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Abstract 

Background:  Quantifying the stock of soil organic carbon (SOC) and evaluating its potential impact factors is impor-
tant to evaluating global climate change. Human disturbances and past climate are known to influence the rates of 
carbon fixation, soil physiochemical properties, soil microbial diversity and plant functional traits, which ultimately 
affect the current SOC storage. However, whether and how the paleoclimate and human disturbances affect the 
distribution of SOC storage on the high-altitude Tibetan Plateau remain largely unknown. Here, we took the Qinghai 
Plateau, the main component of the Tibetan Plateau, as our study region and applied three machine learning models 
(random forest, gradient boosting machine and support vector machine) to estimate the spatial and vertical distribu-
tions of the SOC stock and then evaluated the effects of the paleoclimate during the Last Glacial Maximum and the 
mid-Holocene periods as well as the human footprint on SOC stock at 0 to 200 cm depth by synthesizing 827 soil 
observations and 71 environmental factors.

Results:  Our results indicate that the vegetation and modern climate are the determinant factors of SOC stocks, 
while paleoclimate (i.e., paleotemperature and paleoprecipitation) is more important than modern temperature, 
modern precipitation and the human footprint in shaping current SOC stock distributions. Specifically, the SOC 
stock was deeply underestimated in near natural ecosystems and overestimated in the strongly human disturbance 
ecosystems if the model did not consider the paleoclimate. Overall, the total SOC stock of the Qinghai Plateau was 
underestimated by 4.69%, 12.25% and 6.67% at depths of 0 to 100 cm, 100 to 200 cm and 0 to 200 cm, respectively. 
In addition, the human footprint had a weak influence on the distributions of the SOC stock. We finally estimated that 
the total and mean SOC stock at 200 cm depth by including the paleoclimate effects was 11.36 Pg C and 16.31 kg C 
m−2, respectively, and nearly 40% SOC was distributed in the top 30 cm.

Conclusion:  The paleoclimate is relatively important for the accurate modeling of current SOC stocks. Overall, our 
study provides a benchmark for predicting SOC stock patterns at depth and emphasizes that terrestrial carbon cycle 
models should incorporate information on how the paleoclimate has influenced SOC stocks.

Keywords:  Soil organic carbon stock, Paleoclimate, Human footprint, Spatial and vertical distributions, Qinghai 
Plateau
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Background
Soil, formed over thousands of years of rock fragmenta-
tion and plant and soil biota colonization [1], contains 
more carbon than current vegetation and the atmos-
phere, and minor changes in the soil organic carbon 
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(SOC) stock could have dramatic impacts on the global 
carbon balance [2]. Moreover, the SOC stock plays a 
vital role in supporting key ecosystem services and is a 
key parameter in the earth system model [3]. However, 
the spatial patterns of SOC stocks affected by paleocli-
mate and the human footprint, especially in high-altitude 
ecosystems, remain obscured. Therefore, it is essential to 
reduce the uncertainties associated with the estimation 
of SOC stocks and their driving factors to improve model 
parameter optimization, climate change feedback, and 
food security.

Although many investigators have studied the spa-
tial distribution of SOC stocks, the results are still very 
uncertain due to the differences in their research data 
and methods. The simulation methods mainly include 
polygon-based classification statistics [4, 5], kriging-
based spatial interpolations [6], process-based models 
[7, 8], multivariate regression models [9], and machine 
learning models [6, 10–13]. As a conventional and sim-
ple averaging approach, there are significant errors with 
the polygon-based classification statistics method due to 
the great spatial heterogeneity and scarcity of SOC data 
[13]. Kriging-based spatial interpolation methods are 
geostatistical models with a rough spatial accuracy [6]. 
Process-based models, such as CENTURY [7] and TEM 
[8], are limited by their complex parameters as well as 
their single values and shallow soil depths [12]. As a tra-
ditional statistical method, multivariate regression mod-
els depend on the assumption that the data accord with 
a given probability distribution [6]. In fact, the relation-
ships between SOC stock and environmental covariates 
are usually complex, nonlinear, and hierarchical [6]. In 
recent years, machine learning models have been widely 
used in assessments of SOC stock distributions to over-
come nonlinearity and the biases caused by the large 
spatial heterogeneity and uneven distributions of soil 
samples [10].

The spatial variability of SOC stocks is influenced by 
topography, climate, vegetation, soil properties, time, 
and anthropogenic activities [6, 11]. Soil radiocarbon 
(14C) dating studies found that soil carbon has a legacy 
of decades or even millennia in soil systems [14], and 
most of the sites with exceedingly old carbon ages are 
permafrost-affected soils [15], such as the Tibetan Pla-
teau, known as “the Roof of the World”. Some studies also 
found that climate legacy has effects on the distributions 
of soil microbial diversity [16], soil respiration [17] and 
plant functional traits [18]. These results can directly 
or indirectly demonstrate that past climate signals are 
retained in the current soil carbon [11, 14, 19]. Evidence 
from the lacustrine sediment, pollen assemblages, pre-
served relict permafrost and periglacial phenomena 
indicate that the climate was cold and exhibited glacial 

conditions during the Last Glacial Maximum (LGM) [20] 
but was warm and humid in the mid-Holocene (MidH) 
[21], thus resulting in the formation of large amounts 
of permafrost on the Tibetan Plateau during the LGM, 
which then shrank in the MidH period [22]. Quantifying 
the influence of climate legacy (e.g., the paleoclimate) on 
contemporary SOC stock at the regional scale can be of 
paramount importance to better understand the vulner-
ability of the soil carbon pool to future climate change.

With the development of urbanization and the social 
economy, SOC stocks are highly vulnerable to human 
disturbances [1]. Human disturbances affect SOC 
sequestration by changing the input and output of soil 
carbon [1, 23]. The human footprint index was developed 
to measure anthropogenic pressure on the environment 
and is one of the extensively used tools for evaluating 
human pressure on SOC stock distribution, which pro-
vides information about which system is likely to be a 
more natural state [24, 25]. As a result, adding the indi-
cator of human disturbances (e.g., the human footprint 
index) to the models could better predict the spatial pat-
terns of SOC stock at the regional scale.

The Tibetan Plateau, which has the world’s largest area 
of alpine permafrost [4], has experienced pronounced 
warming and wetting in recent decades [12], reveal-
ing that the response of SOC stock to climate change as 
well as the impact factors are among the top research 
priorities within the scientific community. In this study, 
we selected the Qinghai Plateau, a main component of 
the Tibetan Plateau [26], as our study region to evaluate 
the uncertainties in soil organic carbon stock estimation 
caused by the paleoclimate and the human footprint. 
First, we collected field-measured SOC observations 
from the published literature of the Qinghai Plateau and 
then selected the best explanatory variable subsets for 
the different soil depths of 0 to 200  cm based on mul-
tiple variable selection algorithms. Next, we applied 
multiple machine learning algorithms (random forest, 
gradient boosting machine, and support vector machine) 
to estimate the spatial distributions of SOC stock over 
the Qinghai Plateau for different soil depths, from which 
we evaluated the spatial patterns of the potential bias of 
the modeled SOC caused by ignoring the paleoclimate 
and the human footprint. Through the comparisons of 
multiple models, we tested the hypothesis that the pale-
oclimate is an important factor in shaping the spatial pat-
terns of SOC stocks on the Qinghai Plateau.

