) were determined using the 
static flux chamber technique and gas chromatographic 
analyses of gas samples. Sampling was conducted on 
average with three replicates, 10 sampling dates per 
season and four gas samples per chamber exposure. 

The analysis followed the IPCC Tier 2 methodology [16, 
17]. The resulting CH4  emission factors are presented 
in Table 2. The first columns refer to emissions per area 
per day. In order to get the emission factor in terms of 
kg of methane per ton of rice produced, we have only 
to multiply by the number of days of the cropping time 
and divide by the yield in terms of tons per ha.

We selected the sites named C2, C3 and C4 which are 
very close to each other in central Vietnam, near the 
city of Huê. The data involved the same crop season of 
early 2018.

The computations considered sample sizes all equal 
to n = 10 and number of samples k = 3 . We computed 
the weighted average of the sample means to estimate 
the overall mean emission factor. The weights were all 
equal to be consistent with the computation of f  and 
the result was 25.6 using Eq. (3).

The measure of the intragroup variation, S2p , was calcu-
lated to be 0.82 using Eq. (6). The measure of intergroups 
variation, (nS2m), was calculated to be much higher: 
180.12, using n times the result of Eq. (9).

These two measures were consolidated using the 
weights of w1 = 0, 93 and  w2 = 0, 07 respectively, cal-
culated using Eq.  (12) and Eq.  (13). The weighted aver-
age resulted in S2a = 13.19 . The square root of S2a is our 

Fig. 1  Histograms of estimates of σ2 in 1000 simulations of a S2p ; b S2a ; c nS2m

Table 1  Estimates for the variance in 1000 simulations

Estimators S2p S2a nS2m

Average 1.0017 1.0055 1.0258

Standard deviation 0.363 0.345 0.867

Table 2  Emission of methane in the production of rice at specific sites in Vietnam in 2018

Source: Vo et al. [42]

Site Emission of CH4 Period (days) Yield (ton ha−1) Emission of CH4

(kg ha−1 day−1) (kg ton−1)

Mean St Dev Mean St. Dev

C2 1.444 0.058 109 7.6 20.7 0.83

C3 1.948 0.019 110 7.5 28.6 0.28

C4 1.853 0.088 108 7.3 27.4 1.30
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estimate for the standard deviation of the emission fac-
tor: Sa = 3.6.

Notice that Sa is bigger than each of the samples’ stand-
ard deviation. This is not surprising since the three sam-
ples presented means that are, comparably, quite apart 
from each other. In conclusion, we estimate the emission 
factor for the rice produced in the region of Huê in cen-
tral Vietnam to be 25.6 ± 3.6 kg of methane per ton of rice 
produced. The application of the method was straightfor-
ward and simple to justify and interpret.

The case study revealed a series of issues that must be 
considered in practical applications:

(A)	If we take samples from field sites that differ in 
terms of edaphic or climate characteristics or if we 
take samples from different years or seasons, the 
discrepancy in the emissions data would be incom-
patible with the hypothesis that the data come from 
the same population and the resulting standard 
deviation might be big and meaningless.

(B)	 Data in practical cases might contain outliers. Fail-
ing to detect and correct for these would distort the 
results significantly.

(C)	The criterion of weighting sample averages using 
the inverse of their variances might produce severe 
outbalances, especially if some data of sample vari-
ances are close to zero.

Discussion
In order to establish a confidence interval estimator for 
the emission factor F, it is necessary to estimate the vari-
ance of F and the probability distribution of the estima-
tor. We have studied three methods to estimate the 
variance of F: 1) the pooled variance 

(
S2p

)
 ; 2) the method 

of the means (nS2m) and 3) the ANOVA based method (
S2a
)
.

The first method, S2p , combines information on the 
variances contained in each available sample but does 
not consider the possible distinctions between the 
expected values of these samples. This situation is appli-
cable to cases where the mean of F can be estimated by 
other methods (for example, a linear regression where 
an explanatory variable assumes different values in each 
sample) but the variances within each sample are all the 
same (although unknown).

