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Abstract 

Background: Quantifying the carbon balance of forested ecosystems has been the subject of intense study involv-
ing the development of numerous methodological approaches. Forest inventories, processes-based biogeochemical 
models, and inversion methods have all been used to estimate the contribution of U.S. forests to the global terres-
trial carbon sink. However, estimates have ranged widely, largely based on the approach used, and no single system 
is appropriate for operational carbon quantification and forecasting. We present estimates obtained using a new 
spatially explicit modeling framework utilizing a “gain–loss” approach, by linking the LUCAS model of land-use and 
land-cover change with the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3).

Results: We estimated forest ecosystems in the conterminous United States stored 52.0 Pg C across all pools. 
Between 2001 and 2020, carbon storage increased by 2.4 Pg C at an annualized rate of 126 Tg C  year−1. Our results 
broadly agree with other studies using a variety of other methods to estimate the forest carbon sink. Climate vari-
ability and change was the primary driver of annual variability in the size of the net carbon sink, while land-use and 
land-cover change and disturbance were the primary drivers of the magnitude, reducing annual sink strength by 39%. 
Projections of carbon change under climate scenarios for the western U.S. find diverging estimates of carbon balance 
depending on the scenario. Under a moderate emissions scenario we estimated a 38% increase in the net sink of 
carbon, while under a high emissions scenario we estimated a reversal from a net sink to net source.

Conclusions: The new approach provides a fully coupled modeling framework capable of producing spatially 
explicit estimates of carbon stocks and fluxes under a range of historical and/or future socioeconomic, climate, and 
land management futures.
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Background
Forest ecosystems play a critical role in the global car-
bon cycle. Annually, the global forest sink has been esti-
mated at ~1.1 Pg C  year−1 [1], with more recent studies 
placing the sink as high as 2.0 Pg C  year−1 [2], although 

uncertainties in those estimates are substantial. This net 
sink currently represents 25–50% of the global C emis-
sions due to fossil fuels [1, 3], highlighting the magni-
tude and importance the world’s forests play in the global 
carbon cycle. The Intergovernmental Panel on Climate 
Change (IPCC) estimates that globally, forests have the 
capacity to absorb 25% of the atmospheric  CO2 needed 
under a scenario limiting global warming to 2  °C [4]. 
Regionally, temperate forests of North America have 
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been estimated as a large and persistent carbon sink at a 
rate of 0.3–0.9 Pg C  year−1 [5], with U.S. forests account-
ing for ~80% of this net carbon uptake [6]. The large con-
tribution of U.S. forests has been attributed primarily 
to the growth of immature forests over the past several 
decades, as a result of the recovery of forests from har-
vest and other disturbances combined with the creation 
of new forests due to conversions from other land cover 
types. However, uncertainties in the size and future direc-
tion of this forest-based sink remain, due in large part to 
limitations regarding the methodological approaches 
used to estimate the net carbon flux [5].

Given their importance in the global carbon cycle, U.S. 
forests are increasingly looked to as a potential means of 
offsetting greenhouse-gas emissions from fossil fuel con-
sumption and land use. The implementation of natural 
climate solutions, representing portfolios of land man-
agement policies and actions aimed at increasing seques-
tration of ecosystem carbon, provides an opportunity to 
make land management decisions today that will serve 
to maintain, and possibly increase, this key carbon sink 
into the future [7–9]. Such decisions, however, require 
robust methods and tools in order to meaningfully quan-
tify, compare and contrast the projected response of U.S. 
carbon stocks and fluxes to these alternative land man-
agement strategies.

Various approaches have been used to estimate past 
and future carbon stocks and fluxes in U.S. forests, 
including process-based ecosystem models, inventory-
based “stock-change” methods, and carbon budget 
“stock-flow” models [10, 11]. For example, process-based 
ecosystem models are designed to represent underlying 
biogeochemical processes, including a wide range of car-
bon dynamics [12–15]; such models are typically used to 
simulate vegetation responses to a range of controlling 
processes and applied at global to national scales. A key 
strength of this class of model is its ability to integrate the 
findings from manipulative experiments into projections 
of the effects of major controlling processes on carbon 
dynamics. Ecosystem models can also readily be applied 
across large geographic areas, and can be used to inte-
grate and extend experimental understanding in order 
to generate projections under novel future conditions 
[16]. Future projections generated by ecosystem models 
generally come with high uncertainty, however, as these 
models often require a large

number of input parameters, many of which can be dif-
ficult to estimate over large spatial extents [5, 16]. Fur-
thermore, ecosystem models are typically limited in their 
ability to represent variation in forest types, often relying 
on generalizations to compensate for unknown param-
eters; for example, vegetation communities are often gen-
eralized into a small set of plant functional types, rather 

than retaining the specific forest types or species groups 
recorded in forest inventories. Finally, ecosystem models 
generally lack the ability to integrate the effects of com-
plex socioeconomic processes, such as land conversions, 
into their projections of future ecosystem carbon dynam-
ics [12, 17], thus limiting their ability to project the con-
sequences of alternative land management scenarios.

An alternative to process-based ecosystem mod-
els for estimating forest carbon stocks and fluxes are 
inventory- based “stock-change” approaches, where 
field-based measurements are used directly to estimate 
changes in forest carbon stocks between two successive 
time periods [10]. For example, using the U.S. Depart-
ment of Agriculture Forest Inventory and Analysis (FIA) 
data, estimates of changes in carbon stocks are pro-
duced annually for U.S. ecosystems and reported to the 
United Nations Framework Convention on Climate [18]. 
FIA data provide a comprehensive set of plot-level data 
characterizing forest attributes and have been used in a 
number of national studies aimed at quantifying the U.S. 
forest carbon sink [5, 19–22]. However, in the context of 
assessing the carbon consequences of land management 
alternatives, there are several limitations associated with 
inventory-based stock-change accounting, including: (1) 
assessments across large geographic extents can be cost-
prohibitive due to the need for repeated plot measure-
ments across a large number of sample sites in order to 
fully characterize ecosystem heterogeneity; (2) inventory-
based approaches are not spatially explicit and thus often 
rely on inaccurate extrapolation methods to develop esti-
mates in areas where no inventory exists [23]; (3) stock-
change methods do not capture the underlying drivers of 
carbon fluxes that are typically required to separate the 
effects of land management alternatives in future projec-
tions; and (4) stock-change methods do not readily allow 
for projections under novel conditions (i.e., those out-
side of historical plot conditions), such as those that are 
expected to occur in the future under alternative global 
change scenarios. However, when applied in conjunction 
with other models, a robust forest inventory program can 
be used to calibrate and validate the parameters for other 
models, allowing model projections to be more readily 
extended across larger spatial extents and novel condi-
tions [11, 17].

The third approach to estimating forest carbon stocks 
and fluxes is to use a stock-flow (also called “gain-loss” 
or “carbon budget”) approach. Here the total ecosys-
tem carbon is divided into a number of carbon pools, 
with the model then explicitly tracking the fluxes of car-
bon between pools over time [10, 11, 24]. With stock-
flow models, flux rates between pools are typically 
derived from inventory data. By tracking the forest type 
and age of each simulated entity (e.g., stand or cohort), 



Page 3 of 26Sleeter et al. Carbon Balance and Management            (2022) 17:1  

empirically derived regional stem wood “volume curves,” 
representing the relationship between stem wood bio-
mass and forest type/age, provide the foundation for 
calculating annual flux rates due to growth. Biomass 
expansion factors are then used to convert stem wood 
growth rates to fluxes in other biomass pools, such as 
roots, snags and branches [10]. More complex stock-flow 
models also track the explicit dynamics of dead organic 
matter (DOM) pools, including soil carbon dynamics, 
based on empirically derived measurements of DOM 
decay and decomposition rates.

A widely used stock-flow model is the CBM-CFS3, a 
carbon budget model originally developed for use in Can-
ada [11]. The CBM-CFS3 tracks the annual carbon fluxes 
between 21 different pools (10 biomass and 11 DOM), 
including fluxes to wood products and to/from the 
atmosphere. Importantly, fluxes due to disturbances (e.g., 
fire, harvest, land conversion) are also considered, as are 
changes in flux rates over time to variation in tempera-
ture (e.g., due to climate change), making the approach 
well suited for forecasting the consequences of future 
land management scenarios on forest carbon. Thanks to 
its general and transparent structure, all of CBM-CFS3 
input parameters can be customized to reflect regional 
conditions; as a result it has been applied in many differ-
ent countries [25–28], including studies within the U.S. 
[29, 30]. A current limitation of the CBM-CFS3, however, 
is that it generates only spatially referenced (rather than 
spatially explicit) projections – i.e., the model currently 
tracks carbon by landscape strata, rather than by spa-
tial cells, and thus no spatial interactions between strata 
are possible. As a result the model is unable to account 
for complex spatial patterns of land cover change (e.g., 
urbanization, fire spread), such as those typically found 
in operational scenarios of land management; it is also 
not able to assign carbon values to specific locations (i.e., 
cells) across a landscape.

