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Abstract 

Background:  The recent studies of the variations in the atmospheric column-averaged CO2 concentration ( XCO2
 ) 

above croplands and forests show a negative correlation between XCO2
and Sun Induced Chlorophyll Fluorescence 

(SIF) and confirmed that photosynthesis is the main regulator of the terrestrial uptake for atmospheric CO2. The 
remote sensing techniques in this context are very important to observe this relation, however, there is still a time gap 
in orbital data, since the observation is not daily. Here we analyzed the effects of several variables related to the pho-
tosynthetic capacity of vegetation on XCO2

 above São Paulo state during the period from 2015 to 2019 and propose a 
daily model to estimate the natural changes in atmospheric CO2.

Results:  The data retrieved from the Orbiting Carbon Observatory-2 (OCO-2), NASA-POWER and Application for 
Extracting and Exploring Analysis Ready Samples (AppEEARS) show that Global Radiation (Qg), Sun Induced Chlo-
rophyll Fluorescence (SIF) and, Relative Humidity (RH) are the most significant factors for predicting the annual 
XCO2

 cycle. The daily model of XCO2
 estimated from Qg and RH predicts daily XCO2

 with root mean squared error of 
0.47 ppm (the coefficient of determination is equal to 0.44, p < 0.01).

Conclusion:  The obtained results imply that a significant part of daily XCO2
 variations could be explained by mete-

orological factors and that further research should be done to quantify the effects of the atmospheric transport and 
anthropogenic emissions.
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Background
Understanding the variability of atmospheric carbon 
dioxide (CO2) concentration in time and space is a cru-
cial task so that we can adopt mitigation strategies. In 
this sense, several studies analyze the average concentra-
tion of this greenhouse gas not only on a global scale [1, 
2] but also to estimate anthropogenic emissions in urban 

centers [3, 4]. Other studies focus on understanding the 
column-averaged of carbon in the atmosphere ( XCO2

 ) 
above tropical forests [5], or above agriculture crops in 
different seasons of the year [6, 7].

In a recent regional study, da Costa et al. [7] analyze 
the spatio-temporal variability of XCO2

 in a sugarcane-
producing area in the southeast region of Brazil. They 
observed an important inverse relationship between 
the average carbon concentration in the atmosphere 
with climatic and vegetative variables. Concluding that 
the dependence of the natural carbon cycle is related 
to the predominant agriculture crop in the region and 
how Global Radiation (Qg), relative humidity (RH), and 
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the Sun Induced Chlorophyll Fluorescence (SIF) was 
related to this behavior. Similarly, Morais Filho et al. [6] 
conducted a study that analyzed three different crops 
and the temporal variability of XCO2

 and SIF in these 
environments, they also found a significant negative 
correlation between these variables.

However, there is still a temporal gap in the XCO2
 data 

collected by remote sensing, since the measurements 
are not daily [8, 9]. This type of measurement is impor-
tant to several factors, such as, estimate the potential 
capability of atmospheric CO2 assimilation by vegeta-
tion, establishing public strategies at local levels for cli-
mate adaptation and mitigation, and even in economy 
incorporating daily trends in the carbon market and 
ecosystems services payments [10–16].

Daily CO2 measurements can be made using the Eddy 
Covariance technique [17–19], although this has the 
disadvantage of being a point (local) study. In this sense 
using orbital data, such as Orbiting Carbon Observa-
tory-2 (OCO-2), has become more common [1, 2]. 
Remote sensing data also can be used to estimate the 
daily variations of different aspects (e.g., climate, mete-
orological, land-use changes, ecosystems services) for a 
larger area [16, 20–23].

Several studies confirm that photosynthesis is the 
main regulator of atmospheric carbon sinks [10, 24–
26]. However, photosynthesis is a process sensitive to 
climatic variations such as relative humidity [27], pre-
cipitation [28], evapotranspiration [29], and incident 
solar irradiance [30].

Therefore, the natural cycle of CO2 is dependent on 
several aspects, such as vegetation and climate, being 
necessary data from several different bases for under-
standing this dynamic [7], turning pre-processing tech-
niques and analysis of autocorrelations necessary, since 
the multicollinearity introduces an uncertainty due 
to the model overfit [31, 32]. In this sense, we aim to 
model the atmospheric CO2 cycle above the state of 
São Paulo to estimate the time changes on a daily scale, 
based on vegetative and climatic variables retrieved 
from different orbital platforms, applying a technique 
to remove the collinearity and after employing a step-
wise forward selection, improving in this way the 
regional understanding of CO2.

