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Abstract 

Background:  Land clearing generates coarse woody debris (CWD), much of which ultimately becomes atmospheric 
CO2. Schemes for greenhouse gas accounting must consider the contribution from land clearing, but the timing of 
the contribution will have large uncertainty, due to a paucity of knowledge about the rate of CWD disappearance. 
To better understand above-ground CWD disappearance following a land clearing event—through the actions of 
microorganisms, invertebrates, wildfire, or deliberate burning—we combined statistical modelling with an archive of 
semi-quantitative observations (units of CWD %), made within Queensland, Australia.

Results:  Using a generalised additive mixed-effects model (median absolute error = 14.7%), we found that CWD 
disappearance was strongly influenced by the: (i) number of years elapsed since clearing; (ii) clearing method; (iii) 
bioregion (effectively a climate-by-tree species interaction); and (iv) the number of times burned. Years-since-clearing 
had a strongly non-linear effect on the rate of CWD disappearance. The data suggested that disappearance was 
reverse-sigmoidal, with little change in CWD apparent for the first three years after clearing. In typical conditions for 
Queensland, the model predicted that it will take 38 years for 95% of CWD to disappear, following a land clearing 
event; however, accounting for uncertainty in the data and model, this value could be as few as 5 years, or > 100 years. 
In contrast, due to an assumption about the propensity of land managers to burn CWD, the official method used to 
assess Australia’s greenhouse gas emissions predicted that 95% of CWD will disappear in < 1 year.

Conclusions:  In Queensland, the CWD generated by land clearing typically takes 38 years to disappear. This ulti-
mately implies that a key assumption of Australia’s official greenhouse gas reporting—i.e. that 98% of CWD is burned 
soon after a clearing event—does not adequately account for delayed CO2 emissions.
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Background
Coarse woody debris (CWD)—comprising standing dead 
trees, and the stems, branches, and stumps of fallen trees 
[1–3]—can be created naturally (e.g. tree death, canopy 
damage) or anthropogenically (e.g. pruning, harvest-
ing, land clearing). CWD plays a role in various ecosys-
tem functions, such as nutrient cycling [4–6]; regulation 
of soil moisture and temperature [7, 8]; and provision of 

microhabitats for small animals [9–11] and grazing-sen-
sitive plants [12]. CWD also helps to maintain the natural 
functioning of streams [13], and adds to the fuel load for 
wildfire [14–16].

CWD disappears by a combination of microbial 
decomposition, consumption by invertebrates (particu-
larly termites), fire, or physical degradation [3, 17, 18]. 
The ultimate product of much CWD disappearance is 
CO2 emission into the atmosphere, which makes the 
study of CWD interesting from the perspective of climate 
change, and greenhouse gas inventory. Many studies in 
different parts of the world have described the nature of 
CWD disappearance, and its drivers. Exponential decay 
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is often used to model the disappearance of CWD with 
time, having been applied to study sites from the north-
ern hemisphere [19–21], the southern hemisphere [22–
24], and globally [25]. Mackensen et  al. [17] found that 
temperature, rather than moisture, is the key influence on 
the rate of CWD disappearance, a finding that has been 
echoed by studies since [25–27]. CWD disappearance is 
also influenced by tree species [28, 29], wood diameter 
[22], fire [19, 30], and soil factors such as clay type [31].

Few studies have given attention to the CWD generated 
by land clearing events. Mackensen and Bauhus [32] syn-
thesised the knowledge used to assess the contribution of 
land clearing to greenhouse gas emissions in Australia. 
Land clearing has been shown to create a large spike in 
CWD stocks [19, 33]. Navarrete et  al. [33] showed that 
a relatively high grazing intensity is associated with rel-
atively fast CWD disappearance, due to movement of 
CWD by heavy machinery in more-productive graz-
ing lands. In the context of land clearing, we expand the 
conventional definition of CWD to include any coarse 
roots that are (perhaps only partially) extracted from the 
ground during the clearing event.

In Australia, the national greenhouse gas inventory 
(NGGI) uses a spatially applied process model known as 
FullCAM (‘full carbon accounting model’), to consider 
the role of land clearing and CWD [34, 35]. The NGGI 
combines: (i) remote sensing-based estimates of the spa-
tial extent and timing of land clearing events; (ii) esti-
mates of pre-clearing forest biomass (based on climate, 
management and other site attributes); and, (iii) assump-
tions on the immediate and lagged disappearance of the 
CWD and soil carbon pools during the next 50 years. At 
the time of clearing, ‘live’ biomass estimated for the major 
vegetation groups within a mature forest becomes ‘dead’ 
biomass, and is split into components of stem, branch, 
bark, leaf, coarse-root and fine-root. The NGGI then cal-
culates the disappearance of each component individu-
ally, with different decay rates applied to each, depending 
on whether the component enters the ‘standing dead’ or 
‘debris’ pools [36]. On clearing, the stem, branch, bark, 
and leaf components each enter the standing-dead pool, 
which decomposes relatively slowly, due to an assumed 
lack of contact with soil-borne decomposers. Each month 
after clearing, a small proportion of the standing-dead 
pool enters the debris pool, which is assumed to be in 
better contact with the soil and hence decomposes rela-
tively fast. The coarse- and fine-root components, due to 
an assumed proximity to the soil, decompose solely from 
within the debris pool. For the NGGI’s reporting class 
‘Land converted to grassland’—the class most relevant 
to this study—the following management practices are 
assumed [35]:

•	 The principal method of land clearing involves 
extraction of root material (i.e. tree-pulling).

•	 Following tree-pulling, and 6–10  months of curing, 
CWD is pushed into piles for burning. The standing 
dead pool is assumed to have a 98% combustion effi-
ciency, but in the debris pool combustion efficiencies 
are 90% for stems and branches, 95% for bark and 
leaf, 80% for coarse roots, and 70% for fine roots.

•	 All remaining CWD decomposes naturally.