To overcome some of these limitations in projecting 
the carbon consequences of future land management 
scenarios, we previously developed the Land Use and 
Carbon Simulator (LUCAS) [31]. LUCAS is a modeling 
framework capable of providing spatially explicit esti-
mates of carbon stocks and fluxes in response to alter-
native future land management scenarios, and consists 
of two integrated components: a state-and- transition 
simulation model (STSM) of land use/land cover (LULC) 
change, combined with a stock-flow model of carbon 
dynamics [32, 33]. The STSM portion of LUCAS projects 
the consequences of disturbances and land management 
actions (i.e., land cover conversions) across a landscape, 
with uncertainty, while the stock-flow carbon model 
then infers the carbon consequences of these changes. 
While LUCAS has already been applied in the U.S. at 

local [34], state [31], and national [35] scales, in both 
spatially explicit and spatially referenced forms, to date 
the model’s carbon budget flux rates have been derived 
from repeated simulations of the Integrated Biosphere 
Simulator (IBIS), a process-based ecosystem model [17, 
35]. When used with LUCAS, output from a suite of 
IBIS simulations is transformed into age and ecosystem-
dependent carbon growth and turnover rates, providing 
the flux rates required for the LUCAS stock-flow carbon 
model.

Like most process-based ecosystem models, however, 
IBIS is both: (1) limited to a relatively small number of 
discrete vegetation classes (plant functional types), which 
in turn limit its ability to represent the full heterogeneity 
of forested ecosystems across the U.S. and (2) computa-
tionally intensive, limiting its ability to run in a spatially 
explicit manner across larger landscapes.

In this paper we present the results of our efforts to 
improve our existing LUCAS framework by adding the 
rich suite of carbon dynamics embodied within the exist-
ing CBM-CFS3, creating an operational forecasting tool 
capable of rapidly generating spatially explicit estimates 
of historical and future carbon stocks and fluxes, under 
alternative future land management scenarios, for any 
forested location in the conterminous U.S. (CONUS). We 
estimate historical (2001–2020) carbon stocks and flux 
and compare this to other CONUS-scale efforts to quan-
tify carbon. To probe the sensitivity of the major con-
trolling processes (climate, land-use land-cover change 
(LULC), disturbance) on ecosystem carbon, we ran addi-
tional simulations with these processes removed and 
compared the results to our historical reference scenario. 
We then demonstrate the ability of the model to extend 
annual projections into the future (2021–2050), based on 
climate change scenarios. Two regional case studies are 
also presented: first, an estimation of historical annual 
wildfire emissions for the state of California and, second, 
simulations of the effect of regional-scale reforestation 
on the carbon balance of forested ecosystems in the west-
ern U.S.

Results
The integrated modeling approach described in “Meth-
ods” produces estimates of the composition of landscape 
classes and their attributes (e.g., age, time-since-transi-
tion), landscape transitions, carbon stocks, and carbon 
fluxes. For each variable type, the model can output both 
spatially explicit (i.e., raster maps) and spatially refer-
enced estimates. Spatially referenced results are pro-
vided for each of the three stratification systems used in 
the model (ecoregions, states, and ownership). We also 
show how the approach can be used to develop future 
projections and to provide near real-time assessments 
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of carbon fluxes from disturbances. We use net biome 
productivity (NBP) to reflect the net carbon sink in eco-
systems after impacts from land use and disturbance are 
accounted for. We follow the convention where positive 
NBP values indicate a net sink of carbon in terrestrial 
ecosystems while negative values indicate a net source to 
the atmosphere.

Comparison of historical carbon stocks and flux estimates
Estimation of carbon storage in live, dead, and soil pools
Using the linked LUCAS-CBM modeling approach, we 
estimated total ecosystem carbon storage (TEC; the 
sum of all carbon stored in live, DOM, and soil pools) 
in forested ecosystems of CONUS. In 2001, forest TEC 
was estimated at 52,027 Tg C. Live carbon accounted for 
31% (16,201 Tg C) of TEC while DOM pools accounted 
for 69% (35,826 Tg C). Within DOM pools, standing 
and down deadwood accounted for 5% (2731 Tg C), lit-
ter accounted for 4% (2239 Tg C), and soil organic carbon 
accounted for 59% (30,856 Tg C) of TEC.

Our estimates of total carbon storage compare well 
with other recent studies. For example, in the most 
recent national greenhouse gas inventory, the U.S. Envi-
ronmental Protection Agency (EPA) estimated forested 
ecosystems stored 17,940 Tg C in live biomass [18], 
slightly higher than our estimate of 16,201 Tg C (mean 
estimated over the 2001–2010 period). When normaliz-
ing for differences in forest area (Fig. 1), EPA estimated 
carbon storage in live vegetation was 64.1 tons C  ha−1, 
compared to our estimate of 60.3 tons C  ha−1. Other car-
bon pool estimates also compared well with those from 
the EPA. We estimated carbon stored in dead biomass 

averaged 10.2 tons C  ha−1 compared to EPA’s estimate of 
9.8 tons C  ha−1, while soil carbon storage was estimated 
at 114.8 tons C  ha−1 compared to EPA’s estimate of 112.8 
tons C  ha−1. Our estimates of litter carbon density (8.3 
tons C  ha−1) were toward to lower range of other studies 
and comparable to estimates from [36] (9.7 tons C  ha−1) 
and [6] (8.8 tons C  ha−1), while the EPA estimated litter 
carbon density at 13 tons C  ha−1.

Net change in ecosystem carbon storage
Between 2001 and 2020, TEC increased from 52,027 Tg 
C to 54,413 Tg C, resulting in a forest carbon sink of 2386 
Tg C over the 19-year period. On an annualized basis, 
the net forest carbon sink was estimated to be 126 Tg C 
 year−1, or 0.47 Tons C  ha−1  year−1. We estimated large 
variability in the size of the forest carbon sink over time, 
primarily due to the effects of weather and climate vari-
ability and its resulting effect on net primary production 
(NPP); variability in the rate of disturbance also played 
an important role, especially in the later part of the study 
period. For the 2001–2010 period we estimated the net 
forest sink to be 165 Tg C  year−1 compared to 103 Tg C 
 year−1 for the 2011–2020 period (Fig.  1). On an annual 
basis, NBP ranged from a sink of 247 Tg C  year−1 to a net 
source at a rate of −19 Tg C  year−1. Figure 2 shows the 
spatial distribution of NBP in U.S. forests. Forests in Cali-
fornia and the Southeast were the largest drivers of car-
bon loss, with fire driving a majority of the change in the 
west and forest harvest driving changes in the Southeast. 
The largest sinks of carbon were located in the coastal 
Pacific Northwest and in redwood forests of California. 
In general, the largest carbon sink rates were located in 

Fig. 1 Comparison of estimates of forest carbon stocks and net flux with other studies. Panel a shows estimates of carbon stock density. Bars 
represent the range of values in other studies with the median shown as the black vertical bar. Panel b shows estimates of annual net biome 
productivity. Point and line ranges represent the reported net carbon sink and the time period reported in other studies using various methods. The 
red line shows the annual estimates from this study. Note, inventory methods reflect a range of studies, which include use of both FIA and US EPA 
greenhouse-gas inventory data
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young regenerating stands while older stands had smaller 
sink rates or were carbon neutral.

Comparison of net carbon flux estimates between 
models and approaches can be difficult due to differences 
in boundary conditions, ecosystem processes included in 
models (e.g., effects of land use), and the temporal period 
covered. In general, our estimates of NBP are within the 
range of numerous other studies which generally range 
from a low of 47 Tg C  year−1 [37] to a high of 282 Tg C 
 year−1 [5]. [5] found that on average, atmospheric inver-
sion (282 Tg C  year−1) and inventory-based methods 
(244 Tg C  year−1) produced higher estimates of the net 
forest carbon sink than estimates derived using terres-
trial biosphere models (158 Tg C  year−1). However, all 
approaches showed large uncertainties. The Second State 
of the Carbon Cycle Report estimated the U.S. forest car-
bon sink at 178 Tg C  year−1 (0.58 tons C  ha−1  year−1) for 
the period 2000–2014 [6]. Over a similar period (2001–
2014), the LUCAS-CBM approach estimated a net sink 
rate of 0.53 tons C  ha−1  year−1. Using a process-based 
dynamic global vegetation model, [17] estimated the net 
forest sink at 125 Tg C  year−1 while over the same period 

we estimated the net sink at 165 Tg C  year−1, which was 
similar to the mean estimate of terrestrial biosphere 
models evaluated by [5]. Ref. [5] reviewed 17 terres-
trial biosphere models and found a mean net ecosystem 
exchange (NEE) in U.S. forests of −157.6 (SD = 309.5) Tg 
C  year−1 (here, negative values denote a net sink of car-
bon in ecosystems and product pools). The Second State 
of the Carbon Cycle Report (SOCCR2) estimated an net 
carbon sink of 154 Tg C  year−1 for U.S. forested ecosys-
tems (forestland remaining forestland). Our estimate for 
the 2001–2010 period was a net sink of 159 Tg C  year−1, 
which compares well to both SOCCR2’s inventory based 
approach and the estimate derived from process models.