Methods
The study region
The study region is located in the Qinghai Plateau, which 
is the northeastern part of the Qinghai-Tibetan Plateau 
and is known as the “Roof of the World” (Fig.  1). It is 
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located between 31° 4′ N–39° 19′ N and 89° 35′ E–103° 
03′ E with an average elevation of over 3000 m [26] and a 
soil area of 696,665.8 km2. The Qinghai Plateau includes 
five functional eco-zones, including the Qaidam Basin, 
Three Rivers, Hehuang Valley, Qilian Mountains and 
Qinghai Lake Basin (Fig. 1). Its climate is a typical plateau 
continental climate with low temperatures, little rain, 
and long sunshine hours [26]. The Qinghai Plateau has 
a large area of alpine permafrost and seasonally frozen 
soils (Fig. 1) and is mainly covered by cold- and drought-
adapted vegetation, including widely distributed alpine 
grassland in the south and desert in the northwest and 
scarcely distributed shrubs, forests, and crops in the east.

SOC stock observations collection and compilation
We collected SOC data sampled from 2001 to 2016 from 
papers published between 2006 and 2019 using the Web 
of Science [29], China National Knowledge Infrastruc-
ture (CNKI) [30], and Google Scholar [31] with the key 
words relating to “SOC”, “soil carbon storage/stock/den-
sity”, and “Tibetan/Qinghai-Tibet Plateau”. The collected 
papers were further screened based on the following cri-
teria: (1) data on SOC stock or SOC content/concentra-
tion should be reported through field investigations with 
concrete locations; (2) field investigations should have 
been performed after 2000, and the data from the sec-
ond national soil survey of China were not included; (3) 
the SOC data were collected under natural conditions, 
and data with significant disturbances and manual treat-
ments were excluded; and (4) SOC was not estimated by 

remote sensing or models. When the SOC stock was not 
reported in the original studies, it was calculated using 
Eq. 1 [9]:

 where SOC stock is the soil organic carbon stock (kg C 
m−2); SOCCi , BDi , Ti , and δi represent the soil organic 
carbon concentration (g kg−1), bulk density (g cm−3), soil 
depth (cm), and volumetric percentage of gravel (> 2 mm) 
(%) in soil layer i, respectively; and n is the number of 
soil layers. If the original studies only reported the soil 
organic matter (SOM), the SOM was converted to SOCC 
using a constant of 0.58 [32].

Records of the volumetric percentage of gravel in Qing-
hai are incomplete; therefore, missing volumetric per-
centages of gravel values were estimated by the polygon 
linkage method from the percentages of gravel given by 
Shangguan et  al. (2013) [33], which were derived from 
8979 soil profiles of the second national soil survey of 
China. Pedotransfer functions are widely used to esti-
mate the soil bulk density at missing depths [32]. We 
developed three pedotransfer functions between soil 
organic carbon concentration (SOCC) and bulk density 
(BD) (Additional file 1: Table S1); then, we used the opti-
mal pedotransfer function (p < 0.001 and RMSE = 0.298) 
to estimate the missing BD values (Eq. 2, Additional file 1: 
Fig. S1).

(1)
SOCstock =

∑n

i=1
SOCCi × BDi × Ti × (1− δi)/100

(2)BD = 0.578+ 0.945exp−0.022SOCC
.

Fig. 1  Geographic location of the Qinghai Plateau. Qai: Qaidam Basin; ThR: Three Rivers; Qim: Qilian Mountains; QLB: Qinghai Lake Basin; HeV: 
Hehuang Valley. The altitude [27] and frozen soil map [28] were obtained from the National Tibetan Plateau Data Center
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We directly computed some SOC stock values for vari-
ous soil depths based on Eq. 1. While the SOC is highly 
variable with soil depth, equal area quadratic splines are 
widely used to harmonize the soil properties at specific 
soil depths and are superior to other continuous soil 
depth functions [19, 34]. The spline function depends on 
a smoothing parameter lambda (λ), and a λ value of 0.1 
was proven to be the best overall predictor of the depth 
functions [34]. We adopted a λ value of 0.1 in fitting 
equal area quadratic splines of SOCC and BD for each 
soil depth by using “Spline Tool Version 2” developed 
by CSIRO (Australian Soil Resource Information System 
2011, Canberra, Australia) [35]. Then, we obtained the 
SOC stock values at 0 to 30 cm, 30 to 50 cm, 50 to 100 cm 
and 100 to 200 cm based on Eq. 1. To better match the 
grid environment covariables, we upscaled every SOC 
site observation to 1 km by taking the mean SOC stock 
value of all sites within the range of 1  km as the final 
SOC stock value of this site based on the “Buffer tool” 
in ArcGIS 10.1 (Environmental Systems Research Insti-
tute, Inc., Redlands, CA, USA) (Additional file 1: Fig. S2). 
Finally, we obtained 807, 573, 529, and 262 SOC stock 
observations at depths of 0 to 30 cm, 30 to 50 cm, 50 to 
100 cm and 100 to 200 cm, respectively (Fig. 2, Additional 
file 2), from 58 published papers (Additional file 3). Most 
SOC stock observations were located in grassland (Fig. 2, 
Additional file 1: Table S2), and the mean values of SOC 
stock observations at depths of 0 to 30 cm, 30 to 50 cm, 
50 to 100 cm and 100 to 200 cm were 7.71, 3.81, 6.18, and 
9.53 kg C m−2, respectively (Additional file 1: Table S2).

Environmental data
A number of environmental covariates were chosen for 
SOC stock modeling based on the following aspects: (1) 
the data products are sourced from well-known organi-
zations with a wide range of users; (2) the data have been 
used in previous studies to predict SOC stock over the 
Tibetan Plateau [37, 38], have been evaluated for accu-
racy on the Tibetan Plateau [39–43], or were conducted 
only for the Tibetan Plateau region [44, 45]; and (3) the 
data should be closely related to the carbon cycle, with 
a close temporal (2000–2018) resolution and spatial 
(0.01, ~ 1  km) resolution to the SOC stock distributions 
of this study. Then, we chose the factors that represent 
the paleoclimate, modern climate, vegetation, topog-
raphy, soil and human footprint (Table  1, Additional 
file  4 for a detailed description of environmental data). 
We found that the mean annual precipitation and mean 
annual temperature of the mid-Holocene (MidH) (a 
hypsithermal period approximately 6000  years ago) and 
the Last Glacial Maximum (LGM) (an extremely cold 
period 22,000  years ago) [46] over the Qinghai Plateau 
ranged from 10 to 700 mm and −19 to 7 °C, respectively 
(Additional file 1: Fig. S3). Moreover, the human distur-
bance intensity in most areas of the Qinghai Plateau was 
weak, although it was strong in the eastern region (Addi-
tional file 1: Fig. S4). The projections of all environmen-
tal datasets were converted to the WGS84 coordinate 
system and then resampled to 0.01° resolution by the 
nearest neighbor algorithm (ArcGIS 10.1). Moreover, the 
annual averages of all time-series data were calculated. 