One of our assumptions, is given that we detrend 
the XCO2

 to maintain only the variability related to 
the natural interactions [6, 33], the transport by the 
wind in the atmosphere is not significant, other stud-
ies such Hakkarianen et  al. [34], that proposed an 
anomaly model of XCO2

 , also disregard the atmospheric 
and wind transport in their study, however, this intro-
duces a limitation of our approach that not account this 
aspect [35]. In the same way, the trend and increase 

due to anthropogenic sources are also simplified by this 
detrend.

Results
Variance Inflation Factor (VIF) analysis (Table 1) shows 
it was possible to reduce the number of variables related 
to XCO2

 (according to the adopted criterion, VIF < 10) 
as shown comparing Fig. 1a with b, before and after the 
selection, respectively, and therefore reducing the over-
fit source of uncertainty. Despite wind speed (Ws) hade 
a VIF < 10, the Pearson’s correlation was not significant 
(p > 0.05). Variables most related to XCO2

 were the Global 
Radiation (Qg), Sun-Induced chlorophyll Fluorescence at 
757 nm (SIF 757), and Relative Humidity (RH).

Regarding the temporal variability of XCO2
 , 

the maximum mean for the analyzed period was 
393.09 ± 0.17  ppm and occurred in October 2019, 
while the minimum average was in November 2018, 
being 390.11 ± 0.15  ppm (Fig.  2a). Meanwhile, the Qg 
(Fig.  2b) ranged between 24.3 ± 0.09 and 13.07 ± 0.04 
(MJ m−2  day−1), with the maximum average occurring 
in December 2018 and the minimum in June of the same 
year.

SIF 757 (Fig.  2d) had the highest average recorded 
in the period in November 2015 [1.1 ± 0.05 (Wm−2 
sr−1 μm−1)] and the lowest in September 2017 [0.3 ± 0.06 
(Wm−2 sr−1 μm−1)], while the Relative Humidity (Fig. 2c) 
ranged from 84.86 ± 0.07 to 70.44 ± 0.19%, where the 
highest mean was observed in March 2016 and the low-
est in October 2019.

Regarding SIF 757 the minimum averages occurred 
in June of 2015 and 2016, September 2017, Novem-
ber 2018, and July 2019, ranging from 0.3 to 0.46 Wm−2 
sr−1  μm−1 (Fig.  2d). The minimum Qg averages vary 

Table 1  Variance Inflation Factor (VIF) of the studied variables

 Qg Global radiation, RH Relative humidity, SIF 757 Solar-Induced Chlorophyl 
Fluorescence at 757 nm, Prec Precipitation, Temp Temperature at 2 m, Ws Wind 
Speed, LST Land Surface Temperature (MODIS), NDVI Normalized Difference 
Vegetation Index, LAI Leaf Area Index, ET Evapotranspiration

Variable VIF

Qg 9.35
RH 5.10
SIF 757 1.81
Prec 10.13

Temp 21.43

Ws 4.06

LST 19.54

NDVI 22.15

LAI 87.21

Fpar 65.40

ET 33.47
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Fig. 1  Heatmap of the Pearson’s correlation matrix, where: a before the Variance Inflation Factor (VIF) selection and b after the selection by Variance 
Inflation Factor (VIF)

Fig. 2  Monthly variability of XCO2
 (a), Qg (b), RH (c), and SIF 757 (d) over the period from January 2015 to December 2019. Where XCO2

 column 
average of carbon dioxide in the atmosphere (ppm), Qg global radiation (MJ m−2 day−1), RH relative humidity (%), SIF 757 sun-induced chlorophyll 
fluorescence at 757 nm (Wm−2 sr−1 μm−1)
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between May and June for the entire series approximately 
between 13.07 and 14.71 MJ  m−2  day−1 (Fig. 2b). Maxi-
mum Qg averages are concentrated between December 
and January of each year, reaching 24  MJ  m−2  day−1 in 
those months (Fig. 2b). The maximum average of SIF 757 
occurs between November and February of each year, 
ranging from 0.8 to 1.1 Wm−2 sr−1 μm−1 (Fig. 2d).

The stepwise forward selection method, with multiple 
cross-validation, had the best result with two variables, 
with a root mean squared error (RMSE) of ~ 0.60 ppm in 
the training sample (Fig. 3), the selected variables being 
Qg and RH, respectively (Eq. 1).

