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Abstract 

Background Conducting an extensive study on the spatial heterogeneity of the overall carbon budget and its 
influencing factors and the decoupling status of carbon emissions from economic development, by undertaking 
simulation projections under different carbon emission scenarios is crucial for China to achieve its targets to peak 
carbon emissions by 2030 and to achieve carbon neutrality by 2060. There are large disparities in carbon emissions 
from energy consumption, the extent of land used for carbon absorption, and the status of decoupling of emissions 
from economic development, among various regions of China.

Results Based on night light data and land use data, we investigated carbon budget through model estimation, 
decoupling analysis, and scenario simulation. The results show that the carbon deficit had a continuous upward 
trend from 2000 to 2018, and there was a significant positive spatial correlation. The overall status of decoupling 
first improved and then deteriorated. Altogether, energy consumption intensity, population density of built-up 
land, and built-up land area influenced the decoupling of carbon emissions from economic development. There are 
significant scenarios of carbon emissions from energy consumption for the study area during the forecast period, 
only in the low-carbon scenario will the study area reach the expected carbon emissions peak ahead of schedule 
in 2027; the peak carbon emissions will be 6479.27 million tons.

Conclusions China’s provincial-scale carbon emissions show a positive correlation with economic development 
within the study period. It is necessary to optimize the economic structure, transforming the economic development 
mode, and formulating policies to control the expansion of built-up land. Efforts must be made to improve technol-
ogy and promote industrial restructuring, to effectively reduce energy consumption intensity.

Keywords Carbon budget, Spatial autocorrelation, Decoupling, Scenario simulation, China

Background
Climate issues marked by global warming, are a major 
problem faced by mankind in the twenty-first century 
[1], which has a significant negative impact on the eco-
nomic, social, and ecological environment worldwide [2, 
3]. The key to slowing down the global warming trend is 
to reduce  CO2 emissions, which has currently become 
the focus of global attention and consensus [4]. Since the 
opening up of China following economic reforms and 
rapid economic development, China’s energy consump-
tion has continued to rise, and carbon emissions have 
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increased. China has also become the world’s largest 
carbon emitter [5], and is actively participating in global 
climate governance. In 2015, China proposed a National 
Independent Contribution Plan, promising to reduce 
 CO2 emissions per unit of GDP by 60–65% by 2030 
compared to 2005 [6]. In 2020, during the 75th United 
Nations General Assembly, China also proposed to strive 
to achieve the “dual carbon” targets of peaking  CO2 emis-
sions by 2030 and achieving carbon neutrality by 2060 
[7].

The carbon budget is important for achieving the 
“dual carbon” targets, and has been an area of inter-
est for scholars [8, 9]. The carbon budget mentioned in 
this paper refers to a collective term that includes both 
carbon emissions and carbon absorption. The study 
of the carbon budget is essentially the study of car-
bon sources and sinks; carbon emissions and carbon 
absorption correspond to carbon sources and carbon 
sinks, respectively. Researchers have mainly focused 
on the carbon balance at different scales and of differ-
ent land use types. In terms of the spatial heterogene-
ity of carbon budgets at different scales, scholars have 
conducted many studies at global [10, 11], interconti-
nental [12, 13], and national [14] scales. Chinese schol-
ars have mainly conducted studies at the national [15], 
provincial [16], and municipal [17] levels. As for the 
carbon budget of different land use types, many studies 
have been conducted on individual land use types such 
as forestland [18, 19], grassland [20], water land [21], 
and built-up land [22]. Based on the study of the car-
bon budget, researchers have conducted analysis of the 
influencing factors, with the decomposition of influ-
encing factors mainly focused on carbon emissions. 
Among the decomposition methods for influencing 
factors, index decomposition [23], structural decom-
position [24], regression analysis [25], gray correlation 
analysis [26], and Data envelopment analysis (DEA) 
model [27] are the most frequently used. The logarith-
mic mean divisia index (LMDI) decomposition method 
does not require input-output data, compared with the 
structural decomposition method, and does not require 
input-output coefficients compared with the Laspeyres 
index decomposition method [28]. The LMDI decom-
position method has been used to decompose the 
drivers of overall regional carbon emissions [29, 30], 
industrial carbon emissions [31], and carbon emissions 
from household consumption [32], and substantial 
research results have been obtained. The relationship 
between carbon emissions and economic development 
has become an area of research interest [33]. A widely 
used method is decoupling analysis, where the sta-
tus of decoupling of carbon emissions from economic 

development, at various scales such as global [34], 
national [35], and provincial [36], and in different 
industries such as construction [37], industry [38, 39], 
and tourism [40] are investigated. We combined decou-
pling analysis with the LMDI decomposition method to 
quantitatively analyze the effectiveness of the contri-
bution of each influencing factor to the decoupling of 
carbon emissions from economic development. Based 
on the analysis of the contribution of the influencing 
factors to carbon emissions, some scholars forecast 
the future evolution of carbon emissions in the study 
area through scenario setting, and predicted the peak 
or structural evolution of carbon emissions in the con-
struction sector [41], road passenger transportation 
sector [42], and the power sector [43]. The above stud-
ies have analyzed the spatial heterogeneity of the car-
bon budget of energy consumption and its influencing 
factors at different scales using various methods, and 
have yielded substantial results. However, most of the 
studies have analyzed the carbon emissions of indi-
vidual industries or the carbon absorption of a single 
land use type, and relatively few studies have analyzed 
the spatial heterogeneity of the overall carbon budget 
of energy consumption in China and provided the pro-
jected carbon emissions for future dates.