Net change in carbon pools
Increases in TEC were primarily the result of increases in 
carbon stored in live biomass (Table 1). We estimated live 
carbon pools increased from 16,201 Tg C to 18,890 Tg 
C, a net increase of 2689 (16.6%). Merchantable carbon 
had the largest increase in both amount (1649 Tg C) and 
as a percentage of 2001 stock levels (21%), followed by 
branches and other wood (537 Tg C; 12.5%) and coarse 

Fig. 2 Map of the total estimated net biome productivity of conterminous U.S. forests for the period 2001–2020. Negative values indicate a net loss 
of carbon from ecosystems and positive values indicate a net sink of carbon. Very high negative NBP values are the result of disturbance losses, such 
as those resulting from harvesting and wildfire
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roots (418 Tg C; 15.5%). In total, above-ground live car-
bon increased by 17.3% and below-ground live carbon 
increased by 13.8%.

Carbon stored in dead organic matter (DOM) pools, 
including deadwood, litter, and soil, remained rela-
tively stable, declining by −0.8% (−303 Tg C) over the 
study period. Total carbon stored in deadwood and lit-
ter increased by 1.7% and 1.6%, respectively, while soil 
carbon declined by −1.2%. However, the net change in 
DOM masked important internal dynamics (Table 1). For 
example, carbon stored in standing dead snags increased 
by 35.8% while downed deadwood (i.e., “DOM: Above-
ground Medium”) declined by −18.1% with the increase 

in standing deadwood the result of increases in area 
impacted by wildfire in recent years.

Net losses in live biomass carbon were concentrated 
in three western U.S. ecoregions (Sierra Nevada Moun-
tains, Klamath Mountains, Cascades), primarily the 
result of recent high rates of wildfire. All other ecore-
gions in the U.S. were net sinks of live carbon (Fig.  3). 
The Middle Rockies and Northern Rockies ecoregions 
were large sinks of live carbon, resulting primarily from 
regrowth following high rates of historical disturbance 
that occurred prior to 2001. Consequently, these regions 
also experienced significant net declines in litter and 
deadwood pools as stocks decomposed over time. Dead-
wood pools increased significantly in western ecoregions, 
which have experienced several recent years of large 
stand-replacing wildfires. Declines in soil carbon were 
ubiquitous across ecoregions, although represent a rela-
tively small portion of the overall soil pool. The largest 
declines were associated with near-surface soil horizons, 
which were most vulnerable to emissions from wildfire 
and increasing rates of decay due to rising temperature.

Major controlling processes on historical net carbon fluxes
Sensitivity analysis
In addition to the reference simulation (“LULC-
D+Climate”) presented in the previous section, which 
included the combined effects of LULC/disturbance and 
weather and climate, we ran three additional simulations 
to assess the sensitivity of major controlling processes 
on ecosystem carbon dynamics. The additional simula-
tions included (a) a scenario where only weather and 
climate effects were included (“Climate Only”), (b) a sce-
nario were only LULC and disturbances were included 
(“LULC-D Only”), and (c) a simulation where neither 
LULC or climate was included (“No Effects”). Figure  4 
shows the estimated net primary productivity (NPP), het-
erotrophic respiration (Rh), net ecosystem productivity 
(NEP), and net biome productivity (NBP) over time for 
each of the four simulations.

Under the LULC-D+Climate simulation, the size of 
the net sink varied considerably from year-to-year, rang-
ing from −19 Tg C  year−1 (source) to 247 Tg C  year−1 
(sink), with climate primarily driving inter-annual vari-
ability in the size of the forest sink. When climate was 
not included in the simulation (“LULC-D Only”), the size 
of the net sink ranged from 8 to 196 Tg C  year−1 (when 
2020 is excluded, removing the effects of an extreme fire 
year, the low end of the range was 61 Tg C  year−1) and 
showed a declining trend over time due to forest aging, 
increases in LULC and disturbances, and the absence of 
increased productivity from recent climate conditions. 
When LULC was excluded (“Climate Only”), the forest 

Table 1 Carbon stock estimates and net change in stocks for 
forest ecosystems of the conterminous U.S. between 2001 and 
2020

Carbon stock and net change estimates are in Tg C

The Aboveground Slow pool has been included with the IPCC Soil pool rather 
than the Litter pool as done in the CBM-CFS3 model

Year Change

Stock 2001 2020 Tg C Percent

Aboveground live

 Biomass: Foliage 881.5 949.2 67.7 7.7

 Biomass: Merchantable 7859.7 9508.9 1649.2 21.0

 Biomass: Other Wood 4306.0 4842.6 536.6 12.5

 Total 13047.1 15300.7 2253.5 17.3

Belowground live

 Biomass: Coarse Root 2689.4 3107.0 417.6 15.5

 Biomass: Fine Root 464.6 482.3 17.7 3.8

 Total 3154.1 3589.3 435.3 13.8

Deadwood

 DOM: Aboveground 
Medium

1488.9 1219.4 − 269.6 − 18.1

 DOM: Belowground Fast 246.9 247.4 0.5 0.2

 DOM: Snag Branch 238.6 281.8 43.3 18.1

 DOM: Snag Stem 756.9 1028.2 271.3 35.8

 Total 2731.3 2776.8 45.5 1.7

Litter

 DOM: Aboveground Fast 1382.9 1369.6 − 13.2 − 1.0

 DOM: Aboveground Very 
Fast

856.0 904.2 48.2 5.6

 Total 2238.9 2273.9 35.0 1.6

Soil

 DOM: Aboveground Slow 7140.2 6871.6 − 268.6 − 3.8

 DOM: Belowground Slow 23572.1 23457.3 − 114.8 − 0.5

 DOM: Belowground Very 
Fast

143.3 143.5 0.2 0.2

 Total 30855.6 30472.4 − 383.1 − 1.2

All pools

 Total 52027.0 54413.1 2386.1 4.6
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carbon sink was 49% higher (mean of 271 Tg C  year−1) 
than simulations where LULC was included. Land use, 
land-use change, and disturbances were the primary con-
trolling processes affecting the magnitude of the net car-
bon sink (Fig. 4).

Net primary productivity (NPP) of U.S. forests aver-
aged 1,238 Tg C  year−1 in the “No Effects” simulation. 
Incorporating the effects of LULC and disturbances 
reduced total NPP by 49 Tg C  year−1, while adding the 
effects of climate resulted in an increase in NPP of 9 
Tg C  year−1 compared to the LULC only simulation. 
These results suggest that LULC and disturbance have 
a negative impact on NPP while climate variability and 
change have resulted in a small and highly uncertain 
increase in productivity of U.S. forests. Heterotrophic 
respiration (Rh) increased under all simulations result-
ing from increases in productivity, climate warming, 
and the effects of land use history. Net ecosystem pro-
ductivity (NEP) (the difference between NPP and Rh) is 
the net carbon sink before LULC and disturbances are 

accounted for. Under the reference scenario (“LULC-
D+Climate”), we estimated mean annual NEP at 217 
Tg C  year−1. With a mean annual NBP rate of 132 Tg C 
 year−1 we attribute 85 Tg C  year−1 to ecosystem remov-
als resulting from LULC and disturbances.

Effects of LULC and disturbance
Table 2 shows the emission, harvest, and mortality fluxes 
for the LULC and disturbance transitions considered in 
this study. Reduction of carbon sequestration was pri-
marily from the transfer of carbon to harvested wood 
products (64 Tg C  year−1) with clearcut harvest account-
ing for more than 90% of the carbon removal from eco-
systems. Harvest activities also resulted in a similar 
amount of carbon transferred from live to DOM pools 
via mortality. Our estimate of carbon transfer via har-
vest was considerably lower than other studies, including 
those from [17] (133 Tg C  year−1), [37] (107 Tg C  year−1), 
and [6] (113 Tg C  year−1), likely the result of a large 
underestimation of forest thinning rates which are not 

Fig. 3 Net change in carbon pools by ecoregion for the period 2001–2020. Note, the scale for each map is different in order to highlight differences 
in carbon pools between regions
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Fig. 4 Net fluxes of carbon in conterminous U.S. forests for the period 2002–2020. The four scenarios include the effects of climate only, land use 
and disturbance only, the combined effects of land use and climate, and no effects other than forest aging

Table 2 Average annual fluxes of carbon resulting from land-use and land-cover change, and disturbances for the period 2001–2020

Emissions refer to the direct combustion of carbon to the atmosphere as either carbon monoxide, methane, or carbon dioxide. All emissions are shown in units of 
carbon. Harvest refers to the transfer of carbon out of the ecosystem to harvested wood products. Mortality is the transfer of live carbon to DOM pools. Transfer refers 
to the transfer of carbon from one DOM pool to another. Units are in Tg C year

Transition group Transition Type Emission Harvest Mortality Transfer

Agricultural expansion Cropland 0.58 0.44 0.26 –

Pasture 0.56 0.49 0.25 –

Total 1.14 0.93 0.51 –

High Intensity 0.23 0.09 – –

Urbanization Medium Intensity 0.73 0.27 – –

Low Intensity 1.19 0.45 – –

Open Space 1.74 0.66 – –

Total 3.89 1.46 – –

Forest Clearcut – 59.41 57.31 6.95

Forest harvest Forest Selection – 2.19 2.15 –

Total – 61.60 59.46 6.95

High Severity Severity 5.60 – 8.22 –

Fire Medium Severity Severity 3.96 – 5.68 –

Low Severity Severity 6.34 – 6.72 –

Total 15.90 – 20.62 –

High Severity Severity – – 6.05 –

Insect Medium Severity Severity – – 4.96 –

Low Severity Severity – – 6.25 –

Total – – 17.26 –
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well detected in the Landfire disturbance data. [38] found 
a similar result, where remote sensing based approaches 
tend to underestimate forest harvest carbon removals 
relative to methods, which rely on forest inventory alone.

