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Abstract 

Background Understanding temporal trends and varying responses of water use efficiency (WUE) to environmental 
changes of diverse ecosystems is key to predicting vegetation growth. WUE dynamics of major ecosystem types (e.g., 
forest, grassland and cropland) have been studied using various WUE definitions/metrics, but a comparative study 
on WUE dynamics and their driving forces among different ecosystem types using multiple WUE metrics is lacking. 
We used eddy covariance measurements for 42 FLUXNET2015 sites (396 site years) from 1997 to 2014, as well as three 
commonly used WUE metrics (i.e., ecosystem, inherent, and underlying WUE) to investigate the commonalities 
and differences in WUE trends and driving factors among deciduous broadleaf forests (DBFs), evergreen needleleaf 
forests (ENFs), grasslands, and croplands.

Results Our results showed that the temporal trends of WUE were not statistically significant at 73.8% of the for-
est, grassland and cropland sites, and none of the three WUE metrics exhibited better performance than the oth-
ers in quantifying WUE. Meanwhile, the trends observed for the three WUE metrics were not significantly different 
among forest, grassland and cropland ecosystems. In addition, WUE was mainly driven by atmospheric carbon dioxide 
concentration at sites with significant WUE trends, and by vapor pressure deficit (VPD) at sites without significant 
trends (except cropland).

Conclusions Our findings revealed the commonalities and differences in the application of three WUE metrics in dis-
parate ecosystems, and further highlighted the important effect of VPD on WUE change.
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Background
Plants absorb atmospheric  CO2 through photosynthe-
sis at the cost of losing water through stomatal pores. 
Water use efficiency (WUE) is a critical metric to meas-
ure the tradeoff between carbon uptake and water use 
for terrestrial ecosystems in response to environmental 
changes [1]. At the ecosystem scale, WUE is typically 
defined as the ratio of gross primary productivity (GPP) 
to evapotranspiration (ET) [2]. WUE embodies the physi-
ological and ecological characteristics of ecosystems, 
and provides important information for the interactions 
between carbon and water cycles. Elucidating the tem-
poral dynamics of WUE in different ecosystems can help 
us better understand the response of ecosystem function 
to environmental change, improve our ability to predict 
ecosystem dynamics [3, 4], water availability [5, 6], and 
food production, and manage the biosphere to mitigate 
and adapt to climate change [7].

The temporal trends of WUE have been an important 
research topic under climate change. The results seem to 
vary among and even within ecosystem types. For exam-
ple, WUE in forest ecosystems (1982–2012)[8], closed 
shrublands, and savannas was on the rise [9]; in con-
trast, WUE in open shrubs, woody savannas and grass-
lands showed an overall downward trend (2000–2013)
[9]. Still, more studies suggested increasing WUE in for-
est (2000–2014)[10], grassland (2003–2006)[11], or crop-
land ecosystems and decreasing WUE for other grassland 
and cropland ecosystems (1981–2000 and 2001–2010)
[12]. The discrepancies in the direction of WUE trends 
are likely caused by the specific ecosystems studied, the 
time periods investigated, different definitions of WUE 
[13], and differences in environmental responsiveness 
between the carbon and water cycles [14, 15]. Therefore, 
there is an urgent need to perform systematic compara-
tive studies among different ecosystem types on the com-
monalties and differences of WUE change in response 
to changes in atmospheric and climate changes, using as 
many sites as possible.

Exploring the impact of atmospheric and climate fac-
tors (including  CO2 concentration and meteorologi-
cal factors) on WUE is a prerequisite for understanding 
the impact of climate change on the carbon-water cycle. 
Numerous studies have examined the response of WUE 
to elevated atmospheric  CO2 concentrations and other 
factors using different approaches and datasets such as 
flux tower measurements [16, 17], field experiments [18], 
tree ring isotope measurements [8, 19–21], and model 
simulations [22, 23]. However, existing studies have 
documented inconsistent responses of WUE in different 
ecosystems to the same factors. Several studies have sug-
gested that the WUE of oak forests in central Missouri, 
USA [24] and tropical rainforests in Xishuangbanna, 

Yunnan, China [25] are both affected by VPD while the 
WUE of the North China poplar plantations [26] and 
warm-temperate mixed forests [27] are both affected by 
SWC. A more recent study based on eddy covariance 
measurements at 44 sites worldwide showed that biotic 
and abiotic factors have differential effects on WUE in 
different ecosystem types, with VPD and canopy con-
ductance playing important roles in controlling ecosys-
tem WUE response to drought [28]. Nevertheless, there 
has been little discussion on how trends in atmospheric 
 CO2 and meteorological variables based on eddy-covari-
ance flux tower observations affect the temporal dynam-
ics of WUE.