China is a vast country with large differences in 
resource endowment, population, socio-economic 
development levels, industrial infrastructure, and land 
use type composition, resulting in variability in carbon 
emissions, and carbon absorption from land use, for 
different regions [44]. The carbon emission reduction 
targets defined at the national macro level need to be 
implemented at the regional level. Therefore, it is nec-
essary to estimate the carbon budget of each province 
in China, and further analyze the spatial heterogeneity 
and factors influencing carbon emissions in the study 
area. Scenario analysis based on the contribution of the 
influencing factors to the increase in carbon emissions 
must be performed, so as to predict the future trend 
of carbon emissions from energy consumption in the 
study area and forecast the year when carbon emissions 
would peak (Fig.  1). By exploring the degree of influ-
ence of each contributing factor on the carbon budget, 
and the future trend of carbon emissions, we want to 
explore the following questions: (1) How has the decou-
pling of carbon emissions and economic development 
in various provinces of China evolved? (2) Can China 
achieve its goal of peaking carbon emissions by 2030? 
We aim to provide a reference for the formulation of 
reasonable and targeted regional emission reduction 
policies, and also provide a reference for other devel-
oping countries to explore low-carbon development 
paths.
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Methods
Study area
The study area includes 30 provincial administrative 
regions of China, including 22 provinces, four munici-
palities directly under the central government, and four 
autonomous regions. Tibet, Hong Kong, Macao, and Tai-
wan were not included, considering the unavailability of 
relevant data.

Carbon emission estimation model
Night light data and data on carbon emissions were 
used to build a carbon emission estimation model. The 
hypothesis is that there is a correlation between the digi-
tal number (DN) values and carbon emissions; that is, 
higher the DN value, higher the carbon emissions, and 
there is a consistent correlation between the DN values 
at the provincial scale and at the grid scale [45]. Curvilin-
ear simulations of both data were conducted using SPSS 
25 software (International Business Machines Corpo-
ration). We found that there was a good linear correla-
tion between the DN value of night light data and carbon 
emissions. An estimation model was constructed, with 
the sum of the night light grid values at the provincial 
scale, and the corresponding provincial energy consump-
tion carbon emissions as its components. The model 
structure is as follows:

where CE is the carbon emissions from energy consump-
tion, and NTL is the night light data grid value; the good-
ness-of-fit of the model reaches 0.694.

(1)lnCE = 0.64 lnNTL + 1.516

Carbon absorption estimation model
In studies related to carbon emissions from land use, built-
up land and cultivated land are carbon sources, while 
forestland, grassland, water land, and unused land are car-
bon sinks which therefore need to be considered in calcula-
tion of carbon absorption:

where CS denotes the total carbon absorption, Ai denotes 
the area of land use type i, and ai denotes the carbon 
absorption coefficient for land use type i. The carbon 
absorption coefficients of each land use type were derived 
from previous studies (Table 1) [46, 47].

Carbon deficit estimation model

where CD denotes carbon deficit or surplus, CE denotes 
regional carbon emissions, and CS denotes regional car-
bon absorption. When CD > 0, carbon emission is greater 
than carbon absorption, indicating that the region is a 
carbon source and has carbon deficit; when CD = 0, the 

(2)CS =

4
∑

i=1

Ai × ai

(3)CD = CE − CS

Fig. 1 Research framework diagram

Table 1 Carbon absorption coefficient of different land use 
types

Land use Forestland Grassland Water land Unused land

Coefficient/(t C/
hm2/a)

0.644 0.022 0.253 0.005
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region is in carbon balance; when CD < 0, carbon emis-
sion is less than carbon absorption, indicating that the 
region is a carbon sink and its carbon balance is positive.