Under this reporting class the state of Queensland, 
Australia, emitted 16,504 Gg CO2-e in 2019 [37]. This was 
3% of national emissions, down from 14% in 1990. The 
assumption that 98% of standing dead  CWD is burned 
is, in our experience, too large a value for Queensland’s 
landscape. The effect will be to overestimate the rate of 
CWD disappearance, and subsequently cause a short-
term overestimation of the amount of greenhouse gas 
emissions attributable to land clearing, and an under-
estimation of emissions in the decades that follow. In 
this paper, we evaluate the assumptions of the NGGI 
in regard to land clearing, by using a previously unpub-
lished archive of semi-quantitative field observations of 
CWD disappearance.

Field assessment of CWD disappearance
Between 1988, when records started, and 2018, 24-mil-
lion ha of woodland and forest have been cleared or re-
cleared in Queensland, 93% of which was for agricultural 
purposes [38]. Land clearing for agriculture in Queens-
land commonly occurs by tree-pulling (done with the 
aid of heavy machinery), or by application of arboricide. 
Subsequent management may involve: doing nothing 
and allowing the CWD to naturally decompose; or push-
ing the CWD into a pile that can either be retained or 
burned. There are less invasive, more selective land clear-
ing options, e.g. fodder harvesting or forestry practice, 
but for the purpose of this study we consider only broad-
scale clearing.

Queensland’s Statewide Landcover and Trees Study 
(SLATS) supports legislation that regulates land clearing. 
SLATS uses automated and manual methods to regu-
larly map the extent of woody vegetation that has been 
cleared [39]. A key component of the SLATS method for 
a number of years was field verification, to clarify areas of 
uncertainty in the remotely sensed mapping. Verification 
sites were generally chosen for their easy roadside access. 
When visiting a verification site, trained operators were 
asked to provide a visual, semi-quantitative estimate of 
the percentage of CWD that had disappeared since the 
clearing event, assessed with the aid of Table 1, to mini-
mise inter-operator error.
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The aim of this study was to use the field observations 
of SLATS to train a statistical model that relates the dis-
appearance of CWD to various explanatory variables. 
Such a model will help to evaluate the current under-
standing about how CWD contributes to Australia’s 
national greenhouse gas inventory, but will also help to 
improve understanding of nutrient cycling, ecosystem 
biodiversity, and soil function.

Methods
Pre‑processing
Within the digital archive of SLATS there were 8400 
observations of CWD disappearance, collected since 
1999. After stringently filtering for omissions and errors 
in the metadata associated with each observation we 
reduced that number to 3047. Omissions and errors 
came in various forms, e.g. inconsistent formatting, typo-
graphical errors, unreliable space–time locations, dupli-
cated records, absence of an accompanying photo, or 
an excessive mismatch in the timing of an observation 
with the timing of its photo. Of the 3047 observations 
of CWD disappearance, many were revisits to a baseline 
site. Observations were grouped by the n = 1109 baseline 
sites (Fig. 1); i.e. each baseline site was revisited an aver-
age of 2.7 further times. Those parts of Queensland with 
no baseline sites were either too remote, or had experi-
enced little land clearing.

Relevant components of the metadata for this study 
were the clearing method, and the SLATS report-
ing period. Trained operators determined the clearing 
method during field verification. Using expert knowl-
edge, we aggregated the various clearing methods by 
the hypothesised rate of CWD disappearance associated 
with each (denoted by variable c, Table 2). The majority 
of the n baseline sites were associated with the clearing 

method ‘Pulled and left’, i.e. trees are up-rooted and 
the CWD naturally decays where it lies (Fig.  2a–c). We 
hypothesised this class has an intermediate rate of CWD 
disappearance, and combined these observations with 
the < 1% of observations that had an unidentifiable clear-
ing method. The next-most-populous clearing method 
was ‘Pulled and stick-raked’, i.e. trees are up-rooted then 
moved into piles, possibly for burning (Fig.  2d–f). We 
hypothesised this clearing method has a relatively fast 

Table 1  Classes used for visual estimation of the disappearance of coarse woody debris (CWD)

Disappearance (% of original CWD) Description

0 No timber or branches or leaves gone

5 Only leaves gone

10 Branches < 2-cm diameter and bark gone

20 Branches < 10-cm diameter gone

30 All small branches gone

40 All small branches and some large branches gone

50 All small branches and pre-clearing trunks or large branches gone

60 Pre-clearing trunks one-quarter gone

70 Pre-clearing trunks one-half gone

80 Pre-clearing trunks three-quarters gone

90 Pre-clearing trunks almost all gone

95 All cleared for pasture, roadside verge, or houseblock

100 All cleared for crop or buildings

Fig. 1  Locations of 1109 baseline sites in the state of Queensland, 
Australia, where in the years following a land clearing event, at least 
two observations were made of the disappearance of coarse woody 
debris. Inset: the location of Queensland within Australia



Page 4 of 15Pringle et al. Carbon Balance and Management           (2021) 16:36 

rate of disappearance. The hypothesised ‘slow’ methods 
of CWD disappearance were infrequently observed (4% 
of observations), but most often associated with stem-
injection of arboricide (Fig. 2g–i). Note that the clearing 
method at baseline was sometimes adjusted by revisiting 
SLATS operators. For example, ‘Pulled and left’ observed 
at baseline could eventually change to ‘Pulled and stick-
raked’ upon revisit. In this case, we set the latter as the 
clearing method.

The SLATS reporting period defines the window of 
time, between a pair of satellite-image acquisition dates, 
when the land clearing event likely occurred. Currently, a 
reporting period is approximately one year, but depends 
on cloud cover and the satellite imagery available. Before 
1999, reporting periods were, at best, two years, due to 
the resources then available. For the purpose of this study 
it was necessary to, where possible, narrow the clear-
ing window associated with each of the n baseline sites. 