Fig. 2  The locations of SOC stocks at depths of 0–30 (a), 30–50 (b), 50–100 (c) and 100–200 cm (d) on the Qinghai Plateau. SOC represents soil 
organic carbon. The vegetation map with a 1 km resolution was obtained from Ran et al. (2019) [36]



Page 5 of 17Liu et al. Carbon Balance and Management            (2022) 17:8 	

Table 1  Spatially explicit environmental data used for SOC stock modeling

ECMWF The European Centre for Medium-Range Weather Forecasts, GLASS The Global Land Surface Satellite, C3S Copernicus Climate Change Service, LP DAAC​ The 
Land Processes Distributed Active Archive Center, RESDC The Resource and Environment Science and Data Center, GLDAS-Noah The Global Land Data Assimilation 
System, MODIS The Moderate Resolution Imaging Spectroradiometer

Groups Variables Resolution Source

Paleoclimate Annual mean temperature, mean diurnal range, tempera-
ture seasonality, maximum temperature of the warmest 
month, minimum temperature of the coldest month, 
annual temperature range, mean temperature of the 
wettest quarter, mean temperature of the driest quarter, 
mean temperature of the warmest quarter, the mean 
temperature of the coldest quarter, annual precipitation, 
precipitation of the wettest month, precipitation of the 
driest month; precipitation seasonality, precipitation of 
the wettest quarter, precipitation of the driest quarter, 
precipitation of the warmest quarter, precipitation of the 
coldest quarter

2.5 arc minutes (mid-Holo-
cene, Last Glacial Maximum)

WorldClim [47]

Modern climate Mean monthly temperature, mean monthly precipitation 0.025°, monthly (1981–2011) Zhao et al. [48]

10 m wind speed, surface pressure, 2 m dewpoint tem-
perature, runoff, surface runoff, sub-surface runoff, total 
evaporation, evaporation from bare soil, evaporation from 
vegetation transpiration, potential evaporation, snow 
cover, snowfall, temperature of snow layer

0.1°, monthly (2001–2018) ERA5 from ECMWF [49]

Wet deposition of inorganic nitrogen 1 km, yearly (2005, 2010, 2015) Jia et al. [50]

Terrestrial evapotranspiration 0.1 , monthly (2000–2017) Ma et al. [51]

Snow depth 25 km, daily (2000–2018) Dai et al. [52]

Photosynthetically active radiation (PAR) 0.05°, monthly (2000–2014) GLASS [53]

Vegetation Fraction of absorbed photosynthetically active radiation 
(FAPAR)

1 km, monthly (2000–2014) C3S [54]

Gross primary productivity (GPP) 1 km, 8-day (2001–2016) MODIS (MOD17A2H) from LP DAAC [55]

Net primary productivity (NPP) 1 km, yearly (2001–2014) MODIS (MOD17A3) from LP DAAC [55]

Leaf area index (LAI) 1 km, 8-day (2000–2016) Yuan et al. [56]

Normalized differential vegetation index (NDVI) 1 km, monthly (2001–2017) MODIS (MOD13A3) from LP DAAC [55]

Sun-Induced Chlorophyll Fluorescence (SIF) 0.5°, biweekly (2007–2016) Joiner et al. [57]

Enhanced vegetation index (EVI) 1 km, monthly (2001–2017) MODIS (MOD13A3) from LP DAAC [55]

Vegetation type 1 km, 2010 Ran et al. [36]

Root depth 1°, 1986–1995 Schenk et al. [58]

Total pant-available soil water storage capacity of the 
rooting zone

1°, 1986–1995 Kleidon et al. [59]

Aboveground biomass carbon, belowground biomass 
carbon

300 m, 2010 Spawn et al. [60]

Topography Elevation, slope, curvature, plane curvature, curve curva-
ture, aspect, hillshade

1 km Tang et al. [27]

Soil PH value (H2O), total N, total P, total K, alkali-hydrolysable 
N, available P, available K, cation exchange capacity (CEC), 
exchangeable H+, exchangeable Al3+, exchangeable 
Ca2+, exchangeable Mg2+, exchangeable K+, exchange-
able Na+, porosity, particle-size distribution (sand, silt, 
clay), root abundance

30 arc-seconds (about 1 km) Shangguan et al. [33]

Soil type 1 km RESDC [61]

Soil erosion intensity 300 m, 2005, 2015 Zhang et al. [45]

Soil temperature; Soil moisture 0.25°, monthly (2000–2015) GLDAS-Noah [62]

Frozen soil distribution 1 km, 2000 Ran et al. [28]

Permafrost zonation index 1 km, 2019 Cao et al. [44]

Soil microbial biomass carbon, soil microbial biomass 
nitrogen, C:N ratio of soil microbial biomass

0.05°, 1970s–2012 Xu et.al. [63]

Human footprint Population density 1 km, yearly (2000–2012) WorldPop [64]

Human footprint 1 km, 2009 Venter et al. [24]
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After data preprocessing, a total of 71 environmental 
factors were obtained, including 4 paleoclimate-related, 
18 modern climate-related (including modern tempera-
ture, precipitation and 16 other climate factors), 13 veg-
etation- related, 7 topography- related, 27 soil-related 
and 2 human footprint-related factors (Additional file 1: 
Table S3). Before the modeling of SOC stock, these fac-
tors were evaluated, and the most important factors were 
selected and then used in the data-driven mapping of 
SOC stock.

Quantification of the relative importance of environmental 
factors
In this study, we collected a large set of environmental 
variables (Table  1, Additional file  1: Table  S3) that may 
potentially affect the spatial pattern of SOC stocks. How-
ever, some variables may be redundant or highly cor-
related, which leads to data noise and overfitting [65]. 
Therefore, strategic variable selection can reduce model 
processing time and overfitting [65]. We used four stra-
tegic variable selection algorithms (i.e., recursive feature 
elimination (RFE), Boruta, lmr and the automated fea-
ture selection caret (fscaret) algorithms) to quantify the 
relative importance of the key drivers potentially affect-
ing SOC stock and then applied the optimal subsets of 
the selected variables to estimate SOC stock at each soil 
depth. The RFE algorithm is basically a recursive pro-
cess that ranks features according to some measure of 
their importance based on the random forest classifica-
tion algorithm [66]. The Boruta algorithm, a highly rele-
vant feature selection wrapper method around a random 
forest classification algorithm, iteratively removes the 
features that are proven by a statistical test to be less rele-
vant than random probes [67]. A filter method of the mlr 
algorithm was adopted, which calculates the importance 
of the variables and ranks them based on the relation-
ship between the features and the response variables, and 
then the features are screened according to certain rules 
[68]. The fscaret algorithm produces the final variable 
importance from the variety of used models in combina-
tion with scaling according to the generalization errors 
obtained from the models [69].