Spatial autocorrelation
Moran’s index or Moran’s I was proposed in 1950 to 
test whether a phenomenon is spatially clustered, and 
to describe the spatial characteristics of its distribution 
in the study area [48]. Spatial autocorrelation analysis 
methods include global and local spatial autocorrela-
tions. The global Moran’s I for the study area was calcu-
lated as follows:

 where xp denotes carbon deficit in area p, xq denotes car-
bon deficit in area q, x̄ denotes the average carbon defi-
cit in the study area, and m denotes the number of areas,  
Wpq is the spatial weight matrix. The inverse of the quad-
ratic distance of geographic units was chosen as the spa-
tial weight matrix in this study. The closer I is to 1, the 
more significant is the positive spatial correlation, and 
the closer it is to -1, the more significant is the negative 
spatial correlation. The global Moran’s I can only evaluate 
overall distribution and trend, and cannot determine the 
spatial correlation of independent units. Spatial hetero-
geneity exists at the level of spatial autocorrelation, that 
is, the degree of spatial correlation varies from one local 
area to another. Therefore, local spatial autocorrelation is 
used to describe local spatial heterogeneity and to iden-
tify the spatial distribution patterns of carbon deficit. The 
local Moran’s I, Moran’s Ic, was calculated using the fol-
lowing formula:

(4)I =

k
m
∑

p=1

m
∑

q=1

Wpq

(

xp − x̄
)(

xq − x̄
)

(

m
∑

p=1

m
∑

q=1

Wpq

)

m
∑

p=1

(

xp − x̄
)2

Each variable in Eq. (5) represents the same parameter 
as in the formula for global Moran’s I. Local agglomera-
tion patterns are further distinguished by Moran’s Ic, and 
include H-H agglomeration (high-observed area sur-
rounded by high-observed areas), L-L agglomeration 
(low-observed area surrounded by low-observed areas), 
L-H agglomeration (low-observed area surrounded by 
high-observed areas), and H-L agglomeration (high-
observed area surrounded by low-observed areas).

Decomposition of influencing factors
The degree of decoupling is an important indicator of 
the coupling between economic development and envi-
ronmental pressures in a region, and reflects the sensitiv-
ity of changes in resource and environmental pressures 
to economic changes [49]. A decoupling model is con-
structed whose structure is as follows:

 where D is the degree of decoupling (refer to Table 2 for 
specific criteria) [28], ∆CD and ∆GDP are the changes 
in the regional carbon deficit and GDP at the end of the 
base period, respectively. CD0 and GDP0 are the carbon 
emissions from energy consumption and GDP during the 
base period, respectively.

The LMDI decomposition method was proposed in the 
1990s [50], and has the advantages of mature technology, 
variety in forms, easy calculation, and no residuals in the 
decomposition [51]. The LMDI decomposition method 
can decompose the factors into the carbon emission 
coefficient, energy intensity, GDP per capita, population 
density of built-up land, and built-up land area.

(5)
Ic =

m
(

xp − x̄
)

m
∑

p=1

(

xp − x̄
)2

m
∑

p �=q

Wpq

(

xq − x̄
)

(6)

D =
�CD/CD0

�GDP/GDP0
= �CD ×

(

GDP0

�GDP × CD0

)

Table 2 Classification of decoupling status

Degree of decoupling D ∆C ∆GDP

Negative decoupling Expansive negative decoupling D ≥ 1.20 > 0 > 0

Weak negative decoupling 0 ≤ D < 0.80 < 0 < 0

Strong negative decoupling D < 0 > 0 < 0

Decoupling Recessive decoupling D ≥ 1.20 < 0 < 0

Weak decoupling 0 ≤ D < 0.80 > 0 > 0

Strong decoupling D < 0 < 0 > 0

Coupling Expansive coupling 0.80 ≤ D < 1.20 > 0 > 0

Recessive coupling 0.80 ≤ D < 1.20 < 0 < 0
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where E is the energy consumption, P is the population, 
and A is the built-up land area. ∆CE , ∆EG , ∆GP , ∆PA , 
and ∆Aare the changes in the contributions of carbon 
emission factor, energy intensity, GDP per capita, popu-
lation density of built-up land, and built-up land area, 
respectively. ∆CE should be 0, but the carbon emission 
data used in this study were obtained by fitting the night 
light data with the energy consumption data due to which 
there is a certain error; the actual amount of carbon def-
icit is hence applied, resulting in ∆CE in this study not 
being 0. Therefore, when calculating the contribution of 
each influencing factor to decoupling, the contribution to 
carbon deficit generated by the carbon emission coeffi-
cient was eliminated first. In addition, as the strong influ-
ence of economic output on carbon reduction suppresses 
the influence of other factors, the contribution of GDP 
per capita was also excluded.

where Z represents the effectiveness of the contribution 
of each influencing factor to decoupling, ZEG, ZPA, and ZA 
being the corresponding contributions of energy inten-
sity, GDP per capita, built-up land population density, 
and built-up land area, respectively. When Z ≥ 1, it means 
that the factor contributes strongly to decoupling; when 
0 < Z < 1, the contribution of the factor to decoupling is 
weak, and when Z ≤ 0, the factor does not contribute to 
decoupling or hinder decoupling [28].