Table 2  The hypothesised rate of disappearance of coarse woody debris, c; n is the number of sites

c Proportion of n Subsumed clearing methods (decreasing prevalence)

Intermediate 0.60 Pulled and left; unidentified

Fast 0.36 Pulled and stick-raked; blade-ploughed; selectively logged; 
thinned; grazing fodder

Slow 0.04 Stem-injection of arboricide; natural death; herbicide spray-drift

(a) Site “tamb02_c014”; 23 April, 2002

(d) Site “adav02_c020”; 12 April, 2002 (e) Site “warw08_c015”; 9 February, 2008 (f) Site “morv10_c008”; 21 April, 2010

(g) Site “carn06_c008”; 7 March, 2006 (h) Site “lagl11_c009”; 5 July, 2011 (i) Site “mont13_c007”; 20 April, 2013

(b) Site “aram04_c013”; 20 June, 2004 (c) Site “alph09_c009”; 30 MAy, 2009

Fig. 2  Exemplar photographs of the main types of land clearing in Queensland
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We did this according to the procedure described in 
Appendix.

Statistical modelling
In broad terms, our modelling framework considered: (i) 
longitudinal effects in the CWD observations; (ii) errors 
inherited from the explanatory variables; and (iii) how 
predictions had to be within the interval (0%, 100%).

We used a generalised additive mixed-effects model 
(GAMM) to describe CWD disappearance as a function 
of various explanatory variables (fixed effects), and the n 
sites (random effects), with j = 1, . . . ,mi observations at 
the ith site. The form of the GAMM was:

where: yi,j was the jth observation of CWD disappearance 
in the ith site (converted to ‘% remaining’, i.e. the com-
plement of disappearance); β0 was the model’s intercept 
parameter; Xi,j,k was the value of the explanatory variable 
k that was associated with yi,j ; fk was a smooth function 
of explanatory variable k; qi was the value of the random 
effect for the ith site, distributed as N ∼

(

0,ϕ2
)

 ; and εi,j 
was the model’s error, distributed as N ∼

(

0, σ 2
)

 . The 
random-effect term is a way of controlling for different 
sources of variation, and implies that we expect observa-
tions from within the same site to be more closely related 
than observations from different sites. Without the ran-
dom-effect term, the model reduces to a conventional 
generalised additive model, and ϕ2 is subsumed by σ 2 . 
Note the logit transformation applied to yi,j , which was 
done to help εi,j behave like a draw from a normal distri-
bution. To enable the logit transformation—and to help 
emphasise the overall trend—when CWD disappearance 
in the ith site was observed at 100% (i.e. completely gone), 
it was replaced with 99% for that year, and then imputed 
at 99% at 27 years after clearing (the largest value in the 
dataset). The GAMM was fitted with the gamm function 
of the mgcv library [40] of the R statistical software [41]. 
Residual maximum likelihood [42] was used to fit the 
model parameters.

Explanatory variable c was introduced above, but vari-
ous others were investigated for their possible relation 
with CWD disappearance (Table  3). Explanatory vari-
able t was the decimal years since clearing, while r, v, g, 
and a integrated various aspects of climate, fire, and soil 
variability. We calculated explanatory variables r, v, and 
g—respectively the proportion of rain days, the mean 
daily vapour pressure deficit, and the number of times 
burned—based on the number of days between when the 
clearing event occurred (see below) and when the site 
was visited by SLATS operators. The number of times 

(1)logit
(

yi,j
)

= β0 +

{

p
∑

k=1

fk
(

Xi,j,k

)

}

+ qi + εi,j , burned was found by interrogating an archive of histori-
cal fire scars, detected in Landsat satellite imagery [43]. 
Like c, b was a categorical explanatory variable, but was 
derived from an Australia-wide surface of delineated 
bioregions [44]. Preliminary modelling (not shown) sug-
gested that certain bioregions were sampled too rarely to 
have an effect; these were recoded to a member of b that 
was neighbouring or more densely sampled (Table 4).

From Table  3, it was necessary to identify the best 
combination to serve as X in Eq. (1). Rather than naively 
test all 127 possible combinations, we limited ourselves 
to 37 combinations, settled on by a subjective, back-
wards step-wise method: the most complicated model 
(‘Model 1’) was fitted first, and the results used to guide 
which explanatory variable(s) to drop for Model 2, and 
so on. We considered the presence of t to be mandatory 
throughout, except in Model 37, which was a control 
with no explanatory variables. Table 5 presents the most 
notable combinations tested. If c or b appeared in the 
GAMM, their most populous class (c = ‘Intermediate’; 
b = ‘Brigalow Belt South’) was incorporated into param-
eter β0 . For each continuous explanatory variable in 
Table 5, f (.) . of Eq. (1) took the form of a penalised cubic 
regression spline [40], which we represent herein as ‘ s(.) ’. 
The spline associated with t could be split by the classes 
of c, i.e. the shape of the spline over time was allowed to 
vary by clearing method. When the split is present, this 
spline is denoted  s(t|c) ; without the split it is  s(t) . For 
s(t) and s(t|c) , we used the default basis dimension of 10. 
For s(a) , s(r) and s(v) , preliminary analysis (not shown) 
suggested to alter the basis dimensions to 6, 15, and 15, 
respectively, where the smaller the value, the more stiff 
the spline. We expected r and v to have an interactive 
effect on logit

(

y
)

 , so when these explanatory variables 
appeared in the GAMM together, we replaced them 
with s(r, v) , a tensor product-based smooth of a penal-
ised cubic regression spline that considered the variables 
jointly. The dimension of this joint spline was six per 

Table 3  Explanatory variables for the generalised additive 
mixed-effects model; ‘s. c.’ is ‘since clearing’, and ‘NA’ indicates that 
the variable is categorical

Name Description Unit Source

c (See Table 2) NA Field operators

b (See Table 4) NA [44]

t Decimal years s. c yr Field operators

r Proportion of rain days s. c (unitless) [46]

v Mean daily vapour pressure deficit 
s. c

hPa [46]

g Number of times burned s. c (unitless) [43]

a Clay content of soil surface (0–5 cm) % [60]
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variable. We regarded g as a strictly linear term, because 
it had only three unique values in the dataset (i.e. 0, 1, or 
2). Note that Model 37, because it had no explanatory 
variables to smooth, was fitted with the lmer function of 
R’s lme4 library.