(1)

XCO2 (daily)
= 391.484 (± 0.89)− (± 0.089)

× Qg − 0.263(± 0.09)× RH

The model built in the training (Eq.  1) was applied in 
the test sample of the variables cited (Qg and RH), and 
from the cross-validation of the estimated data with the 
observed data, we observe an R2 of 0.44, the values of the 
metrics MSE, RMSE, and MAE were 0.22, 0.47, and 0.37 
(ppm) respectively, and for MAPE we found a value of 
1.54% (p < 0.01) (Fig. 4a), with this we were able to reduce 
the time scale of the OCO-2 satellite from every 15 days 
to a daily scale (Fig. 4b).

Discussion
The natural annual cycle of XCO2

 is affected by factors 
related to climate and vegetation aspects [6, 36, 37]. Due 
to the VIF analysis, we were able to summarize three 
main factors for São Paulo state: Global Radiation (Qg), 
Relative Humidity (RH) and Sun-Induced chlorophyll 
Fluorescence at 757  nm (SIF 757), reducing the uncer-
tainties in the model formulation since we removed the 
overfit caused by multicollinearity [31, 32]. Several stud-
ies have already been conducted using this method to 
identify which variables select for ecological studies [38], 
computational studies [39], and remote sensing studies 
[40].

Except for wind speed (Ws), all variables studied cor-
related negatively with XCO2

 (Fig. 1), hence, related to the 
sink of atmospheric CO2. The non-significant correlation 
between XCO2

 and Ws could be related to the detrend-
ing of the atmospheric CO2 concentration (see Methods 
section), which removes the transport effect and simplify 
the XCO2

 variability only for the biochemical cycle [6, 7, 
33]. In general, the highest concentrations of XCO2

 are 
observed in the months corresponding to the Brazilian 
autumn and winter (April to August) and lowest in the Fig. 3  RMSE score for the training sample

Fig. 4  a Cross-validation between XCO2
 estimated by stepwise and XCO2

 observed by OCO-2 and b Daily downscale of natural XCO2
 using Eq. 1 and 

daily measurements of NASA/POWER from January 2015 to December 2019
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summer, from December to February. Studies such as by 
Siabi et  al. [41] and Falahatkar et  al. [42] reported how 
the different seasons affect the average CO2 concentra-
tion in the atmosphere.

Recently, researches were conducted at regional scales 
in Brazil such as by Morais Filho et al. [6] and da Costa 
et  al. [7], indicating negative correlations between XCO2

 
and SIF over agricultural areas, approximately − 0.5 and 
− 0.8, respectively. SIF is a variable directly related to the 
photosynthesis of plants, laboratory-scale experiments 
have demonstrated this relation [43], and remote sensing 
studies at the canopy and global level reported positive 
relations between SIF and Gross Primary Production, 
and also a negative correlation between SIF and the XCO2

 
[5, 44–46].

As a result of photosynthesis, it is expected that SIF 
increases during summer [7, 41], as in this season, 
higher precipitation events and higher temperatures are 
observed [47]. Our results show higher SIF average val-
ues in the months when summer occurs in the São Paulo 
state, and an inverse relationship between SIF and XCO2

 . 
The lowest average values of XCO2

 usually occur dur-
ing the summer period in the study region. This is due 
to plant CO2 assimilation [48], printing quasi-periodical 
XCO2, and SIF time changes as well as observed in other 
studies [5, 6, 41, 49].

Most of São Paulo’s state has a wet summer and dry 
winter [47] resulting in a positive correlation between 
precipitation and SIF (Pearson’s correlation = 0.61 and 
p < 0.05), while negative with XCO2

 (r = − 0.49, p < 0.05) 
(Fig. 1a). Precipitation is a photosynthetic control factor, 
so the greater availability of water that exists in the sum-
mer in São Paulo’s state induces plants to perform more 
photosynthesis through primary productivity, which 
leads to a reduction of atmospheric CO2. The opposite 
is observed in the dry winter because water availability is 
lower resulting in less photosynthesis, or less CO2 assimi-
lation by plants, either in natural or agricultural areas [7, 
28, 50].

Another effect observed during summer in the region 
is the increase of relative humidity (RH), which reduces 
the water transfer between soil or plant to the atmos-
phere [51], inducing plants to keep their stomata open, 
where CO2 assimilation occurs [52]. Studies have already 
shown the relationship of stomata opening in periods 
with good water availability is related to plant growth [53, 
54]. Thus, establishing the negative relationship between 
RH and XCO2

 , also previously observed by Golkar et  al. 
[27].