Scenario simulation
Since carbon absorption is mainly influenced by the 
composition and extent of land subject to different 

(7)C =
C

E
×

E

GDP
×

GDP

P
×

P

A
× A

(8)�C = �CE + �EG + �GP + �PA + �A

(9)

�CE =
CT − C0

lnCT − lnC0

× ln
CET

CE0

�EG =
CT − C0

lnCT − lnC0

× ln
EGT

EG0

�GP =
CT − C0

lnCT − lnC0

× ln
GPT

GP0

�PA =
CT − C0

lnCT − lnC0

× ln
PAT

PA0

�A =
CT − C0

lnCT − lnC0

× ln
AT

A0

(10)
�F = �C − �CE − �GP = �EG + �PA + �A

(11)
Z = −

�EG + �PA + �A

�GP
= ZEG + ZPA + ZA

types of use, not by factors such as population, econ-
omy and energy consumption, the development 
scenario was set to explore the trend in carbon emis-
sions only. Taking 2030 (the year carbon emissions are 
expected to peak) as the year in focus, based on possi-
ble future trends in changes in the contributions of the 

four indicators to carbon emissions in the study area, 
and referencing existing research [52, 53], this study set 
up three scenarios: high-carbon, basic, and low-carbon 
scenarios. The future annual change in carbon emis-
sions was predicted by combining the contributions of 
the influencing factors using the following equation:

where ∆C denotes the change in carbon emissions 
from energy consumption between adjacent years;∆EG , 
∆GP , ∆PA , and ∆A respectively denote the contribu-
tions of energy consumption intensity, GDP per capita, 
population density of built-up land, and built-up land 
area, to carbon emissions in the previous year, respec-
tively. n1, n2, n3, and n4 denote the annual average rates 
of change in the contribution of these four influencing 
factors, respectively. ∆C > 0 indicates an increase in 
carbon emissions; ∆C = 0 indicates that carbon emis-
sions remain unchanged; ∆C < 0 signifies a reduction 
in carbon emissions. Adopting 2000–2018, 2005–2018, 
2010–2018, and 2015–2018 as the reference periods 
for setting the parameters of the study scenarios, the 
median of the annual average values for the rate of 
change in the contribution of each factor in the four 
stages is set as the indicator of the rate of change for the 
basic scenario. There are two median values of annual 
average change rate of factor contribution in the four 
periods, considering the degree of differential impact of 
different periods on the future, only one median value 
of annual average change rate of factor contribution for 
the period closer to the present was maintained [54]. 
The high-carbon and low-carbon scenarios are set at 
certain intervals based on the basic scenario [55], with 
the indicator values under the low-carbon scenario set 

(12)
�C = �EG × (1 + n1) + �GP × (1 + n2)

+ �PA × (1 + n3) + �A × (1 + n4)
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with reference to the relevant planning targets pro-
posed by China.

High-carbon scenario: This scenario is representative 
of the situation where China’s main objective is economic 
development, adopting a careless approach that pays less 
attention to pollution, carbon emissions, and climate 
change. In this scenario, rapid economic development 
will inevitably lead to high energy consumption and envi-
ronmental pollution; the impact of built-up land area and 
GDP per capita on the increase in carbon emissions will 
be enhanced, while the impact of energy consumption 
intensity and population density of built-up land will be 
weakened.

Basic scenario: Based on the overall carbon emission 
evolution trend for the study area from 2000 to 2018, 
this scenario reflects the future carbon emission trend 
for each provincial administrative region according to 
its energy intensity status, GDP per capita, population 
density of built-up land, and built-up land area in the 
study period, in the absence of any government policy 
intervention.

Low-carbon scenario: This scenario is representative 
of a situation where China no longer focuses on eco-
nomic development as its main goal, but on an energy-
saving and low-carbon development approach. Each 
provincial administrative region will fully consider the 
future social, economic, and environmental development 
needs, and implement various measures such as energy 
conservation, emission reduction, and industrial struc-
ture optimization to achieve sustainable and low-carbon 
development. In the context of China’s pursuit of the 
“dual carbon” target, this scenario is more in line with the 
future development trend.

Results
Spatial heterogeneity of carbon budget
Based on estimations using the carbon emission model, 
carbon absorption model, and the carbon deficit model, 
the evolution of the spatial heterogeneity of carbon emis-
sions, carbon absorption, and carbon deficit of energy 
consumption in the study area for 2000–2018 were 
obtained (Figs. 2, 3, 4). Due to variability in the level of 
economic development, population, energy consump-
tion, and land use pattern in each provincial administra-
tive region, there are obvious differences in the spatial 
distribution characteristics of carbon emissions, carbon 
absorption, and carbon deficit.

As can be seen in Fig.  2, the highest carbon emis-
sions in 2000 were in Guangdong Province, followed 
by Beijing City, Shanghai City, Shandong Province, and 
Liaoning Province, while the carbon emissions of other 
provincial administrative regions were relatively low. 
The regions with the highest carbon emissions in 2005 

were Guangdong Province and Shandong Province, fol-
lowed by Beijing City and Jiangsu Province. The carbon 
emissions in eastern China in general increased signifi-
cantly during 2005–2010. The change in the spatial dis-
tribution characteristics of carbon emissions also reflects 
the changing trend in the spatial distribution of China’s 
socio-economic development. By 2018, the regions with 
high carbon emissions further increased, with the carbon 
emissions of most provinces exceeding 1.40 ×  107 tons.