Ecosystem carbon losses from combustion averaged 
21 Tg C  year−1, with wildfire accounting for 76% of all 
LULC and disturbance related emissions; emissions from 
urbanization and agricultural expansion accounted for 
19% and 5%, respectively. Emissions from wildfire were 
highly variable from year-to-year, with three of the four 
highest fire emission years all occurring since 2017. In 
2020, wildfire burned ~3.7 million hectares, primarily in 
California and Oregon, an amount 231% greater than the 
historical average. Emissions were estimated to be 73.5 
Tg C (269.8 Tg  CO2), which were more than three times 
the historical average.

In addition to ecosystem carbon removals, LULC and 
disturbances resulted in the transfer of an additional 93 
Tg C  year−1 from live to DOM pools, which will contrib-
ute to future years reductions in the carbon sink through 
their decay and decomposition. This future flux could be 
accelerated by continued increases in the turnover rate of 
DOM resulting from climate warming.

Regional Case study #1: Carbon emissions from wildfire 
in California
Historically, wildfire in California has been an impor-
tant driver of carbon balance. Over the past two dec-
ades, wildfire has taken on an increasingly important 
role driven in part by climate change [39, 40]. In 2020, 
California experienced an unprecedented amount of 
large high severity fires. In total, more than 4 million ha 
burned across the U.S. with 1.7 million ha burning in 

California [41] alone. Five of the six largest fires in Cali-
fornia’s history occurred in 2020, each burning more than 
100,000 ha, with the August Complex fire alone burning 
more than 400,000 ha across parts of five counties. Using 
updated fire perimeter maps [41], we were able to pro-
vide rapid assessments of impacts to carbon stocks and 
emissions from forested ecosystems affected by these 
events.

Figure 5 shows the estimated annual emissions of  CO2 
in California from wildfires from each carbon pool. We 
estimated that between 2001 and 2010, wildfire in Cali-
fornia resulted in 9.7 Tg  CO2  year−1 being emitted to 
the atmosphere. Between 2011 and 2019, we estimated 
annual emissions from fire increased by 56% to 15.1 Tg 
 CO2  year−1, with annual emissions exceeding 40 Tg  CO2 
 year−1 in two of those years (2017 and 2018). These esti-
mates compare well with estimates produced by the Cali-
fornia Air Resources Board [42]. By comparison, the total 
carbon emissions from California’s commercial and resi-
dential sector averages ~43 Tg  CO2  year−1 [43]. In 2020, 
emissions from wildfire increased 932% (relative to the 
2002–2019 mean) to an estimated 127.7 Tg  CO2  year−1, 
an amount equivalent to 75% of California’s emissions 
from the states entire transportation sector [43].

Projections of carbon change under climate scenarios
We projected future changes in forest carbon dynam-
ics for the western U.S. based on downscaled climate 
data for the RCP 4.5 radiative forcing scenario [44] for 
the period 2020–2050. We selected the CanESM2 and 
HADGEM2-ES365 downscaled climate futures to repre-
sent “hot-dry” and “warm-wet” futures, respectively [45]. 

Fig. 5 Estimates of annual wildfire emissions in California for the period 2002–2020. DOM refers to dead organic matter
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Climate data from the Coupled Model Inter-comparison 
Project (CMIP5) were downscaled using the

Multivariate Adaptive Constructed Analogs (MACA) 
[46]. Downscaled climate data were used to produce a 
time series of spatial flow multipliers used to scale annual 
vegetation growth and the decay and decomposition of 
DOM at the pixel level. Future LULC and disturbances 
were sampled, with replacement, from historical rates of 
change following methods described in [31]. Additional 
details are described in the methods section.

Lines reflect the minimum and maximum estimate 
1a7cross the two climate futures. The CanESM2 model 
represents the warm-wet scenario and the HadGEM2-ES 
model represents the hot dry scenario.

Figure 6 shows the TEC storage for the historical and 
alternative climate futures for each of the 11 western 
states included in the simulation. Over the historical 
period, the western U.S. was a small net sink of carbon, 
with NBP estimated at 4.8 Tg C  year−1. Under the warm-
wet model, the size of the sink was projected to increase 
slightly to 6.6 Tg C  year−1. In contrast, under the “hot-
dry” model, western forested ecosystems were projected 
to transition to a net source of carbon to the atmosphere 
at an annualized rate of −0.9 Tg C  year−1. However, the 
total annualized sink estimate masks considerable vari-
ability in both time and space, with some states projected 
as net sinks while others were projected to be a net 
source. While climate scenarios showed broad consist-
ency in trajectory and magnitude of TEC for seven of the 
twelve western states, differences in climate scenarios are 
also evident. In five states, the “warm-wet” future results 
in greater net sequestration relative to the “hot-dry” 
scenario.

Regional case study #2: Western U.S. reforestation
To demonstrate the capability of the LUCAS-CBM 
approach, we simulated the effects of a simple natural cli-
mate solutions (NCS) scenario where areas of grassland, 
shrubland, pasture, cropland, and previously burned 
areas that historically supported forests were candidates 
for reforestation. We used a set of spatial maps to con-
strain locations where reforestation could occur [47]. 
Candidate areas were identified if tree cover occurred 
historically and exceeded 25%. For a complete descrip-
tion of the methods used to identify potential reforesta-
tion sites see [47]. However, it is important to note that 
the methods used to generate maps of potential refor-
estation locations did not consider future climate condi-
tions. It is reasonable to assume that suitability for forest 
restoration will be impacted by changes in climate, and 
therefore effect the efficacy of any mitigation strategies. 
Because we did not account for these effects, the example 
provided here should be viewed as a conceptual approach 

to using the modeling framework to simulate “what-if” 
scenarios on the effects of NCS and not a true forecast, 
which would imply a level of confidence not readily quan-
tifiable given the available data.

We projected the effect of reforesting nearly 10 mil-
lion ha across 11 western states beginning in 2030 and 
running through 2050. Reforestation of shrublands and 
grasslands accounted for ~75% of the total reforested 
area while post-fire reforestation accounted for ~17%. 
Reforestation of croplands and pastures accounted for 
less than 5% combined. When reforestation was included 
in the simulations, forest ecosystems sequestered an 
additional 234–300 Tg C by 2050 (6d). On an annualized 
basis, reforestation increased the annual carbon sink by 
10Tg C  year−1 under the warm-wet scenario and 7.8 Tg C 
 year−1 under the hot-dry scenario.

Discussion
The results presented above were obtained using a 
national approach combining the LUCAS state-and- 
transition simulation model of landscape change with 
the CBM-CFS3 model of ecosystem carbon dynamics to 
produce detailed, spatially explicit estimates of landscape 
change and ecosystem carbon dynamics for forests of the 
conterminous United States. The approach leverages the 
robust capabilities of LUCAS to represent a wide range of 
LULC and disturbance types derived from remote sens-
ing techniques. We used the CBM-CFS3 model of carbon 
dynamics to parameterize a stock-flow sub-model and 
added a dynamic growth module to represent the effects 
of climate variability and change on the NPP of forested 
ecosystems. Because the method relies on the modeling 
of carbon fluxes to estimate stocks, the LUCAS-CBM 
approach provides the added benefit of providing rich 
detail in the underlying transfer of carbon between eco-
system pools suitable for policy-relevant applications 
such as national carbon monitoring, which is lacking in 
traditional inventory-based stock-change approaches. 
Additionally, because the model is parameterized at the 
pixel scale, all outputs are provided as a time-series of 
spatially explicit maps, providing much needed resolu-
tion suitable for land management decision making.

We found that U.S. forests were generally a reliable 
carbon sink over the past two decades, sequestering car-
bon at a rate equivalent to 22% of the emissions from the 
nations transportation sector. However, results indicate 
the strength of the net carbon sink declined by 38% over 
the last decade, resulting from forest ageing, increases in 
the magnitude and frequency of large natural disturbance 
events (e.g., drought, fire), and continued large-scale car-
bon removals due to harvest and urbanization. While 
we expect small increasing, stable, or even declining 
annual carbon sinks in the coming decades for western 
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Fig. 6 Projected change in total ecosystem carbon (TEC) for the western U.S. for the RCP 4.5 radiative forcing scenario and two climate models 
under both business-as-usual (BAU) and a natural climate solutions (NCS) reforestation scenario. Panel a shows the spatial location of areas selected 
for reforestation under the hot-dry scenario. Panel b shows the net biome productivity (NBP) between 2020 and 2050 under the hot-dry scenario. 
Panel c shows the relative change in TEC to the year 2001 for all scenarios. Panel d shows the mean cumulative change in NBP for the reforestation 
scenario relative to the BAU scenario from 2020 to 2050
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forests, large-scale reforestation presents an opportunity 
to reverse these trends by boosting the annual forest car-
bon sink strength in this region (Fig. 6). However, future 
climate conditions were not considered when assuming 
the efficacy of reforestation locations [47], resulting in 
large uncertainties surrounding the potential benefits of 
the NCS scenarios. Additional work is needed to more 
appropriately project the suitability of forest restoration 
under future climate conditions.