One of the challenges in comparing different WUE 
studies is their use of different WUE metrics. At least, 
three major metrics of WUE have been evolved over time 
and frequently used to measure the carbon-water trade-
off at the ecosystem scale [23, 29, 30]. The first is the so-
called ecosystem water use efficiency (EWUE), defined 
at the ecosystem level as the ratio between GPP and ET 
[11, 31, 32]. Considering the intense impact of VPD on 
the carbon-water coupling [27, 33], Beer, Ciais [29] pro-
posed the inherent water use efficiency (IWUE), defined 
as IWUE = GPP ×

VPD

ET
 . IWUE depends on the ratio of 

intercellular  (ci) to atmospheric  (ca) concentrations of 
 CO2, and is assumed to be relatively constant under given 
environmental conditions [34]. However, some studies 
have shown that IWUE varies with ci/ca as VPD changes 
at the daily and seasonal timescales [25]. Thus, Zhou, 
Yu [35] proposed the underlying water use efficiency 
( uWUE = GPP ×

VPD
0.5

ET
 ) by combining IWUE using 

an optimal relationship between ci/ca and VPD, and the 
authors indicated that the empirical relationship between 
GPP*VPD0.5 and ET in uWUE was more stable and more 
physiologically relevant than other WUE formulations. 
Essentially, these three WUE metrics all connect surface 
biological and physical processes [36], and can moni-
tor the adaptation of ecosystems to changing climatic 
conditions [14, 17, 37, 38]. However, the use of different 
WUE metrics may yield different temporal trend and 
driving force attribution results. For example, the annual 
increase rate of IWUE was as high as 2.3% during the 
period 1995–2010 according to eddy-covariance meas-
urements [17] while an analysis based on MODIS time 
series from 2000 to 2013 suggested that the average WUE 
decreased at a slope of -0.0045 g C  kg−1  H2O  yr−1 [39]. To 
date, a systematic comparison of the application in differ-
ent WUE indicators remains absent.

In this study, we used the long-term records of carbon 
and water fluxes, and meteorological factors provided in 
the FLUXNET2015 dataset to analyze the trends of the 
three WUE metrics (i.e., EWUE, IWUE, uWUE) in for-
ests (DBFs, ENFs), grasslands (GRAs) and croplands 
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(CROs) and their responses to  CO2 and climate pertur-
bations. The specific objectives of our study were to: (1) 
simultaneously analyze the change trends of the three 
WUE metrics in three different types of ecosystems; (2) 
investigate the driving forces of WUE change trends in 
different ecosystems; and (3) explore the applicability of 
different WUE metrics in different ecosystems.

Methods
Study sites and data preparation
We used the daily carbon and water fluxes and mete-
orological data from the global flux network FLUXNET, 
including latent heat flux (LE), gross primary produc-
tivity (GPP), atmospheric  CO2 concentration (Ca), air 
temperature (TA), vapor pressure deficit (VPD), short-
wave radiation (SR) and soil water content (SWC). Data 
from 212 sites across the globe were retrieved from the 
FLUXNET2015 dataset (http:// fluxn et. fluxd ata. org/ 
data/ fluxn et2015- datas et/). We screened the data and 
sites according to the following criteria in combination 
with the corresponding QC patch files (https:// fluxn 
et. org/ data/ fluxn et2015- datas et/ known- issues/): (1) 
Eliminate invalid values of -9999 and retain high-qual-
ity data with QC > 75% [40], thereby only using reliable 
data; (2) Set the minimum values for GPP, ET, and VPD 
as follows: GPP > 0.1  g C  d− 1   m− 2, ET > 0.05  mm  d− 1, 
VPD > 0.001  kPa [41], in order to reduce the impact of 
random measurement errors on the carbon-water ratio 
when the observed fluxes were low; (3) Exclude days with 

precipitation events (P > 0.2  mm  d− 1) and the day after 
rainfall to avoid the problems of rain interception and 
sensor saturation under high relative humidity [42]; (4) 
Select those sites with an observed length of more than 
5 years [16]; (5) Exclude sites with energy balance closure 
ratio (Ra) values less than 0.60 or greater than 1.30 [43] 
to avoid energy imbalance issues at the sites used, i.e., the 
sum of the observed latent heat flux and sensible heat 
flux is different from the available energy, since all sites 
evaluated turbulent fluxes by eddy covariance. The Ra 
was calculated using the following formula (all units are 
in W  m− 2):

where H, Rn, and G are the sensible heat flux, surface net 
radiation and soil heat flux of the sites, respectively.

In this study, the biomes with fewer than 5 sites were 
eliminated, and finally the following four biomes with a 
total of 42 sites were retained for analysis: DBFs (7 sites), 
ENFs (18 sites), GRAs (11 sites), and CROs (6 sites) 
(Fig. 1 and Additional file 1: Table S1).