We split the dataset so that 90% of sites were avail-
able for training a model, and the remaining sites were 
used for validation. The workflow applied to each of the 
37 models (Box  1) accounted for two major sources of 
uncertainty: one relating to the explanatory variables, 
and the other relating to model parameters. In regard to 
explanatory variables, if the years-since-clearing could 
only be determined to within, say, a 6-month window, 
then t, r, v, and g could all vary more compared with a 
site where years-since-clearing was accurate to within a 
one-month window. To address this issue, we calculated 
a lower and upper bound for each value of these explana-
tory variables, based on the earliest and latest dates for 
years-since-clearing (Appendix). These bounds served as 
parameters from which we drew a set of uniform random 

deviates (Box  1, step 2), which were then used as the 
explanatory variables for the model. In the case of g, only 
the integer part of each univariate deviate was consid-
ered. Explanatory variable a, i.e. clay content of the top 
5  cm of soil, was also used in a manner that accounted 
for its uncertainty, except that the predicted clay content 
and its associated 95% prediction interval were used to 
define a triangular, not uniform, distribution. Each model 
was fitted 100 times with randomly perturbed explana-
tory variables. In regard to model parameters, we used 
numerical simulation to combine the different sources 
of variation: i.e. step 7b of Box  1 accounted for uncer-
tainty due to the model’s fixed effects; step 7c accounted 
for uncertainty due to a validation site; and 7d accounted 
for residual uncertainty. The sum of the three simulated 
components formed a distribution for the prediction 
(logit scale). In total, at the end of the procedure in Box 1, 
every validation datum was associated with 10,000 simu-
lated predictions, for all 37 models.

Table 4  Aggregated bioregions, b, used for modelling; n is the number of sites, and ‘NA’ means that no other bioregion was subsumed 
into b 

Climate statistics were calculated from the daily Queensland-wide surfaces held in the SILO database [46]

b Proportion of n Additional subsumed bioregion(s) Mean daily 
temperature, 1986–
2014 (°C)

Median annual rain, 
1986–2014 (mm)

Brigalow Belt North 0.19 Central Mackay Coast 25.1 608

Brigalow Belt South 0.43 Darling Riverine Plains; Desert Uplands, Einasleigh 
Uplands; Nandewar; New England Tablelands

24.6 584

Cape York Peninsula 0.02 Gulf Plains 26.5 1330

Mitchell Grass Downs 0.06 NA 25.7 334

Mulga Lands 0.19 Channel Country 25.1 271

South East Queensland 0.09 NA 24.0 896

Wet Tropics 0.02 NA 25.1 1923

Table 5  Some of the combinations of explanatory variables tested for the generalised additive mixed-effects model in Eq. (1), and the 
performance when applied to withheld validation data

Function ‘ s(.) ’ indicates a penalised cubic regression spline. Key to the explanatory variables: c = clearing method; b = bioregion; t = decimal years since clearing; 
r = proportion of rain days since clearing; v = mean daily vapour pressure deficit since clearing; g = number of times burned since clearing; a = clay content of soil 
surface (0–5 cm). Refer to Tables 2, 3, 4 for more information on the explanatory variables. Key to the columns: PV proportion of variance explained (logit scale), 
CCC​  concordance correlation coefficient (logit scale), PCP proportion of sites correctly predicted, MAE  median absolute error (original scale of %); L2 Euclidean norm. 
Bold-face indicates the best overall model

Model Combination of explanatory variables PV CCC​ PCP MAE L
2

1 c + b+ s(t|c)+ s(r , v)+ g+ s(a) 0.33 0.47 0.80 13.7 17.6

2 c + b+ s(t|c)+ s(r , v)+ g 0.33 0.48 0.81 15.6 14.7

7 c + b+ s(t|c)+ g 0.32 0.46 0.82 14.7 10.5
12 c + b+ s(t|c) 0.32 0.45 0.81 14.0 14.2

13 c + s(t|c)+ s(r , v) 0.31 0.45 0.83 14.9 11.5

24 b+ s(t)+ s(r , v) 0.30 0.44 0.82 16.6 18.8

36 s(t) 0.25 0.36 0.83 16.0 27.0

37 (none) 0.00 0.00 0.91 25.8 33.9
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Box 1: The workflow for modelling dataset ‘z’

•	Training:

1.	 Subset the training sites from ‘z’
2.	� Perturb the explanatory variables in the training 

subset
3.	� Fit the model using the perturbed explanatory var-

iables
4.	 Save the model
5.	 Repeat steps 2–4 a further 99 times

•	Validation:

6.	 Subset the validation sites from ‘z’
7.	 For the ith of the 100 models:

a.	� Perturb the explanatory variables in the valida-
tion subset

b.	�Draw 100 random deviates from the distribu-
tion N

(

p̂j , se
[

p̂j
]2
)

 , where p̂j was the value pre-
dicted by the model for the jth validation datum, 
and se

[

p̂j
]

 was the corresponding standard error
c.	� For the jth validation datum, draw 100 random 

deviates from the distribution N
(

0,ϕ2
)

 (Eq. (1))
d.	�For the jth validation datum, draw 100 random 

deviates from the distribution N
(

0, σ 2
)

 (Eq. (1))
e.	� Store the simulated values as b + c + d

	 8.	Summarise the 10,000 simulated values for each 
validation datum

their target values, then converted the outcomes to 
ranks. We then used the mean and standard deviation 
of the ranks for each model to calculate a Euclidean 
norm. The model with the smallest Euclidean norm 
was the best overall. This model we subsequently re-
fitted with the entire complement of sitess, as per the 
description in Box 1.