In addition, the evaluation indices of the relative 
importance of the four strategic variable selection meth-
ods were inconsistent. For example, the variable impor-
tance indices of the RFE, Boruta and mlr algorithms are 
based on the “mean decrease accuracy”, “Z score” and 
“node impurity”, respectively, while the fscaret algorithm 
combines several model indices. Therefore, the values of 
the relative importance of the variables from these four 
strategic variable selection methods were standardized to 
0–1; then, we used the mean value of the normalized rel-
ative variable importance from the four algorithms as the 

final variable importance to identify the most important 
driving variables. To ensure the robustness of the mod-
els, we selected the variables whose relative importance 
ranked in the top 25 through the four strategic variable 
selection methods to model the spatial pattern of SOC 
stocks at depths of 0 to 30 cm, 30 to 50 cm, 50 to 100 cm 
and 100 to 200  cm on the Qinghai Plateau. The RFE, 
Boruta, mlr and fscaret algorithms were performed using 
the caret [70], Boruta [67], mlr [68] and fscaret [69] pack-
ages in R 3.6.1 (R Development Core Team, 2019).

Data‑driven mapping of SOC stock
Machine learning techniques are powerful tools for 
SOC prediction [6]. The random forest (RF), gradient 
boosting machine (GBM), and support vector machine 
(SVM) models have been widely applied to the simula-
tion of SOC stock [6, 10, 11, 38]. We used these three 
machine learning models (i.e., the RF, GBM, and SVM) 
and combined them with the selected optimal environ-
mental covariates (nearly 10 factors from the total of 71 
variables) to estimate the spatial patterns of SOC stock 
for the different soil depths. RF is an ensemble learning 
approach that involves the bagging of unpruned trees 
(weak learners) by randomly and repeatedly selecting 
predictors in each split [71] and then aggregating sev-
eral different predictions as the final prediction [6]. GBM 
combines the advantages of a regression/decision tree 
algorithm and boosting [72] and gives greater weight to 
the stronger models [65]. SVM mainly involves a projec-
tion of the data into a high-dimensional feature space 
using a valid kernel function and then applying a simple 
linear regression within this enhanced space [73].

These models were trained and validated by the ten-
fold cross-validation approach, and we computed the 
ensemble mean predictions of the three machine learn-
ing models to evaluate the spatial distributions of SOC 
stocks at depths of 0 to 30 cm, 30 to 50 cm, 50 to 100 cm 
and 100 to 200 cm on the Qinghai Plateau. In addition, 
we also evaluated the uncertainties of SOC stock esti-
mation caused by the paleoclimate or human footprint 
at various soil depths according to the following steps: 
(1) we built a baseline model (Model_Ori) that used the 
variables selected by the four strategic variable selec-
tion algorithms but removed the information about the 
paleoclimate footprint and the human footprint; (2) we 
built two particular models, one considering Model_Ori’s 
variables and the paleoclimate information (Model_PC), 
and another considering Model_Ori’s variables and 
the human footprint (Model_H); and (3) we compared 
Model_PC and Model_H with Model_Ori to quantify the 
uncertainties caused by the paleoclimate or the human 
footprint. In this study, the RF, GBM and SVM models 
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were executed using the packages randomForest [71], 
gbm [74] and kernlab [75], respectively, in R 3.6.1.

We used a range of statistics to assess the quality of 
the predictions. Specifically, the root mean square error 
(RMSE), coefficient of determination (R2), Lin’s concord-
ance correlation coefficient (CC) [76], mean absolute per-
centage error (MAPE) and normalized root mean square 
error (NMSE) were used to determine the performance 
of the models and the effectiveness of the predictions.

Results
Key driving variables for SOC modeling
The results reveal that the key driving factors affecting 
SOC stock had some differences at various soil depths 
over the Qinghai Plateau (Additional file  1: Fig. S5–S8). 
Overall, vegetation and modern climate factors could 
fundamentally determine the magnitude of the SOC 
stock, while the topography and the human footprint fac-
tors had the weakest impact on the SOC stock (Fig. 3a). 
Vegetation factors were the most important for SOC 
stock in the topsoil (0–30  cm), but their role decreased 
gradually with increasing soil depth (Fig. 3a). Specifically, 
the proportion of variable importance of vegetation fac-
tors to SOC stock decreased from 35.19% in the surface 
soil depth (0–30  cm) to 15.56% in the deep soil depth 

(100–200  cm) (Fig.  3a). According to the standardized 
relative importance of paleoclimate (i.e., the paleotem-
perature and the paleoprecipitation), the modern climate 
(i.e., the modern temperature and the modern precipita-
tion) and the human footprint for estimated SOC stock, 
this indicated that paleoclimate was more important 
than modern temperature, modern precipitation and 
the human footprint in determining SOC stocks on the 
Qinghai Plateau (Fig. 3b, c). These results confirmed that 
the climatic legacies may potentially impact the obser-
vation of current SOC stock over the Tibetan Plateau 
region [11].

Effects of the paleoclimate and the human footprint 
on SOC modeling
Based on the strategic variable selection algorithms 
(i.e., RFE, Boruta, fscaret and mlr), we selected about 
10 factors from a total of 71 factors to model SOC stock 
for each soil depth (Table  2). Those selected variables 
accounted for up to 55.3%, 61.1%, 69.3% and 92.8% of the 
SOC stock variation at 0–30 cm, 30–50 cm, 50–100 cm 
and 100–200 cm depths, respectively (Table 2). In addi-
tion, we found that the extremely high SOC stocks in the 
surface (0–30 cm) and subsurface (30–50 cm) soil layers 

Fig. 3  The relative importance of covariates for SOC stock prediction at various soil depths. a Comparisons of variable importance (%) for the 
different factor groups on the estimated SOC stock for each soil depth on the Qinghai Plateau. The variable importance values were determined 
by the recursive feature elimination (RFE), Boruta, fscaret and mlr methods. The proportion of variable importance (%) indicates the proportion 
of the sum of the relative importance ranking of the top 25 environmental variables in each factor group. The values in brackets indicate the 
number of variables where the relative importance of variables ranked in the top 25. Standardized variable importance of paleoclimate (i.e., the 
paleotemperature and the paleoprecipitation) and modern climate (i.e., the modern temperature and the modern precipitation) (b) and the human 
footprint (c) for estimated SOC stock on the Qinghai Plateau at various soil depths. Note that the importance of modern climate is the sum of the 
values of the modern precipitation and the modern temperature by layer. SOC represents soil organic carbon
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Table 2  Comparison of the different models for the modeling of SOC stocks at various soil depths on the Qinghai Plateau