In the same way, another requirement for photosyn-
thesis occurs is sunlight, which is the source of energy to 
carry out the biochemical processes of this phenomenon. 
Therefore, as the amount of radiation (Qg) is absorbed by 

the plant, photosynthesis tends to increase, and conse-
quently higher CO2 assimilation, decreasing in this way 
the concentration of this greenhouse gas in the atmos-
phere [7, 30]. We can observe these relationships in our 
results (Fig.  3b), Qg correlates positively with SIF, and 
these variables relate negatively with XCO2

.
Since we are dealing with the natural annual cycle of 

CO2 the main factor of the higher concentrations of this 
gas in the atmosphere is due to the lowest photosyn-
thetic absorption by plants. The autumn and winter have 
low available water and sunlight for plants, leading to a 
decrease in photosynthesis, also another important fac-
tor is that the annual calendar for agriculture in the state 
of São Paulo has harvest periods between these seasons 
[55], and as consequence decreasing the cover area by 
vegetation. Shekhar et al. [56] show how the crop’s grown 
in summer decrease the values of XCO2

 over the Nile 
Delta and when the harvest starts the values of XCO2

 are 
higher, also, they found that SIF values are higher in the 
grown season.

Our model was based on Qg and RH, which are two 
variables related to the CO2 assimilation process, or 
CO2 sink. The model has lower RMSE values than have 
been reported in previous studies, such as by Guo et al. 
[57] where the values of this metric ranged from 0.7 to 
1.1 ppm. In a more recent study by Taylor et al. [58] when 
evaluating initial OCO-3 data results from the globe and 
model-related errors, they found an RMSE between 1 and 
2 ppm. Another important measure is the MAPE, which 
shows in percentage how much we are getting wrong, 
studies with remote sensing have already demonstrated 
errors below 10% as being considered extremely low for 
predicting plant and climate aspects [59, 60]. With this, 
we can evaluate that the performance of the model pro-
posed in this work presents a very low error.

The coefficient of determination (R2) was 0.44, an 
increment of almost 20% from the simple linear fit with 
Qg alone, which has a higher importance in the model. 
Although the R2 is moderate, studies using other orbital 
sensors such as MODIS to model the average CO2 con-
centration in the atmosphere have reported similar 
results [23]. In addition, we should consider that although 
OCO-2 and NASA-POWER are two high quality and 
validated databases [8, 9, 61], the difference between 
grids and spatial resolution (see Table 2 in Methods and 
Fig. 5b) cannot be disregarded, as it is an aspect that can 
influence these results, leading us to consider the coef-
ficient of determination observed in this study as being 
high.

These differences between the databases can be sup-
pressed by the greater temporal coverage of NASA-
POWER, allowing us to estimate the daily temporal 
variability of the natural CO2 cycle in the atmosphere for 
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the state of São Paulo, besides reducing in the future the 
spatial scale of XCO2

 obtained from OCO-2 and gaining 
greater spatial resolution cover. Other vegetation index-
based models aimed at reducing the spatial sampling of 
OCO-2 data, but focused on SIF, as is the case of Zhang 
et al. [62] and Yu et al. [63].

Despite the errors associated with the model and the 
uncertainty measures due to the difference in satellite 
resolution, an advantage of using models similar to the 
one proposed here is being able to have a daily measure 
of the variability of atmospheric CO2 and how the cli-
mate parameters affect this dynamic, also serving as an 
indirect indicator of how is the daily assimilation capacity 
of this gas in a region.

Conclusions
In summary, the cycle of XCO2

 in the state of São Paulo 
has higher average values during April to October, peri-
ods of lower intensity of rainfall, and is considered as the 
winter in the state, in the other hand the lowest averages 
of XCO2

 were usually observed between December to 
March, this period corresponds to the summer, and the 
inverse behavior was observed for SIF 757, global radia-
tion (Qg) and relative humidity (RH). This pattern is due 
to the relationship between photosynthesis and Carbon 
assimilation, given that photosynthesis is a process sen-
sitive to climate variation and a process that depends 
on water and light, in summer this process tends to be 
greater, leading to a decrease in CO2.