Results show strong agreement with a range of other 
studies across a number of estimated variables includ-
ing estimates produced by inventory methods alone, such 
as the annual US EPA greenhouse gas assessment [18]. 
Disparate modeling approaches, from process-based to 
inventory-based models, are beginning to converge on a 
narrower range of net carbon balance for the CONUS. 
This study provides further evidence of the increasing 
stability and maturity of net carbon balance results at 
continental scales.

The LUCAS model was designed using the SyncroSim 
modeling environment, which originated as a tool to 
model landscape change [32]. As a result, the model con-
tains a robust set of features to simulate a wide range of 
landscape change processes including vegetation dynam-
ics [48, 49], spread and management of invasive species 
[50], and habitat conservation [51]. We developed the 
LUCAS model to account for a variety of LULC changes, 
including urbanization, agricultural expansion and con-
traction, fire, harvest, and drought mortality. However, 
features exist to include a range of other biophysical and 
socio-economic processes. For example,

[52] used the LUCAS model to track changes in water 
use under alternative LULC scenarios and [53] used the 
model to project changes in community vulnerability to 
coastal hazards. A range of studies have used LUCAS to 
assess ecosystem carbon dynamics, including a spatially 
explicit assessment for the state of Hawaii [54], an anal-
ysis of historical changes in the conterminous U.S. [35], 
and future projections for the state of California under 
alternative LULC and climate scenarios [31]. Ref. [55] 
used a high resolution version of the LUCAS framework 
to model carbon dynamics in a forested peatland wildlife 
refuge in response to repeated stand replacing fires and 
changes in hydrologic land management.

The linked LUCAS-CBM approach provides a middle 
ground between inventory-based stock-change methods 
and complex process-based biogeochemical models. Our 
method overcomes many of the limitations of inventory 
based estimates, notably an inability to attribute control-
ling processes, coarse temporal resolution, and a lack 
of spatially explicit estimates. Furthermore, inventory 
based methods often prioritize live biomass pools and in 
many cases under–sample other important DOM pools. 

We address each of these limitations while also utiliz-
ing detailed forest inventory data to parameterize key 
aspects of the model.

Unlike inventory-based approaches, biogeochemical 
models represent a wide range of underlying processes 
and lend themselves well to attribution of change. By 
design, process models are also sensitive to the effects of 
weather and climate variability and change [38]. How-
ever, the disadvantages of this class of models is their 
inherent complexity and large uncertainties result-
ing from the wide range of parameter estimates, which 
need to be made [5]. Furthermore, this class of models 
has been designed to work over large areas at relatively 
coarse resolution, which can be difficult to utilize at eco-
system management scales. The LUCAS-CBM approach 
was developed to overcome many of these obstacles by 
running on an annual time-step (as opposed to hourly or 
daily) and representing basic carbon transfer processes 
such as growth, mortality, turnover, decay, and decom-
position. The relatively small number of carbon flux rates 
requiring parameterization still provides for attribution 
of change while reducing the internal complexity of the 
model. Furthermore, by incorporating the NPP sub-
model to estimate variability in annual growth rates, our 
approach is sensitive to the effects of climate variability 
and change. Lastly, the model framework we have devel-
oped is agnostic in terms of spatial resolution, meaning it 
can be run at any resolution across any sized landscape 
provided key inputs can be obtained (e.g., downscaled 
climate data, LULC data) and computational resources 
are available.

The current implementation of the LUCAS-CBM 
approach utilizes a number of default parameters devel-
oped for forested ecosystems of Canada. For example, 
while we supplied U.S. specific merchantable growth 
rates based on FIA forest inventory data, we relied on 
the default biomass expansion factors from CBM-CFS3 
to convert merchantable volume into carbon stock esti-
mates. Additionally, we assigned each U.S. level 3 ecore-
gion and state to a corresponding Canadian ecozone 
and province so as to leverage existing volume to bio-
mass conversion rates. For DOM, default turnover rates 
were based on CBM-CFS3 and then modified based on 
mean annual temperature for each forest type. Future 
research should focus on incorporating U.S. specific bio-
mass expansion factors for individual tree species [56] 
and incorporating regionally specific DOM turnover 
rates obtained from literature. Additionally, the LUCAS-
CBM approach is well suited to exploring uncertainty 
in carbon model parameters by drawing from statisti-
cal distributions and then sampling using Monte Carlo 
methods. This capability is highly conducive to exploring 
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uncertainties in model parameters through sensitivity 
analysis [31, 57, 58].

The effect of  CO2 fertilization is among the larger 
uncertainties associated with estimating the terrestrial 
carbon budget [59]. It is not currently possible to model 
the effects of  CO2 enrichment on forest productivity 
within the CBM-CFS3 model and thus was not included 
in this study. However, the effects of  CO2 enrichment 
could be incorporated directly within the LUCAS frame-
work through the use of a series of temporal growth 
multipliers much in the same way NPP variability was 
modeled. This approach was used by [31] to model the 
effects of  CO2 enrichment on California ecosystems 
under multiple climate scenarios and was shown to be a 
major source of uncertainty in estimating the carbon bal-
ance of terrestrial ecosystems.

The effects of LULC and disturbance are a major con-
trolling process of ecosystem carbon dynamics. However, 
uncertainties in LULC can be large, depending on the 
underlying source of data used. Advances in remote sens-
ing have provided a new era of land change data for mod-
elers, yet there are significant limitations to incorporating 
remote sensing data into carbon assessments. Large area 
and high temporal frequency data describing forest dis-
turbance, such as the North American Forest Dynamics 
[60] and the Global Forest Change [61] datasets, are an 
important contribution toward our understanding of for-
est disturbance dynamics. However, attribution of for-
est changes—i.e., harvest, fire, drought, land use—are 
not yet provided. As a result, we relied on the Landfire 
Program’s annual disturbance maps [62], which provide 
change attribution data. Results suggest that based on 
Landfire disturbance data, we underestimated the area 
of forest harvest, and in particular, the areal extent of 
selection harvest, which can be difficult to identify using 
synoptic-scale remote sensing data such as Landsat. [37] 
estimated carbon removals resulting from harvest at 
107 Tg C  year−1 with estimates ranging from  92−1 45 Tg 
C  year−1 across a range of other studies [20, 21, 37, 63]. 
These estimates are nearly two times our mean annual 
estimate of 64 Tg C  year−1 based on 1.76 million ha of 
harvested area.

However, the harvest area for the first five years of 
Landfire data (2002–2007) averaged 1.12 million ha 
 year−1, compared to 2.06 million ha  year−1 for the 2008–
2020 period. For this later period, total estimated carbon 
removals averaged 76 Tg C  year−1. We conclude that the 
Landfire disturbance data (a) under-represents harvest 
area early in the time series and (b) systematically under-
represents the amount of selection harvest overall. The 
effect of this data limitation would likely reduce our esti-
mated carbon sink rate by 20–40 Tg C  year−1 if we forced 

the model to achieve total carbon removals more in line 
with reported literature values. Reconciling these differ-
ences would greatly improve the effectiveness of any car-
bon monitoring program.

The generalized modeling framework also allows for 
additional carbon stocks and fluxes to be included, 
such as the lateral flux of carbon between terrestrial 
and aquatic ecosystems. While not included in this 
study, this lateral flux is considered an important fac-
tor in regional to global carbon budgets and estimated 
to account for ~1.0 Pg C  year−1 globally [64] and is 
perhaps equal to the size of the total net terrestrial 
sink [65]. The LUCAS framework is also well suited to 
tracking the fate of carbon resulting from other lateral 
fluxes, such as carbon removed in harvested products. 
[66] used the CBM-CFS3 model linked with a harvested 
wood products (HWP) model that estimates emissions 
based on product half-life decay times to estimate car-
bon mitigation potential under alternative scenarios. 
The LUCAS framework readily allows for adding addi-
tional stock and flow pathways, which could be used to 
track the fate of harvested carbon (see table 2) through 
a range of product pools to provide a more complete 
understanding of forest carbon dynamics.

While we developed this study to analyze upland for-
ested ecosystems, the framework can be extended to 
estimate carbon dynamics in other ecosystems as well, 
such as grasslands, shrublands, wetlands, agricultural 
lands, and urban/suburban landscapes. LUCAS has 
been used to model carbon dynamics in many of these 
systems using parameters derived from dynamic global 
vegetation models (DGVM’s) [35]. Future research will 
focus on translating those parameters into the new 
LUCAS-CBM framework. Additionally, researchers 
are using the LUCAS framework, along with the car-
bon stock and flow structure adapted from the CBM-
CFS3 and described in this paper, to develop a spatially 
explicit model of ecosystem carbon dynamics in coastal 
herbaceous wetlands [67].

Quantifying the effects of land management actions 
on carbon stocks and fluxes is increasingly needed to 
identify opportunities for, and assess the effectiveness 
of, natural climate solutions (NCS). The LUCAS-CBM 
approach is well suited to modeling the effectiveness 
of a range of NCS strategies, such as changing harvest 
rates and geographic patterns, protecting old growth 
forests, reducing deforestation, and implementing 
reforestation programs. To date, most studies aimed 
at quantifying the benefits of NCS have relied on non-
spatial or spatially referenced approaches, which only 
factor in the biophysical suitability of reforestation [7, 
8] but do not consider other factors, such as areas that 
may provide additional co-benefits beyond increased 
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carbon sequestration and storage [47]. A notable 
exception is the recent analysis of forest restoration in 
Canada using a spatially explicit version of the CBM 
approach [68]. The LUCAS-CBM approach described 
in this study, along with a new set of spatially explicit 
maps of reforestation potential [47], can be used to 
refine estimates of carbon sequestration benefits and 
assess other ecosystem service co-benefits.

