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Abstract 

Background:  Soil organic carbon (SOC) affects essential biological, biochemical, and physical soil functions such as 
nutrient cycling, water retention, water distribution, and soil structure stability. The Andean páramo known as such a 
high carbon and water storage capacity ecosystem is a complex, heterogeneous and remote ecosystem complicating 
field studies to collect SOC data. Here, we propose a multi-predictor remote quantification of SOC using Random For-
est Regression to map SOC stock in the herbaceous páramo of the Chimborazo province, Ecuador.

Results:  Spectral indices derived from the Landsat-8 (L8) sensors, OLI and TIRS, topographic, geological, soil taxon-
omy and climate variables were used in combination with 500 in situ SOC sampling data for training and calibrating 
a suitable predictive SOC model. The final predictive model selected uses nine predictors with a RMSE of 1.72% and 
a R2 of 0.82 for SOC expressed in weight %, a RMSE of 25.8 Mg/ha and a R2 of 0.77 for the model in units of Mg/ha. 
Satellite-derived indices such as VARIG, SLP, NDVI, NDWI, SAVI, EVI2, WDRVI, NDSI, NDMI, NBR and NBR2 were not found 
to be strong SOC predictors. Relevant predictors instead were in order of importance: geological unit, soil taxonomy, 
precipitation, elevation, orientation, slope length and steepness (LS Factor), Bare Soil Index (BI), average annual tem-
perature and TOA Brightness Temperature.

Conclusions:  Variables such as the BI index derived from satellite images and the LS factor from the DEM increase 
the SOC mapping accuracy. The mapping results show that over 57% of the study area contains high concentrations 
of SOC, between 150 and 205 Mg/ha, positioning the herbaceous páramo as an ecosystem of global importance. 
The results obtained with this study can be used to extent the SOC mapping in the whole herbaceous ecosystem of 
Ecuador offering an efficient and accurate methodology without the need for intensive in situ sampling.

Keywords:  Carbon stock mapping, Soil organic carbon (SOC), Landsat, Random forest regression, Vegetation indices, 
Multispectral indices
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Background
Soil organic carbon (SOC) is the main component of 
soil organic matter (SOM), affecting essential biologi-
cal, chemical and physical soil functions such as nutrient 
cycling, pesticide and water retention, and soil structure 
maintenance [1]. The accumulation of SOC is a slow pro-
cess driven by environmental and climatic conditions. 
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A sudden loss of SOC may therefore indicate soil deg-
radation [2], land use changes or eventually also climate 
changes [3, 4]. An alteration of 10% in the total of SOC 
in the world’s soils is estimated to be equivalent to the 
anthropogenic CO2 emission over a 30-year time span 
[5]. Preserving the stock of SOC is therefore of global 
interest to the climate change mitigation and adaptation 
strategies [6]. Ecosystems with high amounts of SOC 
such as the Andean páramo, have a large potential to cap-
ture and store atmospheric CO2 [7]. The largest amount 
of SOC is typically stored into the top organic hori-
zon layer of the soil (0 to 30 cm), and gradual decreases 
towards deeper soil profile sections [8–11]. These organic 
soils have high water retaining capacity, and in turn they 
accumulate water from thawing, rain, and fog conden-
sation. The accumulated water is further released to the 
lowlands providing essential ecosystem services for the 
larger region of these ecosystems [7, 12]. Identifying such 
priority ecosystems and quantifying their SOC stock is a 
priority for the climate goals. Likewise, monitoring the 
SOC content of these priority carbon-rich ecosystems 
can provide vital information for making correct deci-
sions regarding land uses at a global scale [13–16]. Since 
annual changes in SOC are considered small compared 
to the SOC stocks, such continuous monitoring of SOC 
could be at intervals of 5–10 years [8] in case robust pre-
diction models are available.

The characteristics of these global SOC reservoirs are 
described by a set of soil biophysical and physical vari-
ables established by different fields [17]. Soil, vegetation 
and atmosphere characteristics, such as soil type and 
land use, together with climatic factors, land cover and 
topographic factors (including soil erosion) could be able 
to explain the dynamics of storage and the spatial distri-
bution of SOC, being very useful especially in difficult 
geographical environments.

In the last years several methods have been used for 
SOC mapping, with the challenge to find the most appro-
priate and accurate one, based on study area charac-
teristics and in  situ data availability. Linear regression, 
geostatistical methods, and advanced nonlinear regres-
sion methods are used to predict the spatial distribu-
tion of the typically top layer soil properties [18]. Linear 
regression (simple and multiple) is used supposing a rela-
tionship between independent variables and the depend-
ent variable under a linear form. Several studies used this 
method to estimate SOC, where the models explain up to 
70% of the SOC variability [19, 20].