As can be seen in Fig. 3, the spatial distribution of car-
bon absorption in the study area remained stable from 
2000 to 2018. The areas with the highest carbon absorp-
tion are the Sichuan, Yunnan, Guangxi, Heilongjiang, 
and Inner Mongolia Provinces; they have relatively larger 
administrative areas and a higher proportion of land use 
types that play a greater role in carbon absorption, lead-
ing to higher amounts of carbon absorption compared 
to other provincial administrative areas. The areas with 
low carbon absorption are the cities of Beijing, Tian-
jin, and the provinces of Shanghai, Shandong, Henan, 
Jiangsu, and Anhui—which are clustered together—and 
the discrete areas of Ningxia Hui Autonomous Region, 
Chongqing City and Hainan Province. The low carbon 
absorption is mainly due to two reasons: some provin-
cial administrative regions have a small area and their 
contribution to carbon absorption is limited; the low car-
bon absorption in the rest of the provincial administra-
tive regions is due to the fact that the proportion of land 
use types with strong carbon absorption capacity is rela-
tively small in these areas, resulting in low total carbon 
absorption.

As shown in Fig. 4, the highest carbon deficit in 2000 
occurred in Guangdong Province, followed by Beijing 
City, Shanghai City, Shandong Province, and Liaoning 
Province, while other provincial administrative regions 
had relatively low carbon deficit. In 2005, regions with 
the highest carbon deficit were Guangdong Province and 
Shandong Province, followed by Beijing City and Jiangsu 
Province, and the overall distribution pattern began 
to show high values in the north and low values in the 
south. By 2010, the areas included in the highest range of 
carbon deficit of more than 18 000 tons in Jiangsu Prov-
ince increased compared to 2005, and the carbon deficit 
in the eastern region of China increased significantly. In 
2015, the regions in the highest carbon deficit bracket 
increased to seven provincial administrative regions, 
mainly in the eastern part of China. In 2018, the num-
ber of regions with high carbon deficit increased further, 
spreading to the central and western regions on the basis 
of the strip-like clustering distribution in the east, and 
the number of regions with the highest carbon deficit 
increased to 13, with only Qinghai Province maintaining 
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Fig. 2 Spatial distribution of carbon emissions from energy consumption at provincial level
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Fig. 3 Spatial distribution of carbon absorption at provincial level
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Fig. 4 Spatial distribution of carbon deficit of energy consumption at provincial level
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a carbon deficit of less than 60 million tons from 2000 to 
2018.

Spatial autocorrelation
To verify the existence of spatial autocorrelation of the 
carbon deficit in the study area at the provincial scale, the 
spatial Moran’s I was chosen. The global Moran’s I for the 
carbon deficit was calculated using ArcGIS 10.3 software 
(Environmental Systems Research Institute) to analyze 
the spatial autocorrelation of the carbon deficit in each 
provincial administrative region (Table 3).

It can be seen from Table  3 that the index, global 
Moran’s I, for the provincial-scale carbon deficit in the 
study area was positive from 2000 to 2018. The global 
Moran’s I increased from 0.182 to 2000 to 0.295 in 2010, 
and then declined to 0.216 in 2018, with all Z values 
greater than 1.96, and all p-values significant at the 5% 
level, passing the significance test. This indicates that the 
carbon deficit at the provincial scale in the study area had 
a positive spatial correlation, and the degree of positive 
correlation first increased and then decreased.

LISA plots were used to analyze the local spatial auto-
correlation of the carbon deficit (Fig.  5). In 2000, there 
were two types of agglomerations in the study area: the 
H-L area and L-L area. The L-L area included Sichuan 
Province, Guizhou Province, and Chongqing City, indi-
cating that the overall carbon deficit in Southwest China 
was relatively low. Only Guangdong Province was an H-L 
area, and its carbon deficit was greater than that of neigh-
boring provincial administrative regions. In 2005, only 
Guangdong Province was still an H-L area, while the L-L 
area included only the Guizhou Province; new H-H area 
was added, including Shandong Province and Jiangsu 
Province. The local spatial autocorrelation between 2010 
and 2005 was consistent, indicating that the overall spa-
tial distribution pattern of carbon deficit changed lit-
tle from 2005 to 2010. In 2015, the H-L area remained 
unchanged, the L-L area disappeared, and the H-H area 
expanded further, adding Zhejiang Province to the H-H 
area for the first time, indicating that the overall car-
bon deficit had increased. In 2018, Guangdong Province 
changed from H-L area to not significant area, indicat-
ing that the carbon deficit in the provincial administra-
tive regions around Guangdong Province grew rapidly, 

and there was only one type of spatial aggregation in the 
study area.