Concerning the daily XCO2
 model presented, it per-

formed well when we looked at the set of metrics pre-
sented. Given this, we were able to estimate the daily 
behavior of natural XCO2

 in general for the state of São 
Paulo, a semi-periodical wave with a maximum peak 
between March and July, and a minimum peak between 
December to February. There are still challenges in this 
aspect, such as the transport process in the atmosphere, 
which was simplified due to the detrend in the dataset, 
that also remove the anthropogenic sources in the CO2 
cycle, however, this study was capable in advance in the 
temporal gap, and properly address how to estimate the 
natural behavior of this gas in a synthetic way using daily 
meteorological open access data, establishing a low-cost 
approach, and we believe that this study will serve as a 
basis for further implementations.

We suggest that for future work, the relationship 
between soil respiration and factor controlling organic 
matter decay in soil with the XCO2

 would be needed to 
better understand CO2 dynamics, as well the addition of 

variables related to activities, such as in transports or the 
data of fossil fuel consumption, in big cities to improve 
predictions, as well the atmospheric transport.

Methods
Study region
The state of São Paulo (SP) (Fig.  5b), southern Brazil, 
has approximately 249 × 103  km2 and 645 municipali-
ties, with a demographic density of 179.84 habitants/km2 
[64] being one of the main agricultural hubs of Brazil, 
regarding the production of sugarcane and citrus [65]. 
According to Rolim et al. [47] the climate of the state, in 
general, has its areas characterized by a humid subtropi-
cal climate with dry winter, followed by humid tropical 
dry winter and sub-humid tropical dry winter, according 
to the climate classification proposed by Camargo [66].

Products of remote sensing: acquisition and processing
Greenhouse gas, climate, and vegetation data were col-
lected from different satellites (Table 2) for a time series 
from 2015 to 2019 and were aggregated on a monthly 
scale. The primary product of the Orbiting Carbon 
Observatory-2 (OCO-2) consists of georeferenced esti-
mates of the mean atmospheric CO2 concentration 
( XCO2

 ), in addition, the Sun Induced Chlorophyll Fluo-
rescence (SIF), retrieved due to the overlap that occurs in 
the SIF wavelengths with the O2 absorption wavelength 
(680–850  nm) [8, 9, 43]. Data from this satellite have 
already been validated by Crisp et al. [8] and, according 
to O’Dell et  al. [9], this satellite provides about 65,000 
quality observations per day worldwide.

Here we used the version 9 of the OCO-2 with a bias-
correction and considered only the measurements with 
the best quality flag (quality flag = 0, meaning that has no 
cloud cover) [67, 68], also, we do not consider the data 
with more than 12 alert level at nadir viewing [33, 69]. 
Concerning the SIF, we take into account only the SIF at 
757  nm, this was due to previous studies that exploited 
the relationship in the São Paulo’s State [6, 7] and, also 
because this wavelength is closer to the far-red peak 
(~ 740 nm) in the whole SIF signal [43].

MODIS sensor data were extracted from the “Appli-
cation for Extracting and Exploring Analysis Ready 
Samples” (AppEEARS). This application allows users to 
obtain subsets of large databases using spatial and tem-
poral parameters. Two types of sample requests are avail-
able: point samples by entering geographic coordinates 
and area samples using vector polygons. Sample requests 
submitted to AppEEARS provide users with not only data 
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values but also associated quality data values. Interactive 
visualizations with summary statistics are provided for 
each sample within the application, which allows users to 
view and interact with their samples before downloading 
the data [70].

Nasa Power data (https://power.larc.nasa.gov ) con-
sists of precipitation (mm), surface solar shortwave irra-
diance (MJ  m−2  day−1), average air temperature (ºC), 
and relative humidity at 2 m (%). This platform consists 
of a NASA project entitled: Worldwide Energy Resource 
Forecast (POWER) and was initiated to enhance the cur-
rent renewable energy dataset and create new datasets 
from new satellite systems [71].

To minimize the differences between the spatial and 
temporal resolutions of the different orbital sensors 
used in this study, the process described in Fig.  5a was 
employed, which establishes a standard for the acquisi-
tion of data from the coordinates obtained in the OCO-2 
platform (Fig.  5b). We emphasize that several studies 
have been conducted using different time and spatial 
scales [6, 7, 27].

Pre‑process of the data
Using the regression method proposed by Gujarati and 
Potter [72], we removed the trend from XCO2

 data, in 
order to understand the natural and regional variability 
of XCO2

 and its relationships with other factors [6, 7, 33]. 
The other variables were standardized using the function 
scale from the R language [73].