Geostatistical methods applied in soil mapping have 
the advantage of providing a statistically sound model 
for spatial variation, where the spatial autocorrelation is 
explicitly modelled and an explicit measure of the uncer-
tainty is associated with the prediction [21, 22]. The 

limitations are due to the residuals which are assumed 
normally distributed, stationary and isotropic; in heter-
ogeneous areas, the spatial variation models also fail to 
capture both gradual and abrupt changes in soil variation 
[22]. Therefore, in the large sample size the geostatistical 
models are computationally demanding [23]. Interpola-
tions on data from in  situ collected soil carbon such as 
ordinary kriging (OK) can be an appropriate and quick 
option [24], assuming no underlying trend in the data. 
When there is a spatial structure in the model residu-
als, hybrid models like residual kriging are applied to 
improve the SOC prediction performance [14, 25, 26]. 
Here, auxiliary variables are exploited combining geosta-
tistics with additional information for SOC predictions 
[27]. Regression kriging (RK) and universal kriging (UK) 
also are applied for SOC mapping, where the improve-
ment of RK techniques over OK largely depends on the 
strength of the correlation between SOC and the ancil-
lary variables [28, 29].

As an alternative, for more complex soil-environment 
relationships it is also possible to use machine learn-
ing (ML) regression algorithms [30]. ML techniques are 
non-linear data-driven algorithms, where no assump-
tion of the observations’ distribution is made. ML algo-
rithms can also handle a large number of cross-correlated 
covariates as predictor variables [22]. Based on self-
learning algorithms and supporting vector machines, 
ML techniques could further assist in the generation of 
even better calibration models for SOC prediction [10]. 
Also predictive tree models such as Classification and 
Regression Trees (CART) and Random Forest (RF) mod-
els [31] allow more accurate results and reduce the effect 
of noisy data [14, 32]. RF has demonstrated to provide 
reliable confidence intervals in SOC topsoil estimations 
[33]. In this context, RF models in combination with the 
appropriate selection of predictors can provide a power-
ful methodology for SOC mapping, applicable to both 
simple and complex geographical areas and when there 
a good data availability. Moreover, according to several 
authors adding new remote sensing predictors to the 
land cover analysis could greatly benefit the estimation of 
SOC distribution at diverse scales [10, 30, 34].

The soils of the Andean páramo ecosystem act as a 
large carbon sink due to its high capacity to retain SOC 
[35, 36]. It has an elevation gradient between 3000 and 
4000 m a.s.l., maintaining a constant cold climate which 
reduces the mineralization of organic matter (OM) and 
produces large SOC reserves. Well-preserved soils in the 
ecosystem generally contain a larger amount of OM and 
therefore provide a greater storage capacity for carbon. 
Although the region is relatively well-conserved, human 
activities are present in the area, generally at lower ele-
vations, where cattle is ranched and vegetation is often 
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burned to grow pastures [37]. These changes in land use 
often produce significant losses in the soil carbon and 
reduce the capacity to further store carbon [38]. Despite 
the fact that studying the vast Andean páramo area and 
its changes on a regional scale is challenging due to the 
complexity given by its difficulty to access, the terrain 
irregularity, and the climatic conditions, the knowledge 
of this important carbon sink ecosystem is essential in the 
global attempt to quantify the SOC reserves and to make 
correct decisions on land uses [14]. However, digital SOC 
mapping studies for the region are scarce. In Ecuador, 
national-level knowledge of SOC reserves in this ecosys-
tem is non-existent, and at the regional level it is limited 
or only punctually carried out [35]. The importance of 
herbaceous highland páramo ecosystems and their com-
plex geography for sampling [36] have stimulated recent 
advances in methodologies for the estimation of SOC 
and its spatial distribution [39]. Finding good predictor 
variables for the spatial estimation of SOC which can be 
also remotely assessed is therefore considered of great 
scientific relevance.

In this respect, the objectives of this study are (1) to 
estimate and map SOC in the herbaceous páramo eco-
system based on a multi-predictor Random Forest (RF) 
regression technique applied to Landsat 8 (L8) satellite 
bands and indices in combination with complementary 
geographic information, (2) to identify the essential vari-
ables for SOC prediction, and (3) to evaluate the accuracy 
of SOC prediction in this complex mountain geosystem. 
To achieve these objectives, spectral bands and indices 
derived from the L8 sensors, OLI and TIRS, are com-
bined with topographic variables from the digital eleva-
tion model (DEM), climate variables derived from the 
meteorological network in Ecuador and in situ collected 
SOC data to train and calibrate a self-learning algorithm 
with RF regression. The final step is the design of a SOC 
prediction model with a good level of accuracy used to 
map the spatial distribution of SOC in the study area.

Materials and methods
Study area
The study is carried out for herbaceous páramo eco-
system in the province of Chimborazo, Ecuador [40], 
135 km south of the Quito city, and located in the cen-
tral zone of the country. The ecosystem covers the largest 
area of mountain ecosystems in Ecuador, extending along 
the Andean mountain range, which borders the Western 
and Eastern Cordilleras arranged in meridian direction 
[7], from the province of Carchi to the province of Loja 
[41, 42].