Alternative methods of calculating CWD disappearance
To further judge the performance of the GAMM, we 
applied two published models of CWD disappearance to 
the withheld validation sites: (i) the single-exponential 
decay function of [17], where the rate constant is itself 
a function of mean air temperature; and (ii) the NGGI 
method for characterising CWD disappearance. For 
(i), mean-air-temperature-since-clearing was randomly 
perturbed within a range of values, as for the explana-
tory variables described above. For (ii), we combined the 
FullCAM two-pool method [36] with the constants pub-
lished in Table  6.52 (which partitions biomass in a tree 
at the time of clearing) and Tables 6.55a,b (which respec-
tively decompose the ‘standing dead’ and ‘debris’ pools) 
of [35]. The NGGI regards biomass partitioning as a 
function of annual rain, so we first calculated a Queens-
land-wide surface of median annual rain (mm) between 
1986 and 2014, from the SILO database [46]. We set the 
date of burning to 10 months after clearing, and contin-
ued monthly calculations until 100 years after the clear-
ing event.

A lagged exponential function was proposed by [1] to 
describe CWD disappearance:

where: yt was CWD remaining (%) at t years since clear-
ing; ∝ was the rate constant; and N controlled the time 
lag for disappearance (the larger the value, the larger the 
delay). We optimised ∝ and N to fit the median back-
transformed predictions of the GAMM for certain exem-
plary land clearing scenarios in Queensland.

Results
Figure  3 presents histograms of different aspects of the 
SLATS observations of CWD disappearance. Over all 
sites (baseline and revisit), it is apparent that the inten-
sity of the sampling (Fig. 3a) declined over time, and that 
no valid observations of CWD disappearance have been 
made since 2013. These reflect: (i) a long-term reduction 
in land clearing rates; and (ii) a contemporaneous shift in 
SLATS, towards increasingly confident use of the avail-
able satellite imagery. Eighty-four percent of sites were 
generally only revisited once or twice more, following 

(2)yt = 100
(

1− (1− exp(− ∝ t))N
)

,
We used the median of the simulated predictions at 

each validation location to calculate, for each model, 
the proportion of variance explained by the predic-
tions (PV) and the concordance correlation coef-
ficient (CCC [45]) of predictions with observations 
(logit scale). The target value for each of these is 1.0. 
We also used the simulated predictions to calculate 
the proportion of validation sites correctly predicted 
(PCP), i.e. where all observed values for a site were 
inside a model’s 95% prediction interval (logit scale). 
The target value for PCP is 0.95, which indicates that 
the model adequately characterises the variability of 
the observed data. Finally, we calculated the median 
of the back-transformed simulated predictions at each 
validation datum, and used the resulting set of values 
to calculate the median absolute error (MAE) on the 
original scale of the data (i.e. %). The target value for 
MAE is zero.

To judge the overall best model we calculated the 
absolute difference of PV, CCC, PCP and MAE from 
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the baseline visit (Fig. 3b). The average time between the 
baseline and the first revisit was 3.4 years.

We associate an intermediate rate-of-disappearance of 
CWD mainly with trees that have been pulled and left 
(Table 2). In this case, CWD tended to disappear slowly 

for the first three years, but then the rate increased such 
that, by 17  yr after clearing, much of the CWD was 
gone (Fig.  4). Relatively fast disappearance of CWD is 
mainly associated with trees that have been pulled and 
then stick-raked. In this case, CWD tended to disappear 
slowly for the first three years, but then the rate increased 
such that, by 10 yr after clearing, much of the CWD was 
gone. Relatively slow disappearance of CWD is mostly 
associated with stem-injection of aboricide. In this case, 
the CWD tended to decompose linearly, with relatively 
little change after 20 yr.

According to the withheld validation data, the best 
combination of explanatory variables was Model 7 
(Table 5), which regards CWD disappearance as a func-
tion of years-since-clearing, clearing method, bioregion, 
and the number of times burned. Model 1 was bet-
ter than Model 7 in regard to PV, CCC, and MAE, but 
these were countered by Model 7’s better performance 
with PCP. Model 13 was the second-best of the combi-
nations tested, but replacing g with s(r, v) would not be 
wise in terms of parsimony; Model 12 would be a better 
second-choice combination, as it depends only on years-
since-clearing and bioregion. In the absence of informa-
tion about the clearing method, Model 24 was the best 
of those tested, but MAE increased from 14.7% to 16.6%. 
When years-since-clearing was the only explanatory 

Fig. 3  Histograms of the number of observations of the 
disappearance of coarse woody debris: a by year and the type of visit; 
and b by the number of visits per baseline site

Fig. 4  Observed disappearance of coarse woody debris, as a function of years since clearing (t), split by clearing method (Table 2). Clearing 
methods have been aggregated to reflect the hypothesised rate of CWD disappearance: Intermediate, Fast, or Slow (Table 2). To elucidate trends, 
the red line is a running median with a bin width of one year
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variable (Model 36), PV and CCC decreased sharply. 
Relative to all other models, the poor performance of 
Model 37 suggests that the disappearance of CWD can 
be attributed to readily available environmental informa-
tion. Model 37 recorded the largest PCP of 0.91. Bearing 
in mind the target PCP was 0.95, the consistent shortfall 
in Table 5 means that the models underestimate variance, 
and therefore prediction uncertainty; however, the values 
also partly reflect the conservative condition we applied, 
i.e. that all observations of a site had to be within the 95% 
prediction interval in order to contribute to the calcula-
tion of PCP.

When the single-exponential model of [17] and the 
NGGI method were applied to the validation sites, MAE 
was 20.2% and 58.6%, respectively. When the burning 
event of the NGGI method was omitted, MAE improved 
to 18.1%, but this was still not better than any of the 
GAMMs in Table 5.