Conclusions
Previous studies have estimated temperate forests of 
North America as a large and persistent carbon sink over 
recent decades, with U.S. forests accounting for the vast 
majority of the continental sink. However, uncertainty in 
the size and variability of the sink is large, owing primar-
ily to the wide range of methodological approaches used 
for estimation. Because the U.S. relies on a stock-change 
approach for its official reporting [18], there is a paucity 
of information and data on underlying carbon fluxes, 
making attribution of changes in the annual sink rate dif-
ficult. Additionally, while carbon stock-change estimates 
are updated annually, they are not spatially explicit, 
reducing the utility to land managers.

We developed a modeling approach to fill these impor-
tant gaps. The approach described in this study was 
designed to serve as a middle ground between inven-
tory-based stock-change methods and more complex 
process-based biogeochemical models. The LUCAS-
CBM carbon monitoring and projection tool builds off a 
robust national forest inventory program with the added 
capability of producing spatially explicit carbon stocks 
and flows on an annual timestep. At the same time, the 
reduced complexity of the underlying system represented 
by the model makes the approach more accessible to a 
wider range of users. The approach is particularly well 
suited to producing rapid updates in response to major 
events (e.g., wildfire), assessing uncertainties of key 
model parameters (e.g., LULC change), understanding 
effects of key processes using “what-if” scenario analy-
sis (e.g., climate variability,  CO2 fertilization), or making 
projections over short, medium, or long time horizons. 
Lastly, the generalized structure of the modeling frame-
work makes expanding the framework to cover other 
ecosystem types possible, as does including additional 
carbon flows such as lateral transfers between terrestrial 
and aquatic systems and harvested products.

Methods
To estimate carbon stocks and fluxes for CONUS, we 
linked the CBM-CFS3 spatially referenced model of 
ecosystem carbon dynamics with the LUCAS spatially 

explicit model of LULC change. The CBM-CFS3 model 
was used to generate a set of forest species and ecore-
gion-level carbon flux rates, which were then used within 
the LUCAS model to produce spatially explicit maps of 
carbon stocks and fluxes based on LULC change, distur-
bances, forest aging, and climate variability and change.

LUCAS state‑and‑transition simulation model
The LUCAS state-and-transition simulation model 
(STSM) was stratified using EPA level III ecoregions 
[69], U.S. states, and land management boundaries. We 
defined a total of 43 unique state classes which were 
based on the combination of classes from the National 
Land Cover Database [70] and the U.S. Forest Service 
species type-groups [71]. We defined a total of 84 tran-
sition pathways which span seven major categories of 
LULC change and disturbance. The model was run on 
an annual timestep for the period 2001–2020 at a spatial 
resolution of 1-km × 1-km. Below we discuss the major 
aspects of the LUCAS STSM and the methods used to 
parameterize the model. For a general description of 
STSM models see [32].

State class map
The conterminous U.S. (CONUS) was partitioned into 
a regular grid of 1-km × 1-km cells where each cell 
was assigned to a discrete land-use/land-cover classes 
(LULC). The initial land cover map was based on the 
2001 National Land Cover Database (NLCD). We further 
modified the classification system to partition the three 
NLCD forest classes into forest type-groups based on the 
U.S. Forest Service (USFS) classification system. All cells 
mapped with a forest type-group in the USFS map were 
assumed to be forest cover and were recoded accordingly 
in our final state class map. The forest type-groups map 
contained 28 forest types which were generally classified 
as eastern and western hardwoods or softwoods. In total, 
the LUCAS STSM contained 43 unique LULC classes 
which are shown in Fig. 7.

Forest age
Forest age was estimated using a spatially explicit map of 
aboveground live biomass [36] and a map of forest can-
opy cover from the National Land Cover Database. The 
live biomass map was used to look-up forest age for each 
forest type-group using the state attribute tables derived 
from the CBM-CFS3 reference simulations (described 
below). Mean canopy cover was calculated for each for-
est type-group and ages were scaled around the mean so 
as to avoid assigning low ages to forest stands with low 
canopy cover (Fig. 8).
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Fig. 7 State class map developed by merging the 2001 National Land Cover Database and U.S. Forest Service forest type-groups maps

Fig. 8 Forest age map inferred from aboveground live biomass and canopy cover data and used to initialize LUCAS model
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LULC and disturbance transitions
We modeled transitions between state classes to repre-
sent major LULC change processes including: urban- 
ization, agricultural expansion and contraction, forest 
management (i.e., clear-cut and selection harvest), wild-
fire, and insect damage. Spatial multiplier maps, on a 
1-km grid, are used to constrain probabilistic transitions 
and allocate deterministic transitions.

Land use change For land use transitions (urbaniza-
tion, agricultural expansion and contraction), we gener-
ated spatial maps of the location of changes based on the 
NLCD time-series maps for the years 2001, 2006, 2011, 
and 2016. The 5-year change rates were annualized, and 
the model was parameterized to stochastically select 
cells to transition from one class to another within the 
5-year period. For timesteps after 2016, annual change 
rates were sampled from the historical period using a 
uniform distribution. For urbanization and agricultural 
expansion transitions, spatial multiplier maps were 
used to constrain the location of change by removing 
protected areas. For agricultural expansion, we calcu-
lated relative multipliers for each ecoregion to allocate 
change between cultivated croplands and the hay/pas-
ture class with adjacency multipliers used to allocate 
transitions spatially. For agricultural contraction, adja-
cency multipliers were calculated for all forest, grass-
land, shrubland, and wetlands state classes and used to 
allocate transitions to destination classes. For urbani-
zation transitions, adjacency parameters were used to 
modify the probability of change around existing devel-
oped areas. For a complete description on the methods 
of spatially allocating transitions see [31].

Additionally, we included changes in developed classes 
due to intensification (e.g., low intensity developed to 
high intensity developed). A time series of maps from 
NLCD was created showing locations where intensifi-
cation occurred in each 5-year time period. The type of 
intensification was then estimated using relative multipli-
ers for each intensification transition calculated for each 
ecoregion.

Forest harvest For the forest management transitions 
(clearcut and selection harvest), we used annual time-
series maps for the period 2001–2016 from the Landfire 
Disturbance database [62] to identify areas of change. For 
timesteps after 2016 we sampled from the historical dis-
tribution of change for each ecoregion. For clearcut cells, 
forest age was reset to 0; for selection harvest, the age was 
not reset. For both transitions we assumed cells reverted 
to their original state class after disturbance. In projected 
years, the minimum age for clearcut was based on a 
threshold of reaching 60% of peak merchantable volume 

for each forest type-group; the minimum age for selection 
harvest was assumed to be half the age used for clearcut 
harvest (see Table 3).

Drought/insect damage Forest mortality time series 
maps spanning the period 2001–2015 were used to model 
the effects of drought/insects and were derived from U.S. 
Forest Service Aerial Detection Surveys [72]. ADS data 
were binned into low, medium, and high severity classes 
based on methods described in [31]. Insect/drought dis-
turbances were not projected beyond 2015.

Wildfire To simulate wildfire we used annual fire perim-
eters from the National Interagency Fire Consortium 
(NIFC) for the period 2001–2020, which were converted 
into spatial multipliers in each timestep of the simula-
tion. To estimate fire severity (high, medium, and low), 
we calculated severity multipliers, for each ecoregion, for 
all fires contained within the Monitoring Trends in Burn 
Severity database [73] for the period 2001–2016. Sever-
ity multipliers were then applied to the annual burn maps 
in each timestep and for each ecoregion, resulting in 
stochastic estimates of severity within each mapped fire 
perimeter. For grassland and shrubland state classes, all 
severity types were assumed to transition back into the 
original state class. For forest state classes, high severity 
fires resulted in a transition to a post-fire shrubland class, 
which had a 0.064 annual transition probability back into 
forest [31]. Medium and low severity fire reverted back 
into the original forest state class with no change in forest 
age.

LUCAS carbon stock and flows
We adopted the carbon stock and flux structure of the 
CBM-CFS3 model for this study. Using the CBM-CFS3 
model cross-walked to U.S.-specific forest types and 
parameters, we created reference simulations for car-
bon stocks and flows. The model structure of CBM-
CFS3 was then built into LUCAS as a sub-module. The 
CBM-CFS3 approach includes the use of five live carbon 
pools (including above- and belowground pools) and 
9 dead organic matter (DOM) pools covering standing 
dead trees, down deadwood, litter and carbon stored in 
soils. DOM pools are organized and named based on 
their rate of decay (e.g., very fast, fast, medium, slow). 
Carbon transfers between pools in LUCAS followed 
the same convention as the CBM-CFS3 model with two 
important modifications. First, rather than using net 
growth increment, we calculated net primary production 
(NPP) for each forest type-group and age and used this 
to drive annual carbon accumulation. Second, we intro-
duced annual spatial multipliers to scale NPP based on 
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variations in local climate conditions. These modifica-
tions are discussed in more detail below.