Calculations of EWUE, IWUE and uWUE
We first calculated ET from LE. The form of calculating 
the ET using the eddy covariance method is as follows 
[44]:

(1)Ra =
LE +H

Rn− G

Fig. 1 Distribution of the 42 FLUXNET sites used in this study. These sites fall into the following biomes: Deciduous Broadleaf Forests (DBFs), 
Evergreen Needleleaf Forests (ENFs), Grasslands (GRAs), and Croplands (CROs).

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
https://fluxnet.org/data/fluxnet2015-dataset/known-issues/
https://fluxnet.org/data/fluxnet2015-dataset/known-issues/
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where ET is evapotranspiration (mm  d− 1), LE is latent 
heat flux (w  m− 2), and 86,400 is the time conversion coef-
ficient (i.e., number of seconds in a day). The latent heat 
of vaporization � (MJ  kg− 1) was calculated as follows Vel-
puri, Senay [45]:

where t is the temperature (oC),
In this study, EWUE is defined as:

where EWUE is ecosystem water use efficiency (g C  kg− 1 
 H2O), and GPP is gross primary productivity (g C  m− 2 
 d− 1).

IWUE (g C kPa  kg− 1  H2O), defined in Beer, Ciais [29], 
was calculates as the EWUE multiplied by the mean day-
time vapor pressure deficit (VPD, kPa):

The derivation of uWUE (g C  kPa0.5  kg− 1  H2O) is based 
on IWUE and the optimization stomatal conductance 
model [46] to characterize the stable coupling relation-
ship between GPP, ET and VPD [35]:

Statistical analysis
The Mann-Kendall Trend Test is a common non-
parametric method suitable for analyzing the time 
series data with continuous upward or downward 
trend (monotone trend). Since this method doesn’t 
require the raw data to obey a certain distribution and 
is insensitive to missing data or outliers, it has been 
widely used in hydrological and meteorological trend 
analysis [47, 48]. In this method, Z value was used to 
evaluate the statistical trend, with a positive Z value 
denoting an upward trend and a negative value indi-
cating a downward trend. The p value obtained by the 
trend test denoted the significance level. The Sen’s slope 
estimator [8] was used to calculate the magnitude of 
trend for each variable at each site. Before trend detec-
tion, all variables were converted into relative annual 
changes (%, ratio of anomalies to multi-year mean val-
ues) to compare trends of different variables, following 
Keenan, Hollinger [17] and Wang, Chen [16]. We used 
the “trend” package in R for trend detection and slope 
estimation (https:// cran. rproj ect. org/ web/ packa ges/ 

(2)ET = LE/�× 86, 400

(3)� = (2.51− 0.00236t)× 10
6

(4)EWUE =
GPP

ET

(5)IWUE =
GPP*VPD

ET

(6)uWUE =
GPP*VPD0.5

ET

trend/ index. html). Then, one-way ANOVA with Fish-
er’s LSD test was used to assess the significance of the 
observed differences in trends across the biomes for the 
three WUE metrics.

We used the Bootstrap method based on previous 
research to calculate the average slope for each variable 
across biomes [49, 50]. Specifically, the slopes of all varia-
bles were resampled 10,000 times with replacement, then 
the mean values corresponding to each group of resam-
pled data were calculated, and finally the 95% confidence 
intervals of the mean trends were calculated according 
to the obtained samples. The confidence intervals for 
the mean trend were estimated using the adjusted boot-
strap percentile method provided by the “boot” package 
in R (https:// cran. rproj ect. org/ web/ packa ges/ boot/ index. 
html).

The partial least square regression (PLSR) was used to 
investigate the responses of EWUE, IWUE and uWUE to 
atmospheric  CO2 and meteorological factors (Ca, SR, TA, 
VPD and SWC). PLSR could effectively solve the problem 
of collinearity in independent variables by reducing the 
dimension of independent variables to obtain a smaller 
set of irrelevant components, and perform regression 
on these components [51] (Additional file 1: Table S10). 
All variables for each site were first converted to relative 
annual changes, and then the z-score of each variable for 
all sites was estimated so that regression coefficients of 
different independent variables could be compared. We 
used the “PLS” package in R to run the PLSR and to esti-
mate the normalized coefficients and p values (https:// 
cran. rproj ect. org/ web/ packa ges/ pls/ index. html). Lastly, 
to identify the one to two most important factors, the 
hierarchical partitioning analysis (HPA) method (R pack-
age “hier.part”: https:// cran. rproj ect. org/ web/ packa ges/ 
hier. part/ index. html) was used [52].