Decoupling status
Using the decoupling formula, the integrated decoupling 
index for carbon emissions and economic development, 
for provincial administrative regions within the study 
area for 2000–2018 was calculated, and the elasticity 
characteristics of carbon emissions in the study area were 
analyzed in conjunction with the criteria for classifying 
the decoupling into various types (Fig.  6). It should be 
noted that at no time was there a simultaneous decrease 
in the amount of carbon emissions and GDP, the decou-
pling status were therefore classified into five categories.

As can be seen in Fig.  6, the spatial distribution of 
the decoupling status of the study area showed sig-
nificant differences over the four time periods. Overall, 
from 2000 to 2018, the decoupling status of provincial 
administrative regions in the study area was dominated 
by weak decoupling and expansive negative decoupling, 
with distribution range of weak decoupling area show-
ing a decreasing trend. From 2000 to 2005, the study 
area was mainly dominated by weak decoupling, with 
20 provincial administrative districts exhibiting weak 
decoupling, five showing expansive coupling with clus-
tered distribution, and five indicating expansive nega-
tive decoupling. From 2005 to 2010, the study area was 
still mainly dominated by weak decoupling, and provin-
cial administrative districts with weak decoupling fur-
ther expanded—increasing to 23—while the remaining 
seven provincial administrative regions were in a state of 
strong decoupling. It can be seen that during this period, 
the overall carbon emissions of the study area indicated 
good decoupling from economic development. From 
2010 to 2015, the decoupling status deteriorated com-
pared to the previous period, and the study area was 
mainly dominated by weak decoupling and expansion 
of negative decoupling, in 14 and 10 provincial admin-
istrative regions, respectively. The expansion of negative 
decoupling was widely clustered and distributed in the 
southern China. From 2015 to 2018, the composition of 
the decoupling status of the study area changed signifi-
cantly compared to that during 2010–2015, with 12, 10, 
six, and two provincial administrative regions exhibiting 
weak decoupling, expansive coupling, expansive negative 
decoupling, and strong negative decoupling, respectively. 
Moreover, the spatial distribution of the decoupling 
status also changed significantly; the southern region 
showed a clustered distribution of expansive negative 
decoupling during 2010–2015, and the situation in the 
region improved during 2015–2018, with most provin-
cial administrative districts shifting to weak decoupling 

Table 3 Results of global correlation analysis

2000 2005 2010 2015 2018

Moran’s I 0.182 0.188 0.295 0.215 0.216

z 1.968 2.021 2.960 2.303 2.298

p 0.049 0.043 0.003 0.021 0.022
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Fig. 5 Local spatial correlation of carbon deficit of energy consumption at provincial level
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and expansive coupling. The northern part of the study 
area, on the other hand, displayed the opposite trend, 
showing weak and strong decoupling during 2010–2015, 
with a shift toward expansive coupling, expansive nega-
tive decoupling, and strong negative decoupling during 
2015–2018 in the provincial administrative regions.

Effectiveness of contribution of influencing factors 
to decoupling
The degree of influence of energy consumption intensity, 
built-up land population density, built-up land area, as 
well as the three factors combined, on decoupling were 
measured by calculating the effectiveness of the contri-
butions of influencing factors to decoupling, with the 
results shown in Fig. 7.

As shown in Fig. 7a, the effectiveness values of decou-
pling for energy consumption intensity, Z, in most pro-
vincial administrative regions were in the range of 0 to 
1 during 2000–2018, indicating a weak contribution of 
energy consumption intensity to decoupling in most 
regions within the study area. From Fig. 7b it is seen that 
the effectiveness value corresponding to the population 
density of built-up land, Z, was also between 0 and 1 for 
this period, indicating a weak contribution to decoupling. 
With the evolution of time, the magnitude of the effec-
tiveness value, Z, shifted from a relatively smooth to a 
fluctuating state, and the difference in effectiveness value, 
Z, among provincial administrative regions in the study 
area gradually became more pronounced. As shown in 
Fig. 7c, the trends in effectiveness values, Z, for built-up 
land area were opposite to those of energy consump-
tion intensity and built-up land population density, with 

Fig. 6 Spatial distribution of decoupling status at provincial level
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most provincial administrative regions having Z values 
between − 1 and 0. The differences in effectiveness values, 
Z, among provincial administrative regions in the study 
area also gradually became more pronounced with time. 
As can be seen from Fig. 7d, the total effectiveness value, 
Z, for the influencing factors for most provincial admin-
istrative regions were between 0 and 1, indicating that 
the individual contributions of the selected influencing 

factors to decoupling of carbon emissions from economic 
development in the study area were weak, but together, 
they still played a role in promoting decoupling.