Soil depth (cm) Type Model R2 CC RMSE MAPE NMSE

0–30 Model_Ori RF 0.520 0.654 3.331 0.727 0.491

GBM 0.523 0.697 3.296 0.722 0.481

SVM 0.410 0.582 3.671 0.770 0.597

Model_PC RF 0.526 0.669 3.297 0.700 0.481

GBM 0.553 0.719 3.189 0.653 0.450

SVM 0.449 0.614 3.550 0.735 0.558

Model_H RF 0.523 0.664 3.311 0.706 0.489

GBM 0.527 0.700 3.285 0.704 0.478

SVM 0.451 0.615 3.544 0.768 0.556

Basic data MC_NitrDepAll (Wet deposition of inorganic nitrogen), MC_LAI (Leaf area index), MC_PAR (Pho-
tosynthetically active radiation), V_AGBC (Aboveground biomass carbon), V_NDVI (Normalized 
differential vegetation index), V_FAPAR (Fraction of absorbed photosynthetically active radiation), 
V_NPP (Net primary productivity), S_MicroCN (C:N ratio of soil microbial biomass)

30–50 Model_Ori RF 0.583 0.696 2.142 2.040 0.435

GBM 0.563 0.723 2.150 2.175 0.439

SVM 0.505 0.691 2.300 2.328 0.502

Model_PC RF 0.611 0.726 2.062 2.069 0.403

GBM 0.588 0.744 2.086 2.219 0.413

SVM 0.538 0.712 2.215 2.428 0.466

Model_H RF 0.582 0.699 2.139 2.048 0.434

GBM 0.582 0.736 2.100 2.213 0.419

SVM 0.508 0.681 2.282 2.392 0.494

Basic data MC_Wind10 (10 m wind speed), MC_Tem (Modern temperature), MC_Pre (Modern precipitation), 
V_EVI (Enhanced vegetation index), V_GPP (Gross primary productivity), V_NPP, MC_NitrDepAll, 
MC_PAR, V_LAI, V_NDVI, V_FAPAR

50–100 Model_Ori RF 0.655 0.761 3.730 0.919 0.360

GBM 0.682 0.794 3.547 0.879 0.326

SVM 0.637 0.776 4.758 0.847 0.366

Model_PC RF 0.670 0.777 3.637 0.887 0.343

GBM 0.693 0.810 3.462 0.847 0.311

SVM 0.654 0.783 3.669 0.887 0.349

Model_H RF 0.648 0.757 3.761 0.882 0.367

GBM 0.692 0.802 3.487 0.858 0.315

SVM 0.576 0.715 4.078 0.930 0.431

Basic data MC_Wind10, MC_NitrDepAll, MC_PAR, V_EVI, V_GPP, V_NPP, V_FAPAR, S_MicroCN, S_MicroSMC 
(Soil microbial biomass carbon)

100–200 Model_Ori RF 0.768 0.764 8.283 1.556 0.319

GBM 0.692 0.736 8.819 1.644 0.361

SVM 0.745 0.846 7.444 1.714 0.257

Model_PC RF 0.778 0.790 7.926 1.647 0.292

GBM 0.775 0.806 7.734 1.673 0.278

SVM 0.876 0.935 5.184 1.700 0.125

Model_H RF 0.809 0.777 8.017 1.563 0.299

GBM 0.794 0.806 7.662 1.644 0.273

SVM 0.928 0.961 3.964 1.763 0.073

Basic data T_Slope (Slope), V_SIF (Sun-Induced Chlorophyll Fluorescence), V_NPP, MC_Surrunoff (Surface 
runoff ), MC_Wind10, MC_NitrDepAll, MC_PAR
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were difficult to estimate accurately (Additional file  1: 
Figs. S9–S11), which reduced the accuracy of the models.

All the models (i.e., GBM, RF and SVM) that con-
sider the paleoclimate factors (Model_PC) improved 
the SOC stock variation analysis accuracy by approxi-
mately 2%–12% and had a higher CC and lower RMSE 
and NMSE than the models that only considered the 
basic factors (Model_Ori) (Table  2), which means that 
these machine learning models considering paleoclimate 
significantly optimized the models. Specifically, add-
ing the paleoclimate factors to the models increased the 
explained variation in SOC stocks at depths of 0–30 cm, 
30–50  cm, 50–100  cm and 100–200  cm by approxi-
mately 4%, 3%, 2% and 12%, respectively (Table  2). On 
the surface and middle soil layers (0–30  cm, 30–50  cm 
and 50–100  cm), models that considered human foot-
print factors (Model_H) had a similar or lower modeling 
capability when compared with model_Ori, while the 
SOC stock variations in the bottom soil (100–200  cm) 
were greatly improved by nearly 10%–18% when human 
footprint factors were considered (Table 2). These results 
indicate that the paleoclimatic information improved 
the predictions of SOC stock at different soil layers of 
0–200 cm depth, while both the paleoclimatic footprint 
and the human footprint greatly improved the predic-
tions of SOC stock in the bottom soil layer (100–200 cm) 
on the Qinghai Plateau.

Spatial and vertical distributions of the SOC stock
The spatial pattern of the estimated SOC stock from 2001 
to 2016 in different layers of 0–200  cm on the Qinghai 
Plateau was, in general, similar among the different mod-
els (Additional file 1: Fig. S12). The SOC stock exhibited 
large spatial variability across the Qinghai Plateau, with 
SOC decreasing from the southeast to the northwest 
(Fig.  4a, Additional file  1: Fig. S12). Specifically, most 
of the higher values (> 20 kg C m−2) were located in the 
eastern regions, while the lower values (< 10  kg C m−2) 
were mostly distributed in the alpine steppe and desert 
in western regions (Fig.  4a, Additional file  1: Fig. S12). 
The averaged SOC stock of shrubs and forests at the 
0–200  cm depth were very close (23.74 vs. 23.59  kg C 

m−2), and their values were higher than those of other 
types of vegetation, while the lowest SOC stock (11.82 kg 
C m−2) was located in the bare lands or desert regions 
across the Qinghai Plateau (Additional file  1: Fig. S13) 
based on the optimal models considering the paleocli-
mate factors (Model_PC) (Table 2).