Results
Temporal trends of WUE in forest, grassland and cropland 
ecosystems
The WUE at most sites showed insignificant trends 
(Fig.  2 and Additional file  1: Table  S2). Out of the 21 
WUE trends calculated using all the three metrics at the 
seven DBF sites, only 4 of them or 19% were significant (2 
positive trends and 2 negative trends) (p < 0.05). Only 7 
out of 54 or 13% of the trends at the 18 ENF sites demon-
strated significant trends (all positive). A mere 9% of the 
calculated WUE values showed significant trends at the 
11 GRA sites (all positive). The CRO sites had a relatively 
higher fraction of significant WUE trends (all negative) 
than other biomes but still just at 22.2%. Pooling all WUE 
trends together across all sites from the four biomes, only 
about 14.3% of the WUE trends were significant (Fig. 2b).

https://cran.rproject.org/web/packages/trend/index.html
https://cran.rproject.org/web/packages/trend/index.html
https://cran.rproject.org/web/packages/boot/index.html
https://cran.rproject.org/web/packages/boot/index.html
https://cran.rproject.org/web/packages/pls/index.html
https://cran.rproject.org/web/packages/pls/index.html
https://cran.rproject.org/web/packages/hier.part/index.html
https://cran.rproject.org/web/packages/hier.part/index.html
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Consistency of the three WUE metrics in trends detection
The three WUE metrics showed high consistency in 
detecting no temporal trends across most of the sites, 
but demonstrated diverse performances in detecting sig-
nificant trends (Fig. 2 and Additional file 1: Table S2). The 
significant trends detected with three WUE metrics were 

manifested in both DE-THa (ENF, EWUE: 1.92%; IWUE: 
2.34%; uWUE: 2.02%) and IT-BCi (CRO, EWUE: -10.63%; 
IWUE: -13.88%; uWUE: -12.73%), while only 1–2 WUE 
metrics were effective when detecting significant trends 
for the residual 40 sites. The number of sites where one 
or more of the three WUE metrics detected a significant 

Fig. 2 Trends (%  yr− 1) in EWUE, IWUE and uWUE for all sites. a Trends and statistical significance of the three WUE metrics for all DBF, ENF, GRA, 
and CRO sites. The values in the squares represented the trends observed at each site for the three WUE metrics. Each * referred to a 0.05 for p, ** 
a 0.01 for p, *** a 0.001 for p. b Proportion of the number of significant (p < 0.05) and non-significant (p ≥ 0.05) trends for the three WUE metrics 
for each biome and all sites. n represents the number of sites
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trend was actually quite large as well, accounting for 
about one-fourth (11/42) of the total number of sites. 
And, most of the sites with significant trends observed 
by one or two indicators were also similar to the non-
significant results (p-value close to 0.1) of other WUE 
metrics in the corresponding sites. In addition, a mod-
estly strong correlation was observed among EWUE-
IWUE  (R2 = 0.518, p < 0.001), EWUE-uWUE  (R2 = 0.779, 
p < 0.001) and IWUE-uWUE  (R2 = 0.883, p < 0.001) when 
monitoring trends at the ecosystem level (Fig.  3), but 
no WUE metric seemed systematically better than oth-
ers in terms of performance (Fig. 2 and Additional file 1: 
Table  S2). EWUE detected significantly at 7 (16.7%) of 
the 42 sites, and another two WUE metrics exhibited 
even poorer performance, with only 6 (IWUE: 14.3%) 
and 5 (uWUE: 11.9%) sites detected for significant trends, 
respectively. In parallel none of the three WUE metrics 
could capture a significant trend, this was represented 
across 31 (73.8%) sites (Fig. 2a).

Performance discrepancy could also be seen at the 
biome level. The observed EWUE based on the Sen’s 
slope estimator analysis method was significantly 
increased (slope = 0.53%, p < 0.05, 95% CI: 0.01–1.24) in 
ENF and significantly decreased (slope=-2.51%, p < 0.05, 
95% CI: -4.81~-0.01) in GRA (Fig.  4a and Additional 
file  1: Table  S3), while the WUE trends detected in the 
other two biomes (DBF and CRO) were non-statistically 

significant (Fig.  4a). Comparatively, the results obtained 
using the Bootstrap method indicated that only EWUE 
had a pronounced increasing trend (mean trend: 1.57%, 
95% CI: 0.72 ~ 3.58) in ENF (Fig. 4b and Additional file 1: 
Table  S4), and the remaining three biomes (DBF, GRA, 
and CRO) didn’t show a significant WUE trend, even at 
the 90% level was still nonsignificant (Additional file  1: 
Table S5). In the meantime, of the two accepted statistical 
analysis methods for assessing trends, none of the three 
WUE metrics simultaneously detected a significant trend 
in a biome. Moreover, according to the results of ANOVA 
for each vegetation type, there was no statistical differ-
ence (LSD’s test, p > 0.05) among the three WUE metrics 
in monitoring temporal trends among forest, GRA, and 
CRO ecosystems (Fig. 4c).