The second method, (nS2m) , is applicable in situations 
where we do not have information about the internal 
variations of each sample and only know the averages 
of each sample. Apparently, it may seem to be a par-
ticular case of the previous situation. However, it is 
necessary to use a different approach and consider that 

each sample average is an element, and the average of 
these elements is an estimator of μ. The sample vari-
ance between these elements, S2m , however, is not an 
estimator of σ2, the variance of F, but rather the esti-
mator of the variance of the “F averages”. Assuming, 
for example, that each sample mean is the result of the 
average of n elements, S2m is an estimate of σ2/n. Thus, 
unless we know the value of n , the number of elements 
in each sample, we cannot use S2m to determine an esti-
mator of σ2 and, consequently, cannot determine a con-
fidence interval comparable to the previous ones. Using 
S2m, one could determine a confidence interval for μ but 
we must be careful to interpret it properly: it is the con-
fidence interval for the averages of n values of F.

The third method for estimating the variance of emis-
sion factors may be considered original: the proposed 
S2a is based on the law of total variance; it captures 
within groups variation as well as intergroups variation; 
it is easy to compute, and it has convenient statistical 
properties.

Showing that the distribution of S2a is scaled chi-
square, in the usual context of “independence, nor-
mality and homogeneity” was crucial to determine the 
confidence interval for the expected value of F. The 
qualities of the estimators for σ2 were examined theo-
retically and using simulation. The simulation served to 
confirm their properties and to illustrate their different 
applicability contexts.

The theoretical developments and simulations pre-
sented in this document have shown that estimating 
the variance of F using ANOVA principles produces an 
estimator of σ2 that is unbiased and of minimum vari-
ance among the ones examined. In different contexts, 
Swallow and Monahan [37] have also argued in favor of 
ANOVA estimators of variance. In the context of esti-
mating the emission of GHG based on a pool of esti-
mates presented in the accredited literature, we do not 
know of any other method that surpasses the qualities 
of S2a.

Statistically, S2a is unbiased, has small variance and 
has a known probability distribution and from a prac-
tical point of view, its computation requires informa-
tion that is usually available and, finally, it does not 
neglect potentially important information ( S2p neglects 
the intergroups variability and (nS2m) neglects the intra-
group variability).

Conclusions
Using pooling of estimates, an efficient point estimator 
for µ, the expected value of the emission factor of an 
activity, F, relies on a weighted average. The weights, 
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however, are not obvious if we do not know, and have 
to estimate, the variances involved. Therefore, we pre-
sented suggestions, based on meta-analysis theory, 
to form point estimators for µ and have studied three 
methods to estimate σ2, the variance of F.

One contribution of this work resides in the discus-
sion of situations where each estimator of σ2, namely: 
S2p , ( n S2m) and S2a , is best suited for. The choice depends 
on data availability and the characteristics of the origi-
nal population from where the data is taken.

The first two estimators are known from the literature 
and the third might be considered a contribution of this 
work. The estimator S2a is derived from the ANOVA 
theory. We have demonstrated its properties, including 
its distribution as a scaled chi-square random variable, 
and have indicated different possibilities for its compu-
tation. We have also shown that S2a is unbiased and is 
the most precise estimator for the variance of F under 
the assumption that F is distributed as a random vari-
able with fixed, though unknown, expected value and 
variance.

Therefore, we have shown how to use a combination 
of reported emission factors to form the narrowest con-
fidence interval for the true emission factor of interest, 
thus improving the reliability and accuracy of GHG 
emission estimates.

The procedure was applied to the case of CH4 emis-
sions from rice plantations in Central Vietnam. Availa-
ble databases suggested three possible emission factors 
ranging from 20.7 ± 0.8 to 28.6 ± 0.28  kg/ton. After 
applying the suggested procedure, the emission factor 
was estimated to be 25.6 ± 3.6 kg of methane per ton of 
rice produced. Other procedures would have resulted 
in less precise or in biased estimators.

Abbreviations
F	� Population of possible values for the emission factor of a certain activity 
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