We found that the SOC stock varied depending on soil 
depth in all of the 200  cm profiles, with the maximum 
occurring in the top 30 cm (Fig. 4b, c). Nearly 40% of the 
SOC stock was distributed in the top 30 cm of the Qing-
hai Plateau (Fig.  4c). For the different vegetation types, 
this proportion was 39.2%, 37.5%, 37.5%, 42%, 36% and 
31.4% for forest, shrubland, grassland, cropland, wet-
land and desert/bare-land, respectively (Fig. 4c). In some 
regions of the Qinghai Lake Basin and central Three Riv-
ers, the values of the proportion of SOC stock in the top 
30 cm even reached 60% (Fig. 4b). The smallest propor-
tion of SOC stock in the deep layer (100–200  cm) was 
found in the cropland (22.3%), while the largest value was 
in the desert/bare land (29%). Nearly 15%, 20% and 25% 
of the total SOC stock at 200  cm was contained in the 
subsurface at 30–50 cm, middle at 50–100 cm and deep 
at 100–200 cm, respectively (Fig. 4c).

Effects of the paleoclimate on the spatial patterns 
of the SOC stock
The paleoclimate had significant effects on the estimated 
SOC stock across the Qinghai Plateau (Fig.  5). At the 
site scale, the SOC stock values estimated by Model_PC 
were more accurate than those estimated by Model_Ori 
(Table 2); thus, the spatial distributions of SOC stock val-
ues estimated by the models considering the paleoclimate 
factors were more credible. The average values estimated 
by the Model_PC were all higher than the counterparts 
of the Model_Ori, which means that the SOC stock 
would be underestimated by 4.69% (11.29 vs. 11.82 kg C 
m−2), 12.25% (4.00 vs. 4.49 kg C m−2) and 6.67% (15.29 
vs. 16.31 kg C m−2) at depths of 0–100 cm, 100–200 cm 
and 0–200  cm if the models ignored the paleoclimate 
factors, respectively (Table 3). The relative errors for the 
modeled SOC stock values at 0–200  cm depths mainly 

Table 2  (continued)

SOC represents soil organic carbon; Model_Ori represents SOC stock estimated without considering the paleoclimate or the human footprint factors; Model_PC 
represents SOC stock estimated considering the paleoclimate factors; Model_H represents SOC stock estimated considering human footprint factors. RF, GBM and 
SVM represent the random forest model, the gradient boosting machine model and the support vector machine, respectively. R2, CC, RMSE, MAPE and NMSE indicate 
the coefficient of determination, Lin’s concordance correlation coefficient, root mean square error, mean absolute percentage error and normalized mean square error, 
respectively. The selected variables were obtained by integrating the recursive feature elimination (RFE), Boruta, fscaret and mlr algorithms

Soil depth (cm) Type Model R2 CC RMSE MAPE NMSE

Paleoclimate factors PC_Pre_LGM (Paleo-precipitation in the last glacial maximum), PC_Tem_LGM (Paleo-temperature 
in the last glacial maximum), PC_Pre_MidH (Paleo-precipitation in the mid-Holocene), PC_Tem_
MidH (Paleo-temperature in the mid-Holocene)

Human footprint factors H_Population (Population density), H_HumanFp (Human footprint)
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ranged from –18% (2.5% quantile) to 68% (97.5% quan-
tile) across the Qinghai Plateau if the paleoclimate was 
ignored (Fig. 5). For the different soil layers, the paleocli-
mate greatly affected the estimates of the deep SOC stock 
(100–200  cm), which caused a large relative change in 
the modeled SOC stock values ranging from –28% (2.5% 
quantile) to 151% (97.5% quantile) (Fig. 5). This result is 
consistent with the proposal that the paleoclimate has a 
relatively higher influence on the deep soil layer at the 
site scale (Table 2).

Further analysis showed that there was a higher under-
estimation in permafrost-affected soils than in season-
ally frozen-affected soils when ignoring the paleoclimate 
(Fig. 6a). In addition, the paleoclimate mainly had a strong 
influence on the SOC predictions for shrubs, grassland, 
wetland and desert/bare-land due to a lower human foot-
print but had little influence on the SOC predictions for 
farmland and forest due to a larger human footprint at 

Fig. 4  Spatial and vertical distributions of the SOC stock on the Qinghai Plateau. Spatial distributions of the estimated SOC stock at 0–200 cm depth 
(a) and the relative proportion of estimated SOC stock at 0–30 cm depth (b), (c) the relative proportions (Mean + SD) at different soil layer depths 
in six vegetation types on the Qinghai Plateau. The relative proportion is represented by the proportional contribution of each layer to the total 
SOC stock at a depth of 200 cm. The SOC stock was estimated by the model considering the paleoclimatic factors (Model_PC). SOC represents soil 
organic carbon

Fig. 5  Spatial distributions of the relative changes (%) caused by 
the paleoclimate for the modeled SOC stock at various soil depths 
on the Qinghai Plateau. The relative changes (%) were based on 
the comparison of the SOC stock estimated by the model that 
considered the paleoclimate factors (Model_PC) and the SOC stock 
estimated by the model without considering the paleoclimate and 
human footprint factors (Model_Ori). SOC represents soil organic 
carbon
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Table 3  Comparison of the estimated SOC stock values from the different models for various soil depths across the Qinghai Plateau

Model_Ori represents the SOC stock estimated without considering the paleoclimate or the human footprint factors; Model_PC represents the SOC stock estimated 
considering the paleoclimate factors; Model_H represents the SOC stock estimated considering the human footprint factors. The relative changes (%) were based on 
the comparison of the SOC stock estimated by Model_PC or Model_H and the SOC stock estimated by Model_Ori. SOC represents soil organic carbon

SOC stock (kg C m−2) Model 0–30 (cm) 30–50 (cm) 50–100 (cm) 100–200 (cm) 0–100 (cm) 0–200 (cm)

Mean Model_Ori 5.46 2.32 3.51 4.00 11.29 15.29

Model_PC 5.76 2.38 3.69 4.49 11.82 16.31

Model_H 5.58 2.30 3.39 4.13 11.27 15.40

Relative change (%) Model_PC 5.49 2.59 5.13 12.25 4.69 6.67

Model_H 2.20 − 0.86 − 3.42 3.25 − 0.18 0.72

Fig. 6  Impact of human disturbances on relative changes (%) in estimated SOC stock caused by paleoclimate. a The relative changes (%) in 
estimated SOC stock caused by paleoclimate among different vegetation types at 0–200 cm depth on the Qinghai Plateau. The dotted points 
represent the mean values of the relative change in different vegetation types. b The relationship between the relative changes (%) in the estimated 
SOC stock caused by the paleoclimate at depths of 0–200 cm and the human footprint on the Qinghai Plateau. A piecewise linear regression model 
was fit, and breakpoints were detected by the “segmented” package [77] in R language. SOC represents soil organic carbon