Responses of EWUE, IWUE and uWUE to changes 
in atmospheric  CO2 and meteorological factors
The factors affecting WUE change were inconsistent 
between significant and non-significant trend sites, but 
the most important factors for WUE were consistent 
(Fig. 5 and Additional file 1: Table S6). WUE at 11 sites 
with significant trends was mainly driven by Ca and VPD, 
while WUE trends at non-significant sites (31) responded 
significantly only to VPD. The HPA results indicated that 
VPD played the most important role in WUE changes 

Fig. 3 Comparison of trends (%  yr− 1) obtained for the three metrics of WUE at different sites. Each scatter represents a trend obtained by pairs 
of mutually different WUE metrics. The dashed line shows the 1:1 line
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at all sites (sig and non-sig), with the contribution rate 
reaching more than 60%.

The phenomenon that the three indicators were mark-
edly associated with one independent variable at the 
same time existed in the sites with significant WUE 
trend, but the situation was just the opposite for the 
sites with a non-significant trend (Fig. 5a, b). At the sites 
with significant trend, EWUE (p < 0.1), IWUE (p < 0.05), 
uWUE (p < 0.1) showed strong positive correlations with 
Ca, with normalized regression coefficient of 0.161, 
0.159, 0.17, individually. For non-significant trend sites, 

only IWUE (p < 0.001) and uWUE (p < 0.1) had significant 
positive effects on VPD. Unlike there, none of the inde-
pendent variables at the significantly trending sites could 
have the highest importance for the three WUE metrics 
simultaneously (Fig. 5c and Additional file 1: Table S6). In 
specific, VPD was the most important factor for EWUE 
(63.84%) and IWUE (47.58%), while two factors were the 
most important for uWUE, Ca (44.63%) and SR (43.55%), 
because their interpretation rates are relatively close. 
And in non-significant trend sites, VPD had the high-
est relative importance among the three WUE metrics, 

Fig. 4 a, b Comparison of biome WUE changing trend (%  yr− 1) from the Mann-Kendall + Sen Slope time series analysis method (annual slope 
[statistically significant values are indicated by star]; left panel) and the Bootstrap method (mean slope [the error bars represent the 95% confidence 
intervals of the mean trend]; right panel); c Comparison of the slope of EWUE, IWUE and uWUE at different sites (belonging to the same biome). The 
same lowercase letters indicated no statistically significant difference (LSD comparison)
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which were 49.89% (EWUE), 63.32% (IWUE) and 52.06% 
(uWUE), respectively (Fig.  5d and Additional file  1: 
Table S8).

The effects of atmospheric  CO2 and meteorological 
factors on WUE trends also varied across all vegetation 
types (All) and biomes. As a whole, WUE was strongly 
associated with VPD in All (Fig.  6a) and most biomes 
(except cropland). WUE was also significantly corre-
lated with TA, SR in DBF and GRA (Fig.  6b, d), Ca in 
ENF (Fig.  6c) and SWC in GRA (Fig.  6d). Conversely, 
atmospheric  CO2 and meteorological factors had no sig-
nificant effect on the change of cropland WUE (Fig. 6e). 
Aside from this, none of the three WUE metrics had a 
pronounced response to one or some independent vari-
ables simultaneously. Only IWUE in All (p < 0.001), DBF 
(p < 0.001), ENF (p < 0.001) and GRA (p < 0.01) displayed a 

substantial positive correlation effect on VPD (Additional 
file 1: Table S7).

We further explored the relative importance of atmos-
pheric  CO2 and meteorological factors on the impact of 
the three WUE metrics in all vegetation types and differ-
ent biomes using HPA, again with both commonalities 
and differences (Fig. 6f–j and Additional file 1: Table S9). 
Combining all vegetation types, the change of WUE was 
mainly affected by VPD (Fig. 6f ), and the relative contri-
bution rates of VPD to the changes of EWUE, IWUE and 
uWUE were 65.38%, 65.45% and 47.8%, respectively. At 
the biome scale, the WUE rate variation of CRO (EWUE: 
58.19%, IWUE: 53.82% and uWUE: 86.92%) was mainly 
caused by SR (Fig. 6j), and the three WUE metrics of for-
est and GRA were dominated by different impact fac-
tors. To be specific, IWUE was mainly driven by VPD 
(DBF: 47.85%, ENF: 77.46%, GRA: 58.28%). EWUE (DBF: 

Fig. 5 a, b Comparison of the response relationship between the trends of EWUE, IWUE and uWUE and trends of climate factors at the significant 
vs. non-significant sites. The marks above or below the bars indicate the significance of the regression: + indicates p < 0.1, * indicates p < 0.05, 
** indicates p < 0.01, and *** indicates p < 0.001; c, d The relative importance of atmospheric  CO2 concentration (Ca) and meteorological 
factors in influencing WUE at the significant and non-significant trend sites. The size of the circles represents the percentage of the variance 
that is explained by the independent variable, and the intensity of the color represents its importance