CBM‑CFS3 reference simulations
We used the CBM-CFS3 model (version 1.2) to gener-
ate estimates of carbon stocks across all live and DOM 
pools for a 1-ha representative stand for each forest type-
group. Each forest type-group was assigned to the closest 
forest type found in the CBM database; when no direct 
type was available we used generic hardwood or soft-
wood types from CBM-CFS3. Additionally, each species 
was assigned to a representative ecozone and adminis-
trative boundary. We assumed wildfire was the historical 
stand replacing disturbance type and was the most recent 
disturbance while using default historical return intervals 
from CBM-CFS3. No additional disturbances were mod-
eled for the reference simulation. Lastly, we calculated 
the mean temperature across the range of each forest 

type-group (Table 3), using the value to modify the CBM-
CFS3 reference simulation.

Merchantable volume curves The CBM-CFS3 model 
relies on users to provide merchantable volume curves for 
each tree species modeled, which are used along with a 
species-specific expansion factor to partition carbon into 
each of the five live carbon pools. We used the Von Ber-
talanffy growth equation to estimate merchantable vol-
ume by age. For each forest type-group, parameters used 
to estimate merchantable volume were queried from the 
U.S. Forest Service Forest Inventory and Analysis (FIA) 
database.

where y is the merchantable volume, a is the asymptote 
and b is the rate of approach to the asymptote (Table 3). 

y = a(1− e−b∗age)3,

Table 3 Crosswalk table used to connect U.S. forest type-groups used in LUCAS to Ecozones, Provinces and species types from the 
CBM-CFS3 model

a and b parameters define the asymptote and rate of approach to the asymptote, respectively. Temp is the mean annual temperature across the species range; MRI is 
the mean historical fire return interval in years

CBM_Ecozone CBM_Province CBM_Species LUCAS_Species a b Temp MRI

Mixedwood Plains Ontario Jack pine Forest: White/Red/Jack Pine Group 239.99 0.04 6.81 125

Atlantic Maritime Quebec Spruce—Genus type Forest: Spruce/Fir Group 120.32 0.03 4.64 125

Mixedwood Plains Ontario Pine—Genus type Forest: Longleaf/Slash Pine Group 148.94 0.08 19.62 125

Mixedwood Plains Ontario Pine—Genus type Forest: Loblolly/Shortleaf Pine Group 225.70 0.08 17.47 125

Montane Cordillera British Columbia Other softwoods Forest: Pinyon/Juniper Group 56.62 0.02 9.74 150

Pacific Maritime British Columbia Douglas-fir—Genus type Forest: Douglas-fir Group 597.10 0.03 7.17 300

Montane Cordillera British Columbia Ponderosa pine Forest: Ponderosa Pine Group 152.73 0.03 7.56 150

Pacific Maritime British Columbia Western white pine Forest: Western White Pine Group 228.52 0.02 9.75 300

Montane Cordillera British Columbia Mountain hemlock Forest: Fir/Spruce/Mountain Hemlock Group 241.10 0.03 3.80 150

Montane Cordillera British Columbia Lodgepole pine Forest: Lodgepole Pine Group 203.42 0.03 3.14 150

Pacific Maritime British Columbia Sitka spruce Forest: Hemlock/Sitka Spruce Group 736.44 0.04 8.38 300

Montane Cordillera British Columbia Western larch Forest: Western Larch Group 298.51 0.03 5.31 150

Pacific Maritime British Columbia Other softwoods Forest: Redwood Group 1907.28 0.01 12.69 1000

Montane Cordillera British Columbia Other softwoods Forest: Other Western Softwood Group 138.36 0.01 2.47 150

Montane Cordillera British Columbia Other softwoods Forest: California Mixed Conifer Group 477.09 0.02 10.40 150

Montane Cordillera British Columbia Other softwoods Forest: Exotic Softwoods Group 363.02 0.03 7.63 150

Mixedwood Plains Ontario Oak Forest: Oak/Pine Group 191.02 0.05 16.80 125

Mixedwood Plains Ontario Hickory Forest: Oak/Hickory Group 206.02 0.04 13.22 125

Mixedwood Plains Ontario Cypress Forest: Oak/Gum/Cypress Group 289.99 0.03 18.33 125

Mixedwood Plains Ontario Ash Forest: Elm/Ash/Cottonwood Group 155.53 0.05 14.23 125

Atlantic Maritime Quebec Maple Forest: Maple/Beech/Birch Group 229.04 0.03 6.71 125

Boreal Shield West Ontario Birch Forest: Aspen/Birch Group 146.48 0.04 5.15 75

Pacific Maritime British Columbia Alder Forest: Alder/Maple Group 436.17 0.05 10.47 300

Montane Cordillera British Columbia Oak Forest: Western Oak Group 130.24 0.02 12.89 150

Pacific Maritime British Columbia Other hardwoods Forest: Tanoak/Laurel Group 476.90 0.04 13.12 300

Montane Cordillera British Columbia Other hardwoods Forest: Other Western Hardwoods Group 130.24 0.02 12.81 150

Mixedwood Plains Ontario Other hardwoods Forest: Tropical Hardwoods Group 206.48 0.02 22.08 125

Mixedwood Plains Ontario Other hardwoods Forest: Exotic Hardwoods Group 67.94 0.09 19.23 125
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The resulting estimates of merchantable volume by age 
(0–300 years), along with default biomass expansion fac-
tors from the CBM-CFS3 database, were used as inputs 
for the reference simulations. The CBM-CFS3 model 
was then run on an annual timestep for 300 years to esti-
mate the amount of carbon stored in each pool by age by 
applying species-specific expansion factors to estimate 
biomass in each tree component. A carbon fraction was 
applied to estimate the carbon portion of the biomass 
stock. We used the default biomass expansion factors and 
carbon proportions from the CBM-CFS3 database.

Carbon flow rates: LUCAS flow pathways module
We developed a sub-module within LUCAS to calculate 
carbon flux parameters based on output from the ref-
erence simulations and the CBM-CFS3 database. The 
module uses the species crosswalk table from above, 
along with crosswalk tables linking carbon stocks and 
disturbance types used in LUCAS and CBM-CFS3. 
Within the LUCAS model we specified a set of car-
bon flow pathways defining all of the carbon pools and 
fluxes consistent with those used in the CBM-CFS3.

Net primary productivity The module first uses results 
from the CBM-CFS3 reference simulation to calcu-
late net primary productivity (NPP) as the sum of net 
growth and biomass turnover for a given age:

where G is net growth, T is biomass turnover, f is foliage, 
b is branches and other wood, s is merchantable stems, fr 
if fine roots, cr is coarse roots and a is forest age. Thus, 
outputs consist of an estimate of NPP by age (up to 300 
years old) and are stored as state attributes for each 
state class type (i.e., forest type-group). Output from the 
CBM-CFS3 reference simulation also allows us to calcu-
late the proportional allocation of NPP, by age, between 
the five live tree component stocks.

where pNPPat

Si
 is the proportion of NPP allocated to one 

of five live carbon pools ( Si ) for a given aged forest (at); 
Gat

Si
 is the net growth of carbon pool i at age t; SatSi  is the 

amount of carbon stored in pool i at age t − 1, TSi is the 
species and region specific carbon turnover rate, and 
NPPa is the total species and region specific NPP for each 
forest age. Results are stored as flow multipliers within 
the LUCAS model and used to allocate annual NPP state 
attribute values to each live tree component.

NPP =
∑

a

G(f ,b,s,fr,cr) +
∑

a−1

T(f ,b,s,fr,cr),

pNPPat

si
=

Gat

si
+ (Sa−1

si
∗ Tsi)

NPPa
,

Carbon flux rates The LUCAS model uses a set of flow 
multipliers to estimate carbon fluxes representing bio-
mass turnover, decay and decomposition, emissions, 
and transfers of carbon resulting from LULC change and 
disturbance. The LUCAS Flow Pathwyas module uses 
the set of crosswalk tables described above to param-
eterize a flow multipliers table for each unique combina-
tion of forest type-group and ecozone. Flow multipliers 
specify the annual rate and proportion of carbon trans-
ferred from one stock type to another. The ordering of 
carbon fluxes within the LUCAS model was established 
to match that of the CBM-CFS3.

1. Transfer of snag stems and branches to down dead-
wood pools (aboveground medium and fast, respec- 
tively),

2. Emission and decay of standing (snag stems and 
branches) and down deadwood (aboveground 
medium),

3. Emission from the belowground slow pool,
4. Biomass turnover from live to DOM pools,
5. Emission and decay from DOM pools (belowground 

very fast, belowground fast, aboveground very fast, 
aboveground fast),

6. Emission from aboveground slow,
7. Transfer from aboveground slow to belowground 

slow,
8. Growth of live pools.

In addition to the base carbon flux rates, the LUCAS 
Flow Pathways module also parameterizes a set of tran-
sition-based flow multiplier,s which control the rate 
at which carbon is transferred between pools when a 
change in LULC or disturbance occurs. Transition trig-
gered flows are implemented at the end of each timestep 
after all base flows have occured. For this study, we con-
sidered the effects of fire (high, medium, and low sever-
ity), harvest (clearcut and selection), drought/insect 
mortality, urbanization, agricultural expansion (i.e., 
deforestation), and agricultural contraction (i.e., reforest-
ation). Flow rates were imported from transition matri-
cies from the CBM-CFS3 model. For wildfire, carbon flux 
raters were derived from [74].