For 100 fits of Model 7, the residuals were approxi-
mately normally distributed (Fig.  5). The slight negative 
skew suggests that either an important process is absent 
from the explanatory variables, or there was a bias in the 
operators’ interpretation of Table 1. Given the logit trans-
form of y, the fitted linear parameters for c in Model 7 
indicate the length of time it takes for 50% of CWD to 
decompose. Assuming the default clearing method is 
Intermediate (typified by ‘pulled and left’), CWD dis-
appears to 50% significantly faster under the clearing 
methods typified by ‘Pulled and stick-raked’ (Fig.  6a), 
where the tails of the distribution suggest significance at 
P < 0.01 . For the same reason, under the clearing meth-
ods typified by stem injection of aboricide, CWD disap-
pears significantly slower, significant also at P < 0.01 
(Fig.  6b). The predominantly negative sign of the linear 

parameter g was expected—the greater the incidence of 
fire, the faster the CWD disappears—but the effect was 
less strong than c, significant at P < 0.1 (Fig.  6c). The 
partial effect of the spline s(t|c) was biologically sen-
sible in that CWD disappeared with time (Fig.  6d). The 
disappearance was strongly non-linear, except when the 
land clearing method was ‘Slow’, which agreed with the 
exploratory plot in Fig. 4. Note that all probability densi-
ties in Fig. 6 were generated from 10,000 values, accord-
ing to Box 1.

Figure 7 illustrates how Model 7 predicts in various sce-
narios, when back-transformed from logit. For plotting 
clarity, we have omitted all 95% prediction intervals; how-
ever, the intervals are incorporated into Table  6, which 
presents, for the same scenarios, the median and the few-
est years needed for 95% of CWD to disappear. Based on 
the SLATS data, a common scenario for land clearing in 
Queensland is that trees are pulled then left to decom-
pose naturally, within the Brigalow Belt South bioregion 
(or one of its subsumed bioregions in Table  4). In this 
case, it will typically take 38 yr for 95% of CWD to disap-
pear, with a lower bound of 5 yr. If trees of the Brigalow 
Belt South bioregion are pulled, stick-raked, then burned 
once, it will typically take 22  yr (lower bound = 4  yr). 
If tree stems in the Brigalow Belt South bioregion are 
injected with arboricide, they will typically take 68 yr for 
95% of the CWD to disappear (lower bound = 24 yr). In 
the Brigalow Belt North bioregion, trees that are pulled 

Fig. 5  Probability densities for 100 sets of residuals of Model 7 (logit 
scale)

Fig. 6  Aspects of the fixed effects of Model 7 (Table 5). Top row: 
probability densities of the linear parameters associated with c 
(method of clearing) and g (number of times burned). Bottom 
row: violin plot that shows the partial effect of the spline s(t|c) (i.e. 
years-since-clearing, conditional on clearing method)



Page 10 of 15Pringle et al. Carbon Balance and Management           (2021) 16:36 

and left will typically take 31 yr for 95% of CWD to disap-
pear, with a lower bound of 4  yr. The principal climatic 
difference between the two bioregions is that Brigalow 
Belt North is 0.5 °C d−1 warmer than Brigalow Belt South 
(Table  4). In the Mulga Lands bioregion, trees that are 
pulled and left will typically take 53 yr for 95% of CWD 
to disappear (lower bound = 10 yr). The principal climatic 
difference between the bioregions is that Mulga Lands is 
0.5  °C d−1 warmer and 313  mm of rain yr−1 drier than 
Brigalow Belt South (Table 4). In all scenarios, the upper 
bound for disappearance was > 100  yr. According to the 
NGGI it took < 1 yr for 95% of CWD to disappear. When 
the burning condition of the NGGI was omitted, the 

disappearance of CWD was much closer to the statistical 
models and the observations of Fig. 4, and corroborates 
the decrease in MAE noted above. In Table 6 we present 
the parameters of Eq. (2) that best fit the GAMM predic-
tions of each scenario in Fig.  7, provided as a reference 
for future studies.

Discussion
On the CWD observations
We have used an archive of observations, accumulated 
over many years by SLATS, to explore the dynamics of 
CWD disappearance in Queensland, Australia. These 
data provide an efficient way to evaluate the current 
understanding of an important component of Australia’s 
greenhouse gas emissions: land clearing. Even though 
the data are semi-quantitative, and actual CWD biomass 
cannot be inferred, the pattern of disappearance provides 
a basis for comparison.

While the data are by no means an unbiased probabil-
istic sample, enough observations are available to sug-
gest that, following a land clearing event, the majority 
of CWD in Queensland is left to decompose naturally 
(Table  2). When CWD is stick-raked the chance of it 
being ultimately burned increases, but we are unable to 
estimate anything more precise than an upper bound of 
36% for the amount of CWD deliberately burned. In the 
set of observations that we excluded due to there being 
no revisit, the amount of stick-raking was 25%, which 
suggests that subsampling did not induce any serious 
fire-related bias into the analysis. If anything, SLATS’ 
roadside sampling over-represents stick-raking, because 
some land managers are motivated to present ‘clean’ land 
in areas of high public visibility. Ultimately, the upper 
bound of 36% deliberately burned is substantially smaller 
than the 98% assumed by the NGGI. In the proportion-
ately large (80% by area [47]), less-fertile areas of Queens-
land, land is mainly cleared for grazing purposes. Land 
managers in these areas have little incentive to expedite 
the removal of CWD, because animals can still graze 
adequately, although mustering in the presence of much 
CWD is hazardous. The relatively fertile, though propor-
tionately small, cropping and coastal areas of Queensland 
create an incentive for land managers to expedite the 
removal of CWD. Land intended for cropping is more 
likely to be stick-raked and burned, to enable cultivation 
and a reasonably prompt return on investment.