Variance Inflation Factor (VIF)
Variance Inflation Factor (VIF) analysis was performed. 
This analysis is a method of detecting multicollin-
earity within a database since the relation between the 
predictors for a multi-regression model can affect the 
estimative and the standard errors associated with the 
regression model [31]. The VIF is based on the R2 value 
(Eq. 2), and should not be greater than 10, however, this 
can vary according to the study [31, 32].

where R2 is the coefficient of determination.

Temporal variability, Pearson’s correlation, 
and dependency analysis
The data was processed using month averages for the 
analysis period, except precipitation, which consists 
of monthly sums for the entire state of SP (ST.1). The 
means were subjected to analysis of variance (F-test) to 
obtain the mean standard errors. Simultaneously, the 
basic assumptions of analysis of variance and, normal-
ity of errors, and homogeneity of variances were tested 
for the selected variables by VIF analysis. To understand 
the variation of XCO2

 with the other variables, Pearson 
correlation analyses were performed. More about the 
descriptive statics of selected variables in VIF, such as the 
number of observations (soundings) for each month, can 
be found in Additional file 1: Table S2

(2)VIF =
1

1− R2

Table 2  Studied variables, data base, temporal and spatial resolution

Variable Data base Temporal 
resolution

Spatial resolution

GHG

 XCO2
 (ppm) OCO-2 “OCO-2 Data product user’s guide, 2016” V9 16 days 1.29 km × 2.25 km

Climate

 Surface solar shortwave irradiance (Global radiation, Qg) 
(MJ m−2 day−1)

FLASH Flux Version 3 (A, B,C) NASA/POWER Daily 111.3 km × 111.3 km

 Average air temperature at 2 m (Temp) (ºC) GEO-5 FP-IT (NASA/POWER) Daily 111.3 km × 111.3 km

 Land surface temperature (LST) (ºC) MOD11A1.006 V6 MODIS-TERRA​ Daily 1200 km × 1200 km

 Wind speed at 10 m (WS) (m s−1) (ºC) GEO-5 FP-IT (NASA/POWER) Daily 111.3 km × 111.3 km

 Relative humidity (RH) (%) GEO-5 FP-IT (NASA/POWER) Daily 111.3 km × 111.3 km

 Precipitation (Prec) (mm day−1) GEO-5 FP-IT (NASA/POWER) Daily 111.3 km × 111.3 km

Vegetation

 SIF 757 OCO-2 “OCO-2 Data product user’s guide, 2016” V9 16 days 1.29 km × 2.25 km

 LAI (m2 m−2) MCD15A2H.006 V6 MODIS- CFPAR 8 days 500 m × 500 m

 Fraction of Photosynthetically Active Radiation (Fpar) (%)

 Evapotranspiration (ET) (kg m−2 day−1) MOD16A2.006 V6 MODIS-TERRA​ 8 days 500 m × 500 m

 NDVI MOD13A1.006 V6 MODIS-TERRA​ 16 days 500 m × 500 m
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Stepwise: forward selection
The stepwise method used in this study was the for-
ward selection method being performed in R language 

[73], as can be seen in the flow chart (Fig.  6), the vari-
ables selected in the VIF analysis were separated into a 
training and test samples (70% and 30% of the dataset 

VIF’s
database

trainControl
() [caret]

train() 
[caret]

Selec�on
model

method
= cv

method = 
leapForawrd

Training
sample

Test 
sample

Predic�on

Metrics

Fig. 6  Flowchart of the stepwise construction

Fig. 5  Flowchart of data acquisition, processing, analysis (a), and sounding map of the satellite observations in the study region (b). Where red dots 
represent the OCO-2 soundings, the black dots represent the NASA-POWER and the dark green represent the MODIS
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respectively). The training sample was submitted to the 
train () function of the caret package, using repeated 
cross-validation (cv) method. This technique consists in 
randomly splitting the training dataset into k-subsets, 
one of them is reserved and the model is trained with the 
others, and after is validated with the reserved subset, 
this process is repeated until each subset serves as a test 
sample, finally, the average error is how the performance 
is given [74]. The model is based on the lowest Root 
Mean Squared Error (RMSE) and, from variables selected 
in training, the generated model is applied to the test 
sample defined at begging for estimating the XCO2

 with 
these independent data. Finally, cross-validation between 
the estimated data and observed data in the test sam-
ple was performed and from this, we derive the metrics 
Mean squared error (MSE), Root Mean Squared Error 
(RMSE), Mean Absolute Error (MAE), R2, and Mean 
absolute percentage error (MAPE).
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