Verification
Within the LUCAS model we ran a 300 year simulation 
with all cells starting at age 0 using the carbon flux rates 
from the Flow Pathways module to estimate changes in 
stocks. A single 1-ha representative stand was run for 
each forest group-type and fire was assumed as the last 
stand replacing disturbance to match the assumptions 
from the CBM-CFS3 reference simulations. All stocks 
were initialized at their age-0 values obtained from the 
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CBM-CFS3 simulations. No disturbances were simu-
lated. We compared individual carbon stock output from 
the LUCAS simulation with the original output from 
the CBM-CFS3 reference runs to ensure we could reli-
ably reproduce carbon stock estimates. Figure  9 shows 
a comparison of all stock types for the Douglas-fir forest 
type-group.

Spin‑up of DOM pools
The CBM-CFS3 model contains its own internal spin-up 
procedure for stabilizing DOM pools. However, using the 
CBM-CFS3 method requires running multiple iterations 
of the model based on the number of types of stand-
replacing disturbance events considered in the model. 
For this reason we developed spin-up module directly 
with LUCAS. Within LUCAS, carbon stocks are initial-
ized at zero and all cells are set to age zero. The histori-
cal stand replacing disturbance type was assumed to be 
wildfire. Flow pathways and multipliers were used to esti-
mate carbon stocks over a 3000 year simulation period 
with fire events occurring based on the mean fire return 
interval specified for each forest type-group (Table 3). At 
the end of the 3000 year simulation, two types of stand 
replacing disturbances were simulated: high severity fire 
and clearcut forest harvest. After each transition, the 
model was run for another 300 years to generate carbon 

stocks by age which were used to parameterize a state 
attribute table in LUCAS (Fig.  10). The length of the 
spin-up simulation can be varied based on how long it 
takes DOM pools - in particular the belowground slow 
(soil) pool - to reach a relative steady state between suc-
cessive historical disturbance events. This approach is 
conceptually the same as that in the CBM-CFS3, while 
achieving some computational efficiency when multiple 
stand-replacing events are considered.

Mapping initial carbon stocks
To estimate spatial carbon stocks the LUCAS model was 
parameterized with state attribute values from the spin-
up procedure described above, flow pathways and multi-
pliers, and raster maps of forest type (Fig. 7) and and age 
(Fig. 8). The model was run for a single timestep for both 
wildfire and clearcut harvest as the last disturbance cre-
ating two sets of initial carbon stock maps. The combina-
tion of forest type and age was used to create initial stock 
rasters for the first timestep (Fig.  11). Fire disturbances 
prior to 2001 were queried from the National Interagency 
Fire Consortium (NIFC) and mapped to a 1-km grid. The 
NIFC database contains fire perimeters collected at the 
local level across a range of federal and state agencies and 
date back to the mid-1800s (the majority of records rep-
resent events from 1950-present). Cells classified in the 

Fig. 9 Comparison of stock estimates by age from LUCAS to output from the CBM-CFS3 model. Data shown are for the Douglas-fir forest 
type-group. DOM is dead organic matter
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NIFC map were assigned carbon values from the wildfire 
simulation; all other cells were assigned stock values from 
the clearcut harvest simulation.

Spatial flow multipliers
The effects of weather and climate variability and change 
were incorporated into the LUCAS model to modify the 
annual flux of carbon in live and DOM pools. We used 
gridMET annual climate variables [75] to derive a set of 
spatial flow multipliers which were used to scale NPP and 
decay/decomposition of all DOM pools. For additional 
details on the approach see [31].

NPP variability
We used the NCEAS model of net primary productiv-
ity [76] to derive annual spatial multiplier maps which 
were used to modify the rate of vegetation growth in 
the LUCAS model (Fig.  12). We estimated the annual 
NPP multiplier using the following equations from [76]:

where f (MAP )t is the NPP estimated from total annual 
precipitation (MAP) in a given timestep and,

where f (MAT )t is NPP estimated from total mean annual 
temperature (MAT) in the same timestep. Annual NPP 
was then estimated as:

We also applied the same equations to gridMet climate 
normals for the period 1980–2010 (µN PP 1980−2010). The 
annual NPP multiplier for each cell was estimated as:

f (MAP)t =
0.551 ∗MAP1.055

e(0.000306∗MAP)
,

f (MAT )t =
2540

1+ e(1.584−0.0622∗MAT )
,

NPPt = MIN [f (MAP)t , f (MAT )t ].

NPPanom =
NPPt

µNPP1980−2010

Fig. 10 Carbon stock by age for DOM pools for cells initialized with fire or clearcut harvest as the last stand replacing disturbance. Data shown are 
for the Douglas-fir forest type-group. DOM is dead organic matter
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and applied to the age and forest type specific NPP esti-
mates derived from the CBM-CFS3.

Decay and decomposition of DOM
Decay of DOM pools was modeled using a tempera-
ture-dependent decay rate for each DOM pool based on 
methods from [11]. Mean annual temperature for each 
species was used to scale base decay rates (BDR) of DOM 
for a 10 °Creference temperature (see Table 3). The effec-
tive decay rate (EDR) for each DOM pool and species 
type-group was calculated using Q10 coefficients for fast 
(2.65) and slow (2.00) DOM pools as:

where T is the mean annual temperature across a spe-
cies range and Tref is the 10  °C reference temperature. 
To represent spatial and temporal variability in decay of 
DOM we calculated a time-series of annual maps, which 
scale the effective decay rate at the pixel scale using two 
Q10 coefficients. A Q10 rate of 2.65 was used for Above-
ground Very Fast and Aboveground Slow pools while a 
Q10 of 2.0 was used for all other DOM pools. Notably, the 
Q10 value of 2.0 was also applied to the below-ground 
slow (soil) pool, whereas the default rate from CBM-
CFS3 uses a Q10 of 1.0. We chose this modification based 

EDR = BDR ∗ e(T−Tref )∗ln(Q10)∗0.1

Fig. 11 Carbon stored in live biomass, dead organic matter (DOM), and soil pools estimated for the year 2001. Also shown is total ecosystem 
carbon. Live carbon includes the foliage, other wood, merchantable, fine roots and coarse roots pools. DOM includes aboveground very fast, fast, 
medium and slow pools and belowground fast pools. Soil includes belowground very fast and slow pools. Total is the sum of all 14 live and DOM 
pools included in the model
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on recent studies suggesting a stronger effect of climate 
warming on the decomposition of soil pools. For exam-
ple, [77] suggested a Q10 rate of 1.23 based on a study of 
Canadian forests while [78] and [79] suggested a Q10 of 
2.7 and 2.3, respectively, based on a soil warming study 
in a western U.S. coniferous forest. Thus, the modified 
decay rate (MDR) for a cell c in timestep t was calculated 
as:

where DM is the decay multiplier in cell c in timestep t. 
The annual spatial decay multiplier was calculated as:

where Tmean is the mean annual temperature in timestep t 
and Tnorm is the mean annual temperature for the 30-year 

MDRc,t = EDR ∗ DMc,t

DMc,t = 1 ∗ Q
(Tmean−Tnorm)/10)
10

Fig. 12 Spatial flow multipliers used to modify annual net primary productivity (NPP) in the LUCAS model
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climate normal. Figure 13 shows the DOM decay spatial 
multipliers for used for the fast pools.

Scenario simulations
All historical scenario simulations were run on an 
annual timestep for the period 2001–2020 at 1-km 
× 1-km spatial resolution. The primary simulation 
included the combined effects of LULC change, eco-
system disturbance, and climate change on the his-
torical carbon balance of forest ecosystems in the 
conterminous United States. To better understand 
the major controlling processes of historical carbon 
dynamics, we also ran three additional simulations 

where (1) no LULC or disturbance was simulated, (2) 
no climate variability was simulated, and (3) no cli-
mate or LULC effects were simulated. Outputs from 
the simulations are available as both spatial and tabular 
files. Spatial outputs include annual carbon stocks and 
fluxes, LULC composition (i.e., state class maps and 
forest age), and LULC transitions.

For the western U.S., we ran four simulations which 
project carbon balance out to 2050 under the RCP 4.5 
radiative forcing scenario. We used two climate models 
representations of future conditions to represent “hot-
dry” (HadGEM2-ES365) and “warm-wet” (CanESM2) 
futures [45]. For each of the two climate models we also 

Fig. 13 Spatial flow multipliers used to modify annual decay of dead organic matter (DOM) in the LUCAS model
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ran a reforestation scenario where ~10 million ha of non-
forest lands were converted to forest beginning in 2030 
based on a map of lands that historically supported for-
ests [47]. Downscaled climate data from the Multivariate 
Adaptive Constructed Analogs (MACA) [46] database 
were used to generate an annual time series of spatial 
growth multipliers and DOM decay multiplies using the 
method described above. Future land use was modeled 
by bootstrap sampling each transition type from the full 
historical record following methods described in [31].

All simulations were run on a desktop workstation run-
ning Windows 10 with 24 cores and 256 Gb of RAM. 
Simulations were run using SyncroSim version 2.2.27, 
and package versions 3.2.28 (stsim), 3.2.17 (stsimsf ), and 
1.0.7 (stsimcbmcfs3).
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