Scenario simulation analysis
Indicators are set for the three scenarios based on the 
trends in energy intensity, GDP per capita, population 
density, and built-up land area for the period 2000 − 2018 

Fig. 7 Effectiveness of contribution of influencing factors to decoupling. a: energy consumption intensity, b: population density of built-up land, c: 
area of built-up land, d: sum of the effectiveness of the three influencing factors

Table 4 Scenario indicator settings corresponding to annual average rate of change in contribution of each factor

High-carbon scenario (%) Basic scenario (%) Low-carbon 
scenario (%)

 n1(energy consumption intensity) 2.34 3.84 5.34

 n2(GDP per capita) 7.29 5.79 4.29

 n3(population density) 7.27 8.77 10.27

 n4(built-up land area) 7.34 5.84 4.34
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using the indicator setting method chosen for this 
study; the indicators are projected year by year based 
on Eq. (12). Details of the indicator settings for the three 
scenarios are presented in Table 4.

The future trend of carbon emissions in the study area 
for 2019–2030 is projected using the values of the spe-
cific indicators set as shown in Table  4, to predict the 
peak year of carbon emissions in the study area, and the 
results are shown in Fig. 8.

As shown in Fig.  8, there are significant differences 
among scenarios in the predicted carbon emissions in 
the study area. In particular, there is a carbon peak in the 
low-carbon scenario. The predicted peak year is 2027, 
which is three years earlier than the year expected by 
China for carbon emissions to peak, as part of its “dual 
carbon” goals. In the basic scenario and the high-carbon 
scenario, carbon emissions in the study area will continue 
to rise, and there will be no carbon peak phenomenon. In 
the high-carbon scenario, the push of the influencing fac-
tors toward increase in carbon emissions is enhanced and 
the inhibiting effect will be weakened; thus, carbon emis-
sions will continue to increase significantly in the forecast 
period. In this scenario, carbon emissions in the study 
area are predicted to reach 11208.61 million tons by 2030, 
which is much higher than in the basic and low-carbon 
scenarios. In the basic scenario also, carbon emissions in 
the study area will show an upward trend for 2019–2030, 
but the upward trend is more moderate compared to that 
in the high-carbon scenario. In this scenario, the encour-
aging and inhibiting effects of none of the influencing 
factors on carbon emissions will be significant. Therefore, 
the growth rate of carbon emissions in the study area will 
be relatively low for the forecast period; carbon emissions 
in the study area are expected to reach 8781.78  million 
tons by 2030. In the low-carbon scenario, the boosting 

effect of the selected influencing factors on the increase 
in carbon emissions will be weakened, while the inhib-
iting effect will be enhanced; the rising trend curve of 
carbon emissions will be flat, and the carbon peaking 
phenomenon will appear in 2027. The peak carbon emis-
sions in this scenario are 6479.27 million tons, which is 
2439.06 million tons and 1213.91 million tons lower than 
the carbon emissions in the high-carbon scenario and 
basic scenario, respectively, for the same year.

Discussion
Based on night light data and energy consumption sta-
tistics, this study calculated the combined carbon emis-
sions from the energy consumption of 30 provincial 
administrative regions in China, to analyze the spatial 
heterogeneity and spatial aggregation distribution char-
acteristics. In addition, the decoupling of carbon emis-
sions from economic development was explored, and the 
effectiveness of different indicator factors on decoupling 
was quantified and analyzed. Finally, changing future 
trends of carbon emissions from energy consumption 
in the study area were predicted. Compared with previ-
ous studies, we have calculated the total carbon emis-
sions of energy consumption and the carbon absorption 
of various land uses, and have an intuitive understand-
ing of China’s overall carbon balance. The future carbon 
peak year is predicted according to scenarios, which has 
a feedback effect on the choice of carbon emission reduc-
tion path.

The estimation of carbon emissions using night light 
data can avoid errors caused by differences in the statisti-
cal robustness of the yearbook data, and can also reflect 
the socio-economic development of different regions 
[56]. By fitting energy consumption statistics with night 
light data, the influence of socio-economic factors on 
carbon emissions was incorporated in the estimation. 
The trend of carbon emissions as revealed by the data 
is relatively more in line with reality [57]. In addition, 
although there may be some degree of error in fitting 
night light data, it is within an acceptable range. On this 
basis, further analysis of spatiotemporal changes at the 
city, county, and grid scales can be conducted in subse-
quent research, which has more potential for in-depth 
research compared to statistical data [58, 59]. In terms of 
spatial heterogeneity, carbon emissions in eastern China 
increased rapidly during the study period. The study area 
gradually showed a distribution pattern with high emis-
sions in the east and low emissions in the west. Guang-
dong Province was one of the regions with the highest 
emissions, while a unipolar pattern prevailed in southern 
China, which is similar to the results of previous stud-
ies [60, 61]. This is mainly due to the large population 