Elaborating the different components of the model
We used a generalised additive mixed-effects model 
(GAMM) to predict logit-transformed CWD disappear-
ance. It is worth elaborating the different components of 
this statement. ‘Mixed effects’ refers to how the model 
splits CWD disappearance into components associated 

Fig. 7  The disappearance of coarse woody debris, as a function of 
time, predicted by Model 7 (Table 5) for exemplar combinations of 
explanatory variables c (method of clearing) and b (bioregion). Note 
that the number of times burned was g = 1 if c = Fast, but g = 0 
otherwise. For comparison, values calculated from Australia’s national 
greenhouse gas inventory (NGGI) are also shown in solid gold; 
the dashed gold line is the same, but with the assumptions about 
stick-raking and burning turned off. The dashed horizontal line is the 
threshold for 95% disappearance

Table 6  The typical number of years for 95% of CWD to 
disappear, as predicted by Model 7 (Table  5), for exemplar 
combinations of clearing method (c), bioregion (b), and the 
number of times burned (g)

The value in brackets is the fastest scenario for disappearance, given the model’s 
prediction uncertainty. Also shown are values for parameters ∝ and N of the 
lagged exponential function of [1] (Eq. (2)), which give the best approximation 
to the median predictions of Model 7

c b g Number of years ∝ N

Intermediate Brigalow Belt South 0 38 (5) 0.091 0.891

Fast Brigalow Belt South 1 22 (4) 0.213 1.325

Slow Brigalow Belt South 0 68 (24) 0.057 3.828

Intermediate Brigalow Belt North 0 31 (4) 0.117 0.846

Intermediate Mulga Lands 0 53 (10) 0.060 1.170
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with ‘fixed’ and ‘random’ effects. Fixed effects describe 
a deterministic response to an explanatory variable, 
while random effects describe a probabilistic response 
that (in this study anyway) we want to control for, but 
are not specifically interested in. In the context of this 
study, years-since-clearing is the key fixed effect, while 
we regard between-site differences as a random effect. A 
similar approach was taken by [20] to describe CWD dis-
appearance, except that they considered between-species 
differences as a random effect. ‘Additive’ refers to how the 
different functions of the explanatory variables are added 
together to influence CWD. These functions are not nec-
essarily linear, which we showed in Fig. 6d. ‘Generalised’ 
refers to how the errors of the model are assumed to fol-
low a distribution that is not, as in other forms of regres-
sion, necessarily restricted to the normal distribution. We 
actually ignored this aspect of the GAMM, and applied a 
logit transform, which is commonly applied to models of 
proportions and percentages, to help the errors conform 
to a normal distribution (Fig. 5).

In regard to the logit transform, three advantages were 
apparent in this study. Firstly, it ensured that a back-
transformed prediction would always fall within the 
interval (0%, 100%). Secondly, a back-transformed pre-
diction at t = 0 returned a biologically sensible value 
close to 100%. Thirdly, back-transformed predictions 
conformed with a visual trend in the observed data, i.e. 
CWD disappearance tended not to begin immediately, 
but rather had a delayed onset (Figs. 4, 7). We discuss this 
in more detail below.

Interpretation of the results
We found that the best statistical model to explain the 
disappearance of CWD involved years-since-clearing, 
clearing method, bioregion, and the number of times 
burned. The years-since-clearing effect was strongly 
non-linear when the clearing method involved tree-pull-
ing. The rate of disappearance increased when the tree-
pulling was followed by stick-raking. Disappearance of 
poisoned trees was relatively slow. The number of years 
required for CWD to disappear (Table  6) is compara-
ble with a study in the arid zone of South Australia [48]. 
Many studies have previously found that temperature 
and tree species are important factors that determine 
the variability in CWD disappearance [17, 25, 28], so it is 
not surprising that we found bioregion—an explanatory 
variable that effectively describes a climate-by-tree spe-
cies interaction—to be important. In practical terms, the 
clearing method can be difficult to establish. ‘Pulled and 
left’ is the default clearing method of the model and, as 
discussed above, a reasonably safe assumption for much 
of Queensland. The model could be validly applied in 
other parts of Australia where the bioregion intersects 

Queensland. We do not recommend extrapolating the 
model elsewhere, on the basis that the already-large pre-
diction uncertainty will only increase. Where the clear-
ing method cannot be reliably established or assumed, 
we have shown that a reduced model comprising effects 
for only bioregion and years-since-clearing suffices (i.e. 
Model 12 of Table 5).

The model predicts relatively slow CWD disappear-
ance in the first years after a land clearing event. This 
delayed onset was the principal reason that we eschewed 
the simple exponential decay models commonly used 
to describe CWD disappearance. Exponential decay, by 
definition, proceeds at a rate proportional to the avail-
able substrate, but implicitly assumes that the agent 
of decay—be it physical, chemical, or biological—can 
always act on the substrate, at any time. We contend that 
this is a strong assumption for the CWD generated by 
a land clearing event, and is not supported by our data 
(Fig.  4). The main tree species of the study region have 
relatively dense wood [49, 50], which, together with a 
predominantly semi-arid climate, slow the onset of decay 
by microorganisms and invertebrates. The delay may 
also be partly explained by changes to the species com-
position of termites that is caused by land clearing [51], 
or the time needed for CWD to dry. In some cases, the 
delay may simply be due to an absence of management 
intervention, particularly if, as noted above, the land is 
intended for grazing. Equation (2) was expounded by [1] 
to consider CWD disappearance through physical frag-
mentation (e.g. the action of gravity or insects), which, by 
its nature, takes time to manifest. In our study, we apply 
Eq.  (2) more generally, with parameter ∝ integrating all 
forms of disappearance. The optimised parameter values 
in Table  6, though bound to the given scenarios, might 
conceivably act as a metamodel that informs a descrip-
tion of CWD disappearance simpler than the GAMM.