Fig. 6 Normalized coefficients from the partial least squares regression between annual changes in EWUE, IWUE, uWUE and annual changes 
in Ca and meteorological variables for a all vegetation types (All), b DBFs, c ENFs, d GRAs and e CROs. The marks above or below the bars 
indicate the significance of the regression: + indicates p < 0.1, * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001. And the relative 
importance of Ca and meteorological variables in controlling EWUE, IWUE and uWUE in f all vegetation types (All), g DBFs, h ENFs, i GRAs and j 
CROs. The size of the circles represents the percentage of the variance that the dependent variable is explained by each independent variable, 
and the intensity of the color represents its importance

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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52.64%) and uWUE (ENF: 72.83%) were mainly driven by 
VPD in forest, while SR was more important to EWUE 
(51.89%) and uWUE (30.6%) than other factors for GRA 
ecosystem. Meanwhile, the relative importance of Ca 
(47.52%) to the EWUE of the ENF and TA (47.66%) to the 
uWUE of the DBF were the highest, respectively. 

Discussion
Insignificance of the WUE trends at most sites in forest, 
grassland, and cropland
Our results showed that the WUE trend was insignificant 
for most sites in forest, GRA and CRO. While observed 
carbon and water fluxes between the surface and the 
atmosphere using eddy-covariance could be used to 
imputed WUE trends [17, 53], these site datasets were 
always limited by uncertainty factors in measurement 
and method [54]. On the other hand, various WUE esti-
mation methods might cause magnitude differences in 
temporal trends [55, 56], and yet, this difference was not 
shown in the significance test of the trend. Relevant stud-
ies showed that when various WUE metrics (e.g., Wei, 
IWUE, iWUE) were used to monitor the change trend 
of forest sites, most sites were not significant [16, 17, 
54]. Furthermore, most of their WUE studies based on 
flux measurement were mostly locked in summer (June-
August) or the peak period of gross ecosystem produc-
tivity [16, 57]. And the WUE obtained in this paper was 
based on the time axis of the growing season (April-Sep-
tember) of vegetation, which might pull down the annual 
mean value to some extent, but had no effect on testing 
whether the trend is significant. In total, the statistical 
data based on eddy-covariance technology verified that 
it was difficult to deduce reliable scientific conclusions 
from a single site or a few sites, i.e., most sites were not 
significant in trend monitoring. The simultaneous use 
of the three WUE metrics also exemplified that the test 
results didn’t deviate. It is believed that these data will be 
consolidated by keeping the trend study of different WUE 
definitions in the FLUXNET, as new flux tower datasets 
will be updated in the later iterations. On the other hand, 
the closure problem of the site energy balance derived 
from the uncertainty of latent heat observations would 
affect the robustness of the WUE slope estimation [58, 
59], which might be the main reason why most trends 
were not significant.

It was also found in our study that while most sites 
showed insignificant trends, there were a few sites 
that exhibited highly diverse temporal trends in terms 
of magnitude and even direction of change. This dis-
crepancy might be due to overestimation or underes-
timation derived from different WUE calculations and 
various observation periods at the sites [60]. For instance, 
the previous studies based on eddy covariance flux 

observations used diverse WUE metrics (iWUE = GEP/
Gs; Wei =  WeD; IWUE = GEP*VPD/ET) at the same site 
to evaluate the trends presented [16, 17, 54], and the 
results were either higher or lower than the results of for-
est ecosystems in this study. Furthermore, studies have 
shown that despite wide local variability of WUE esti-
mates, a convergence of WUE occurred across functional 
types in different geographic regions and climates [61], 
which was similar to what we observed in 26.2% of forest 
and grassland sites with significant trends. In particular, 
the majority of “+” trends (63.64% of significant trend 
sites) coincided (Fig.  2), illustrating long-term climatic 
conditions only partially controlled ecosystem WUE, and 
the increase of WUE might also mean the local plants 
were suffering from mild drought.