Fig. 8 Carbon emissions prediction for study area under different 
scenarios
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density and high level of industrial development in the 
eastern region and Guangdong Province, which leads 
to large energy consumption and relatively high carbon 
emissions [62]. In addition, China’s provincial-scale car-
bon emissions showed positive spatial autocorrelation 
during the study period, which is also consistent with the 
results from previous studies [63]. In the decomposition 
of the influencing factors, the rapid economic develop-
ment and expansion of built-up land had an encouraging 
effect on the increase in carbon emissions in China. At 
present, China’s economic development still needs to be 
driven by various factors and requires large-scale energy 
consumption, and built-up land is the main carrier of 
economic activities [64, 65]. Therefore, economic devel-
opment and expansion of built-up land can lead to a sub-
stantial increase in carbon emissions [66]. On the other 
hand, the reduction of energy consumption intensity 
and the decrease in population density in built-up land 
played an important role in reducing carbon emissions. 
The reduction of energy consumption intensity means 
the transformation of China’s economic development 
mode and the improvement of energy technology. Since 
the main source of carbon emissions is energy activities, 
reducing energy consumption intensity means reducing 
the corresponding carbon emissions [67]. The increase in 
population density in built-up land will directly increase 
energy consumption, thus increasing carbon emissions. 
On the contrary, its decline can promote the reduction of 
carbon emissions [68]. These results are consistent with 
previous studies [69, 70]. China’s overall economic devel-
opment is stable and rapid, and the urbanization and 
industrialization processes in China are not yet complete 
[71]. The economic development of the study area will 
remain in a state of continuous and stable growth in the 
future, and the expansion of built-up land will continue. 
Therefore, it is necessary to optimize the economic struc-
ture, transforming the economic development mode, and 
formulating policies to control the expansion of built-up 
land to the maximum extent considering regional differ-
ences [72]. Energy as a basic element of growth supports 
the rapid development of the economy, which in turn 
leads to a larger consumption of energy and an increase 
in carbon emissions. Therefore, the increase in total 
carbon emissions is concomitant with economic devel-
opment [73]. Efforts must be made to improve technol-
ogy and promote industrial restructuring, to effectively 
reduce energy consumption intensity [74, 75]. High-car-
bon emission areas are mainly distributed in the eastern 
region. This is mainly because the industrial structure of 
these provinces is dominated by the secondary industry. 
Therefore, the eastern region should focus on optimizing 
the industrial structure, developing technology-intensive 

industries and replacing high-emission industries. 
For the western region of China, it may undertake the 
energy-intensive industries in the eastern region, which 
are potential areas for carbon emission growth. There-
fore, improving energy utilization efficiency is effective 
for carbon emission reduction in the region. It is impor-
tant for China to achieve the “dual carbon” targets by 
predicting future changes in carbon emissions. The peak 
year of carbon emissions from energy consumption, as 
predicted in this study, is 2027, which is similar to the 
peak year obtained in previous studies, and is within a 
reasonable time range to achieve China’s target [76].

Conclusions
An in-depth study on the spatial heterogeneity of the 
overall carbon budget of energy consumption and 
its influencing factors and the status of decoupling 
carbon emissions from economic development, and 
undertaking simulation predictions by setting up dif-
ferent scenarios is crucial for China to achieve the tar-
gets of carbon emissions peaking by 2030 and carbon 
neutrality by 2060. This study found that both carbon 
emissions and carbon deficit showed a continuous 
upward trend, and the spatial distribution character-
istic changed to high in the east and low in the west, 
while the spatial distribution pattern of carbon absorp-
tion remained stable. The carbon deficit of energy con-
sumption had a significant positive spatial correlation; 
the degree of positive correlation first strengthened and 
then weakened, but the distribution range of spatial 
aggregation was small. The study area as a whole was 
dominated by weak decoupling and expansion nega-
tive decoupling with a decreasing trend. Overall, energy 
consumption intensity, built-up land area, and popu-
lation density in the built-up land area influenced the 
decoupling between carbon emissions in energy con-
sumption and economic development. Only in the low-
carbon scenario will the study area achieve the peak 
carbon emissions target ahead of schedule, in 2027, 
with the peak carbon emissions at 6479.27 million tons.

This study has its shortcomings: while most of the 
region display a good fit between energy consumption 
statistics and night light data, the fitting results of car-
bon emissions for a few socio-economic developed areas 
were much higher than the actual value. It is necessary 
to further improve the simulation method to make the 
model fitting more accurate. On the other hand, the car-
bon emissions investigated in this study were only due to 
energy consumption, while carbon emissions from other 
activities, such as land use and industrial production pro-
cesses, are also important sources of total regional carbon 
emissions. In subsequent studies, other sources of carbon 
emissions must be included in the estimation model to 
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more accurately simulate and predict the evolution of 
overall regional carbon emissions. In future, we plan to 
continue to improve the model estimation methods, and 
include more sources of carbon emission to assess the 
spatial and temporal evolution of the carbon budget in 
the study area more comprehensively and accurately.
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