We have demonstrated that the rate of CWD disap-
pearance is vastly different between our statistical model 
and the NGGI (Fig.  7). The NGGI method predicts 
almost-complete CWD disappearance in a single year fol-
lowing land clearing, due to assumptions around prompt 
stick-raking and burning. We have shown that Model 7 
slightly over-predicts the disappearance of CWD in some 
circumstances (Fig.  5), but does reflect the broad trend 
(Fig.  4), and behaves similarly to a variant of the NGGI 
that considers decomposition only (Fig.  7) We suggest 
that those responsible for the NGGI now have, through 
our publicly available dataset, a further source of ground-
based observations to help test assumptions. We fur-
ther suggest the following research questions for future 
studies: (i) does the coarse-root component of CWD 
justify its presence in the debris pool, given that tree-
pulling tends to partly extract it from the ground? (ii) 
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do stick-raked piles of CWD decay faster because their 
microclimate encourages decomposition from within the 
pile, rather than just decomposing due to contact with 
soil? and (iii) can the burning of stick-raked CWD be 
detected in daily satellite imagery?

Our statistical model of CWD disappearance is 
potentially important from the perspective of green-
house gas accounting, at a farm, regional—and even 
national—scale. The relatively slow predicted rates of 
CWD disappearance will impact the net greenhouse 
gas balance, and may also have an impact on the total 
greenhouse gas emissions that can be offset, particu-
larly if a business—or Queensland’s grazing industry as 
a whole—tries to claim carbon neutrality. We acknowl-
edge that, following a land clearing event, the major-
ity of the carbon held in CWD will eventually be lost 
to the atmosphere, regardless of the rate of disappear-
ance. However, when disappearance rates are relatively 
slow, losses can be more effectively offset by the growth 
and regrowth of woody vegetation [52], thus leading to 
larger carbon stocks on agricultural land than would 
otherwise be predicted. We must also acknowledge 
that land clearing contributes to non-CO2 greenhouse 
gases. Burning of CWD will generate—like wildfire—
methane, carbon monoxide, and nitrous oxide [53], 
and termites generate methane [54]. These topics were 
beyond the scope of our study.

Conclusions
We combined statistical modelling with an archive of 
semi-quantitative data, to study the disappearance of 
CWD (%) in Queensland, Australia, following a land 
clearing event. The median absolute error of the model 
was 14.7%. Disappearance was strongly influenced by 
years-since-clearing, the clearing method, bioregion, 
and the number of times burned. Years-since-clearing 
had a strongly non-linear effect on the rate of disap-
pearance. Contrary to many other studies, our data did 
not support modelling by simple exponential decay; 
instead, disappearance was reverse-sigmoidal, with 
little change apparent for three years following a land 
clearing event. In typical conditions for Queensland—
i.e. trees are pulled-and-left, the bioregion is (or is 
alike to) Brigalow Belt South, and the CWD remains 
unburned—we found that, following a land clearing 
event, it will take 38 yr for 95% of CWD to disappear. 
In contrast, due to an assumption about the propensity 
of land-managers to burn CWD, the official method 
used to report Australia’s greenhouse gas emissions 
predicted that 95% of CWD would disappear in < 1  yr. 
This result ultimately implies that official reporting 
incorrectly apportions the annual contribution of land 

clearing to Queensland’s CO2 emissions; presumably 
the same assumptions are applied elsewhere in Aus-
tralia where environmental conditions are similar. 
Our statistical model suggests that the profile of land 
clearing emissions over time is much smoother than 
otherwise thought, which has implications for assess-
ing change relative to emission baselines. We showed 
that CWD disappearance increased if CWD was 
formed into piles (possibly for burning), or if tempera-
ture increased and rainfall stayed constant. The rate of 
CWD disappearance slowed if the clearing method was 
stem-injection of arboricide, or if the bioregion was rel-
atively dry.

Appendix
We used the concept of image texture [55] to help narrow 
the clearing window, on the assumption that a land clear-
ing event will, in general, disturb the space–time stability 
of the local environment.

For each baseline site we assembled a stack of inter-
secting Landsat images (30-m spatial resolution; 16-day 
temporal resolution) that spanned the SLATS report-
ing period. Spatially, the stack was restricted to a five-
by-five block of pixels centred on the spatial coordinate 
of the baseline site. We then applied a statistical model 
pixel-wise to the stack, to estimate, for a unique obser-
vation date, foliage projective cover (FPC [56]) from the 
sextuple vector of Landsat reflectance. Within a three-
month window that moved over the FPC stack, we cal-
culated: (i) the median; and (ii) the robust semivariance 
[57] for pairs of pixels with central locations 30 m apart. 
These two quantities not only allowed us to minimise the 
effects of outliers, but they also allowed us to compute a 
localised coefficient-of-variation for FPC (FPCCV). Note 
that, to be included in the calculation of FPCCV, all 25 
pixels associated with a unique observation date had to 
be uncontaminated by cloud or cloud shadow [58] or 
water [59]. By examining FPCCV for large shifts, and also 
viewing the original Landsat reflectances for context, we 
identified the year and month of clearing for a site. If the 
month could not be reliably established, we looked for 
the narrowest window of months when the clearing likely 
occurred. In the worst-case scenario, the time of clearing 
was simply given as entirety of the baseline site’s SLATS 
reporting period.

Sixty-nine percent of baseline sites were attributed 
with a single month for the clearing window (Fig.  8a), 
although 13% were so uncertain that the clearing win-
dow could not be narrowed to less than the SLATS 
reporting period. For an exemplar baseline site—the 
same site photographed in Fig.  2a—the FPCCV was 
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temporally stable until the land clearing event trig-
gered large fluctuations (Fig.  8b–d). Generally, within 
our dataset, we found that tree-pulling would induce a 
sudden decrease in FPC, but also—due to the random 
alignments of debris, litter, and previously obscured 
soil—tended to increase the short-range spatial vari-
ation of FPC. These two effects are integrated into 
FPCCV. The slow-acting methods of clearing (Table 2) 
had only a subtle effect on FPCCV, so the timing of the 
clearing event was more difficult to detect.
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