Performance, variability and interchangeability of three 
metrics for assessing the WUE trends
It was demonstrated that three WUE metrics had the 
ability to capture temporal trends, but their performance 
varied across sites. The WUE equation in this paper was 
composed of GPP, GPP*VPD, GPP*VPD0.5 and ET indi-
vidually, where EWUE usually exhibited relative con-
sistency on the monthly to annual scale [29], and VPD 
changed rapidly on the daily to hourly scale, which had 
a significant impact on the carbon-water coupling pro-
cess by regulating stomatal conductance [62]. With the 
introduction of VPD variable on the basis of GPP/ET, 
IWUE and uWUE performed more plausibly over shorter 
time-scales [35, 53]. Therefore, it could be seen that there 
would be performance differences when the three WUE 
metrics monitored the changing trend in the same time 
dimension. In essence, EWUE, IWUE and uWUE were 
linked by a common formula (GPP*VPDk/ET, where 
k = 0, 1 and 0.5, respectively), differing only in the value 
of the k-exponent [53]. Such as, oWUE (GPP*VPDk*/
ET,  k* was the optimal exponential when the correlation 
coefficient between carbon and water was the highest) 
was not intrinsically better than uWUE in describing 
carbon-water coupling characteristics [35]. This meant 
that when different WUE metrics formed by the gradi-
ent change of k-value were compared and applied to 
specific ecosystems (sites), the processes shared similari-
ties, which could be used to explain that the trends (sig-
nificance) of the three WUE metrics were exceptionally 
similar in most sites. The finding validated the perfor-
mance of the three WUE metrics when evaluating trends 
collectively, and underscored the importance of com-
parative studies, providing strong support for previous 
studies that focused on a single WUE metric [16, 17, 54]. 
Additionally, results from related studies that indepen-
dently assessed trends at the same site using other differ-
ent WUE indicators also demonstrated similarities and 
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dissimilarities [17, 54]. This phenomenon was consistent 
with the results we displayed and was reflected in both 
grassland and cropland sites.

It was further found that the variation trends moni-
tored by the three WUE metrics also differed among var-
ious biomes. We could see that WUE varied enormously 
among sites from this paper (Fig. 2), and previous stud-
ies have suggested that the combination of 20 sites could 
improve the robustness of the analysis results [54]. In 
view of the fact that the established FLUXNET2015 data-
set wasn’t updated, all available sites with different moni-
toring lengths and spatial heterogeneity were bundled 
together to assess the overall trend of ecosystem-scale 
WUE, which greater highlighted the important role of 
statistical methods in estimating the trend of WUE [13]. 
In this paper, Sen’s slope estimator was used to determine 
the magnitude of the WUE trend in each biome [63], 
and Bootstrap statistical method was used to evaluate 
its trend for comparative study [64]. The application of 
the two methods in forest (ENF) was consistent with the 
results obtained by other WUE indicators, and the pre-
vious studies based on the FLUXNET2015 data likewise 
monitored a significant increase in iWUE (gross ecosys-
tem productivity to canopy-scale water conductance) 
[16, 63]. Studies also existed that the temporal trend of 
WUE only in ENF, shrub and open shrubland was sig-
nificant through the Bootstrap method, while there was 
no obvious change trend in other biomes [65], which 
further verified the difference in the results of diverse 
statistical methods applied in biomes. Concomitantly, 
it also proved that the true reliability of the trend might 
be directly affected by statistical methods, and its uncer-
tainty needed more robust methods to verify and elimi-
nate [54].

According to the above discussion, we didn’t identify a 
comparatively better WUE metric from this performance 
difference, implying that the three WUE metrics were 
interchangeable when used to detect trends. On the one 
hand, although each WUE metric could capture the sig-
nificant trend of a few sites, the performance of the three 
was equivalent (Fig.  2), only monitoring the temporal 
trend that accounted for less than 20% of all sites. Simul-
taneously, the pairwise relationship between the three 
WUE metrics in different vegetation types sites were also 
strongly and positively correlated (Additional file 1: Fig. 
S1), indicating the possibility of substitution among dif-
ferent WUE metrics. In other terms, there was little dif-
ference in trend estimation using various WUE metrics at 
the same site. The performance superiority of the WUE 
metric might only be revealed when changes in WUE 
correlated with plant physiological behavior [55]. On the 
other hand, there were no significant differences in the 
trends monitored by the three WUE metrics in forest, 

GRA and CRO ecosystems (Fig.  4c), and this phenom-
enon has also been verified in the application of other 
diverse WUE metrics [13]. As suggested by Ponce Cam-
pos, Moran [66], different vegetation types might have 
intrinsic convergence in water use. Therefore, no mat-
ter which WUE equation was used to compare the trend 
differences among vegetation, there might be consistent 
results.

Similarities and differences between in‑situ WUE responses 
to climate change
It was found that the factors driving changes in WUE dif-
fered among sites (sig vs. non-sig), where EWUE, IWUE 
and uWUE of the significant trend sites were all signifi-
cantly positively correlated with Ca. A previous study 
of forest ecosystems by Wang, Chen [16] found that 
decreased canopy conductance due to increased VPD in 
DBFs was the main contributor to increased WUE, while 
the increase of carbon uptake and limited stomatal con-
straint stimulated WUE growth in ENFs. Thus, WUE of 
different vegetation types had diverse sensitivity to vari-
ous factors, which might be related to rooting depth, 
physiological structure, living conditions and drought 
resistance [28]. This further explained why the response 
factors differed between significant and insignificant 
trend sites. For sites with significant WUE trends, by 
themselves, might be more responsive to environmental 
changes [67]. Among the sites with significant trend in 
this paper, forest sites accounted for 63.6% (7/11), which 
was basically consistent with the findings of a study by 
Frank, Poulter [19] that forest WUE was positively cor-
related with the increase of Ca. In parallel, the same 
response of the three WUE metrics to Ca in the sites with 
significant trends explained to some extent the conver-
gence of the three indicators when monitoring significant 
trends separately, and the consistent responses might be 
the product of the convergence results.