Fig. 7  Spatial distributions of the relative changes (%) caused by the 
human footprint for the modeled SOC stock at various soil depths on 
the Qinghai Plateau. The relative changes (%) were the comparison 
of the SOC stock estimated by the model that considered human 
footprint factors (Model_H) and the SOC stock estimated by the 
model without considering the paleoclimate and human footprint 
factors (Model_Ori). SOC represents soil organic carbon

the 0–200 cm depth across the Qinghai Plateau (Fig. 6a, 
Additional file 1: Fig. S14). The relationships between the 
relative change (%) in the estimated SOC stock caused by 
paleoclimate at depths of 0–200 cm and the human foot-
print greatly satisfied piecewise linear regression (R2 = 
0.90, p < 0.001) (Fig. 6b), that is, the dependency of the 
current SOC stock on paleoclimate conditions regulated 
by human disturbances (Fig.  6b). Under lower (human 
footprint < 11.56) and higher (human footprint>36.23) 
human disturbance intensities, the positive contribu-
tion of paleoclimate to SOC stock prediction decreased 
with the increase in human disturbance intensity, 
while it increased under moderate human interference 
(11.56<human footprint<36.23) (Fig.  6b). In the natural 
systems (human footprint ~ 0), the paleoclimate had the 
highest influence on the current SOC stock, where the 
SOC stock values were underestimated by nearly 15% 
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if the models ignored the paleoclimate, while the SOC 
stock predictions were overestimated by nearly 6% in 
the ecosystems with strong human disturbances (human 
footprint ~ 45) if the models did not consider the pale-
oclimate (Fig.  6b). These results support the hypothesis 
that the predictive ability of paleoclimate on SOC stock 
decreases with human disturbances due to the fact that 
the predictive power of the current climate on SOC stock 
increased with disturbances associated with agricultural 
practices after human disturbances [19].

Effects of the human footprint on the spatial pattern 
of SOC stocks
The changes in the spatial pattern of the SOC stock 
caused by the human footprint (Fig. 7) were much lower 
than those caused by the paleoclimate (Fig. 5). The rela-
tive changes in SOC stock in most regions (nearly 90%) 
of the Qinghai Plateau were between − 20% and 20% at 
various depths (Fig. 7), which shows that the spatial pat-
terns of SOC stock simulation were highly consistent 
among the models regardless of whether they consid-
ered the human footprint. The SOC stock values only 
changed by −  0.18% and 0.72% at depths of 0–100  cm 
and 0–200 cm, respectively, when considering the human 
footprint (Table  3). The relative errors of SOC stock 
caused by the human footprint were vegetation/frozen 
type-independent, as it was evenly distributed in six veg-
etation types and permafrost and seasonally frozen soil 
(Fig.  8a). The deeper analysis found that the SOC stock 
values tended to increase in moderate (5< human foot-
print < 45) human interference areas when the models 
considered the human footprint (Fig. 8b). While human 
disturbances on the Qinghai Plateau were low (90% of the 

areas had human footprint values of less than 10) (Addi-
tional file 1: Fig. S14a), the overall impact of the human 
footprint on SOC prediction was weak.

Discussion
Comparison of estimated SOC stock with previous 
estimates
Although some studies have explored the SOC stock on 
the Tibetan Plateau, there are some differences due to the 
inconsistency of research data sources, calculation meth-
ods and soil depths (Additional file 1: Table S4). At pre-
sent, most of the studies on SOC stock across the whole 
Tibetan Plateau are limited to 0–100  cm depth or even 
less than 100  cm depth in grassland (Additional file  1: 
Table S4) [7, 9, 78] due to its high altitude and perennial 
snow cover [11]. Significant climate warming and conse-
quent permafrost degradation [12] have occurred on the 
Tibetan Plateau in recent decades. Therefore, an increas-
ing number of studies have focused on the SOC stock in 
deeper soil layers across permafrost regions (Additional 
file 1: Table S4) [4, 5, 10–12]. These studies estimated that 
the average SOC stock ranged from 6.56 to 20.60  kg C 
m−2 in the upper 100 cm (Additional file 1: Table S4) [5, 
7, 9, 78] and from 10.68 to 22.32 kg C m−2 in 0 to 200 cm 
[4, 5, 10]. The total SOC stock ranged from 7.4 to 33.52 
Pg C at depths of less than or equal to 200 cm (Additional 
file  1: Table  S4). Our estimated values of the average 
SOC stock were 5.76, 11.82, and 16.31 kg C m−2, and the 
total SOC stock values were 4.01, 8.23 and 11.36 Pg C at 
depths of 0–30 cm, 0–100 cm and 0–200 cm, respectively 
(Table 3), which is somewhere in between these studies 
(Additional file  1: Table  S4). Our results also show that 
the higher values (> 20 kg C m−2) were mostly located in 

Fig. 8  Distributions of the relative changes (%) in estimated SOC stock values caused by the human footprint. The relative changes (%) in estimated 
SOC stock values caused by the human footprint among the different vegetation types (a) and the human footprints (b) at 0–200 cm depth on 
the Qinghai Plateau. The dotted points represent the mean valus of the relative changes in different vegetation types. SOC represents soil organic 
carbon
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the eastern regions, and the lower values (< 10 kg C m−2) 
were mostly distributed in the western regions (Fig.  4a, 
Additional file  1: Fig. S12) due to the higher precipita-
tion and net primary production in the eastern part [5, 
12]. In addition, we found that nearly 40% of the average 
SOC stock was distributed in the top 30  cm across the 
Qinghai Plateau, and the largest and smallest proportions 
of SOC stock in the top 30 cm were found in the crop-
land (42%) and desert/bare-land (31.4%), respectively 
(Fig.  4c). The SOC stock was shallower in the cropland 
than in deserts because the vertical distribution of SOC 
stock was mainly determined by the climate and roots 
(i.e., the root:shoot ratio and its vertical root distribution) 
[79]. Moreover, we used SOC stock scaled up to 1 km by 
taking the mean SOC stock values of all sites within the 
range of 1  km to match the grid environment data, but 
this produced some uncertainties due to limited extrapo-
lation ability. However, the spatial distributions of SOC 
stock estimated by most studies were basically based on 
the original SOC stock observations (Additional file  1: 
Table  S4), and much less is known about the extent to 
which errors were caused by the SOC stock upscaling 
methods. Therefore, the SOC stock upscaling methods 
are critical for accurately simulating the spatial patterns 
of SOC stocks.