Our study also found similarities and differences in the 
responses of the three WUE metrics to Ca and meteoro-
logical factors between All and Biomes. WUE was mainly 
driven by VPD (except CRO) in the response analysis. 
This conclusion was supported by previous findings that 
revealed the increasing importance of VPD in ecosystem 
water and carbon fluxes [18, 68–70] and even suggested 
that vegetation change was dominated by moisture avail-
ability rather than Ca [16, 71]. This was also confirmed in 
the HPA results that VPD was the factor with the highest 
explanation rate of WUE (EWUE, IWUE, uWUE) in the 
Sig-Nonsig trend sites and All-Biomes, while the second-
ary factors were not the same (except CRO). Therefore, 
VPD is most likely to directly dominate the spatiotempo-
ral pattern of WUE among all abiotic factors.
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Beyond that the variation of WUE in CRO ecosystems 
was mainly caused by SR, but had no significant effect. 
Some studies have shown that non-climatic factors had 
a greater impact on the change of cropland WUE due 
to the disturbance of human factors [72], which might 
be the fundamental reason that no significant correla-
tion between any natural factors and cropland ecosystem 
was observed in this paper. Hence, for CRO ecosystem, 
besides natural environmental factors, the impact of 
human activities (e.g., fertilization, irrigation, grazing) on 
WUE should also be considered.

Potential limitations
Currently, the number of global flux tower sites is still 
limited, and the observation length is mostly short. Our 
study found a trumpet-shape between site monitor-
ing length and change trend. The slope of sites with a 
length of over 12 years tended to be flattened, indicat-
ing that older sites were more stable in estimation, while 
sites below 12 years fluctuated greatly in rate variation, 
which might cause some deviations in trend assess-
ment (Additional file 1: Fig. S2). Beside that the sites are 
unevenly distributed. Most of the sites were located in 
the northern hemisphere, and only two sites (Au-Dap, 
Au-stp) were scattered in Australia. When we tried to 
re-evaluate the trend after removing these two sites, the 
results showed that there was no significant change in the 
WUE trend, so it would not affect the overall conclusion 
drawn in this paper (Additional file  1: Fig. S3). Second, 
despite advances in EC systems and instrumentation, 
the energy balance closure problem of flux datasets still 
existed [73]. We screened the sites according to the cor-
responding standards, and the sites used were all within 
the applicable range of the energy closure rate to mini-
mize the impact on the evaluation of WUE. Data col-
lection and expansion should be strengthened in future 
study. Meanwhile, future research should also focus on 
the integration of ecological big data, promote the scien-
tific exchange and cooperation of network observation 
data, remote sensing data, experimental data and other 
data, and help reveal the large-scale process mechanism 
and universal regularities of global prediction.

Conclusions
In this paper, we used the Sen’s slope estimator method 
to investigate the temporal trends of three different WUE 
metrics in 42 sites, and compared the trends of four 
biomes with the Bootstrap method. In parallel, ANOVA 
was used to explore whether there were significant dif-
ferences in the application of each indicator in various 
biomes. Finally, we used PLSR and HPA to explore the 
drivers of WUE changes and quantify their importance 

in the two dimensions of Sig-Nonsig trend sites and All-
Biomes, respectively.

We found that the WUE of most sites in forest, grass-
land and cropland failed to capture temporal trends, and 
the application of the three WUE metrics between sites 
and biomes didn’t yield a relatively more applicable WUE 
indicator. In the meanwhile, there was no difference in 
the variation trends of the three WUE metrics among 
forest, grassland and cropland ecosystems. In addition to 
this, Ca had a significant positive effect on all three WUE 
metrics at the significant trend sites, whilst VPD played a 
dominant role (except CRO) in the remaining compari-
son groups (Non-sig, All and Biomes). The HPA analysis 
also demonstrated that VPD was the most important fac-
tor affecting the change of WUE (excluding CRO). For 
cropland ecosystem, SR had no significant effect in the 
response analysis, albeit it was the factor with the highest 
degree of explaining WUE trend. These results confirmed 
and supported some previous studies. With the possible 
intensification of future climate change, the simultaneous 
use of multiple WUE metrics to monitor temporal trends 
and their climate responses at different spatial scales can 
provide a scientific basis for us to better understand the 
relationship between vegetation change and the carbon-
water cycle. And the importance of VPD in regulating 
vegetation WUE response to climate is emphasized.
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