Most important factors for SOC stock modeling
We compiled a comprehensive environmental variable 
dataset (Table  1, Additional file  1: Table  S3) to explore 
the key drivers affecting SOC stocks at soil depths of 0 to 
200 cm over the Qinghai Plateau based on four strategic 
variable selection algorithms. Our results (Fig. 3a) show 
a pattern that is similar to those of other studies [37, 79]; 
that is, the vegetation characteristics (e.g., NDVI and 
GPP) largely influence the SOC stock in the top layer, but 
the climate and the geomorphological conditions play an 
important role in shaping the deeper SOC stock values. 
The results of the evaluation of the relative importance 
of the variables show that photosynthetically active radia-
tion (MC_PAR) was the most important factor affect-
ing the SOC stock on the Qinghai Plateau (Additional 
file 1: Fig. S5–S8). The ecosystem SOC stock is balanced 
by ecosystem photosynthesis and respiration [80], and 
MC_PAR determined the carbon input to soil by affect-
ing the vegetation biomass and thus significantly affected 
the SOC stock. Atmospheric nitrogen (N) deposition 
(MC_NitrDepAll) was also among the most important 
factors that shaped the SOC stock in this study (Addi-
tional file 1: Fig. S5–S8). Atmospheric N deposition acts 
as an N input factor to change soil N, and soil N is a key 
factor in the regulation of long-term carbon sequestra-
tion potential [81], thus significantly affecting SOC stock. 
The results of this study show that factors related to the 

N element may regulate SOC stock, such as soil total N 
(S_TotalN), soil alkali-hydrolysable N (S_AlkalihydroN), 
soil microbial biomass N (S_MicroSMN) and the C:N 
ratio of soil microbial biomass (S_MicroCN) (Additional 
file  1: Figs. S5–S8). However, these environmental vari-
ables with mismatched resolution will certainly produce 
some uncertainties due to resampling errors. Thus, we 
need to pay more attention to the evaluation of the accu-
racy of multisource data products over the Tibetan Pla-
teau in the future.

Effects of the paleoclimate and the human footprint 
on SOC stock modeling
Some studies have revealed that the paleoclimate greatly 
influences the prediction of current SOC stock val-
ues [11, 14, 19]. However, they have not quantitatively 
assessed the impact of the paleoclimate on the spatial 
distributions of SOC stock values. There is a consensus 
that the paleoclimate is more momentous than the mod-
ern temperature and modern precipitation in shaping the 
current SOC stock values in both the Tibetan Plateau and 
global regions [11, 19], which is identical to the findings 
of our study (Fig.  3b, c). In addition, we found that the 
effects of the paleoclimate on the spatial patterns and 
the modeling of SOC stock at depths of 100 to 200  cm 
were stronger than those at depths of 0 to 100 cm (Fig. 5, 
Tables  2, 3). Our findings may illustrate that a recalci-
trant pool that persists in soil for hundreds to thousands 
of years is mostly located in the bottom soil [82], and the 
labile carbon pool is less predictable than the recalcitrant 
carbon pool [6], which causes the models considering the 
paleoclimate to change more for bottom soil than topsoil.

The Qinghai Plateau has a large area of permafrost 
and seasonally frozen soil (Fig.  1), and we revealed that 
the paleoclimate signals were stronger in the permafrost 
than seasonally frozen soil area (Fig. 6a), as much of the 
soil carbon is locked in a frozen state [11, 83]. In addi-
tion, we found that the paleoclimate had the weakest 
effect on SOC stock in cropland (Fig.  6a), as more new 
carbon (50 years) is incorporated into soil from the cur-
rent environment in cropland [84], which indirectly sup-
ports the view of the importance of the modern climate 
on determining SOC stock values in ecosystems with 
strong human disturbances, such as cropland [19]. Fur-
ther analysis revealed that the dependency of the current 
SOC stock on paleoclimate conditions was regulated by 
human disturbances (Fig. 6b). These results suggest that 
the paleoclimate must be taken into account for the esti-
mation of SOC stock in natural ecosystems (low human 
footprint), and more accurate modern climate datasets 
could be used to better predict the SOC stock values in 
ecosystems with strong human disturbances, such as 
cropland.
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The mechanisms of how the paleoclimate potentially 
influences the current soil carbon are as follows: (1) The 
paleoclimate directly affected the formation and distribu-
tion of vegetation in the past, driving biotic inputs in soils 
for millennia, which is likely to have had a substantial 
influence on the current SOC stock [11, 19]. (2) The pale-
oclimate has an indirect influence on soil physiochemi-
cal properties, such as cation exchange capacity, soil 
texture and soil pH; these slowly changing soil properties 
can play a key role in determining the stabilization of the 
SOC [11, 14]. (3) The past climate affected the distribu-
tion of soil microbial diversity [16], soil respiration [17] 
and plant functional traits [18], and these factors regulate 
the current SOC stock by influencing nutrient flux rates 
and primary productivity [16, 18]. (4) The paleoclimate 
regulates the contemporary rates of carbon fixation to 
influence contemporary carbon accumulation [19].

In this study, we also evaluated the effects of the human 
footprint on SOC stock values and discovered that the 
human footprint had a weaker influence on the distribu-
tion of the SOC than the paleoclimate on the Qinghai 
Plateau (Figs.  3c,   5, 6, 7, Table  3). The estimated SOC 
only changed by 0.72% at depths of 0 to 200 cm when the 
models considered the human footprint (Table  3). The 
existing studies basically deem that the Tibetan Plateau 
is a climate-dominant region [85]. Our results showed 
that 90% of the area is slightly disturbed by human pres-
sures (human footprint < 10) (Additional file  1: Figs. 
S4, S14a), and the proportion of cropland area is only 
approximately 3% (Fig. 2). Thus, the human footprint has 
a small impact on the SOC stock due to the low overall 
human interference. Above all, future modeling of soil 
carbon cycling should pay more attention to the impacts 
of climate legacy on SOC and include the paleoclimate, 
especially for the natural ecosystem, as well as include 
human activity factors in ecosystems with strong human 
interference.

Conclusions
In this study, we estimated the spatial and vertical dis-
tributions of SOC stocks at a soil depths of 0 to 200 cm 
across the Qinghai Plateau and quantitatively assessed the 
relative importance of the paleoclimate and the human 
footprint as well as its impacts on SOC predictions at the 
site and regional scales. Overall, we found that vegetation 
and modern climate factors are the determinant factors 
in SOC stocks and that the impacts of vegetation on SOC 
stocks decreased gradually with increasing soil depth. 
However, the paleoclimate factors were more important 
than the modern temperature, modern precipitation and 
the human footprint factors in shaping the current SOC 

stock distributions and accounted for some unexplained 
variations. Models considering the paleoclimate factors 
would significantly improve the models for predicting 
SOC stocks. Thus, when we removed the paleoclimate 
factors, the SOC stock prediction models produced rela-
tively higher spatial errors, which greatly changed the 
spatial patterns and magnitudes of the estimated SOC 
stocks. Further analysis revealed that the dependency of 
current SOC stock on paleoclimate conditions at depths 
of 0 to 200 cm was regulated by human disturbances. The 
models that ignored the paleoclimate factors tended to 
underestimate the SOC stock in the natural systems by 
nearly 15% and overestimated the SOC stock in the eco-
systems with strong human disturbances by nearly 6%. In 
summary, this study provided a benchmark for assessing 
whether, how, where and to what extent the SOC stocks 
may respond to climate legacy and human disturbance.
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