The herbaceous páramo is the largest subtype from six-
teen subtype of páramo in Ecuador and cover above 75% 
approximately of the Ecuadorian páramo region [41, 42]. 

It extends between 78º39′ west longitude and 1º39’ south 
latitude (Fig.  1). It is a mountainous geosystem with an 
irregular topography and elevation range between 2303 
and 4501 m a.s.l, with a mean elevation of 3838 m a.s.l. 
Dry and wet seasons occur without notable differences, 
and the diurnal temperature change is most important 
as the annual changes of the mean temperature [43]. The 
mean annual temperature is 11 ºC and a high cloudiness 
is typical for this type of mountain ecosystem. The study 
area has 1667.6 km2, being 25.7% of the total province 
surface. The climatic and soil conditions are character-
ized by high humidity levels and high concentration of 
SOC. This results as a large amount of water per unit vol-
ume and an excellent water regulation capacity, between 
0.55 and 0.90 cm3 cm−3 [7, 42, 44].

Field data
In situ SOC data was collected between August 2016 and 
November 2017. Soil samples were taken from the top 
surface horizon layer (0 to 30 cm). Specifically, 500 points 
(for training and testing) were sampled with their respec-
tive geographical position (UTM coordinates zone 17S, 
WGS84) (PGS-Trimble JUNO SB handheld with 2-to-
5-m positional accuracy in real time), and the SOC value 
was obtained in units of weight/weight % (g C/100  g of 
soil) and units of Mg/ha (Fig. 1). In order to carry out a 
post-validation of the model, 29 additional points were 
randomly sampled in July 2018 for a post-validation test, 
obtaining a total of 529 SOC points.

It is essential to have a large dataset to identify the 
ideal conditions that allow to find an excellent quanti-
fication of the SOC distribution over the study area. To 
find variables or indicators of SOC enables the possibility 
not only of obtaining a predictive model, as shown in the 
development of this article, but also, knowing the rela-
tionship between environmental variables with the stor-
age dynamics of the SOC.

The SOC dataset (500 sample points for training and 
testing and 29 additional points of post-validation) is 
the result of a stratification of sampling units on the 
herbaceous páramo ecosystem, taking into account 
the geology and taxonomy of the soil available in the 
national system of geographic information [45]. Also, a 
review of the sampling units was made using the NDVI 
distribution (NDVI range between − 0.1 and 0.8, with 
a mean value around 0.4) to look at aspects of vegeta-
tion cover and variations, also an in  situ survey of the 
sampling units was carried out as information to define 
the monitoring points. For that, topography, vegeta-
tion cover and the access to the entire ecosystem terri-
tory was considered, but the difficulty to access (ballast 
roads and some trails with steep slopes) was high or 
even impossible for some areas. Although we take the 
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samples for training from August 2016 to November 
2017, Wadoux et  al. [46] confirmed the importance 
of the covariates used in the RF model more recently. 
Also, Wadoux et  al. [46] have shown that the differ-
ences between prediction accuracies of different sam-
ples designs for large sample sizes become negligible.

For this reason, a random sampling was performed 
with a 95% confidence level. In  situ samples were col-
lected from 0 to 30 cm below ground using a blast-hole. 
Additional samples were taken at each site to determine 
the soil bulk density (in g/cm3), which was determined 
with 88 cm3 cylinders, taking undisturbed soil samples 
[47]. Soil samples were sieved (2 mm mesh), oven-dried 
at 105 °C for 24 h, and ground prior to analysis. The total 
SOC in the collected soil samples was determined with 
an Elemental Analyzer (Flash 2000 Organic Elemental 
Analyzer type CHNS/O, ThermoFicher Scientific). Spe-
cifically, a soil aliquot, containing approximately 10  mg 
of organic carbon in silver capsules, was weighed [48, 
49]. The soil bulk density was calculated using the known 
volume cylinder method [50]. From the soil sample SOC 
weight % obtained (g C/100  g of soil) and the soil bulk 

density of the sample, the SOC content was expressed in 
Mg/ha [51].

Satellite image processing
The multispectral images used in this study correspond 
to the Landsat-8 satellite (L8), obtained by the Opera-
tional Land Imager (OLI, bands 3 to 7) and the Ther-
mal Infrared Sensor (TIRS, band 10 and 11) sensors. 
L8 images were downloaded from the Global Visualiza-
tion Viewer (GloVis) web service of the United States 
Geological Survey [52]. The images used are from two 
L8 scenes, with approximately 75% of the study area 
located in the North scene, for which, the base image was 
LC80100612016325LGN01 (Table  1). It was also neces-
sary to select two other scene dates for the gap filling, due 
to the large cloud cover in these base scenes. Based on a 
low annual meteorological variability (constant wet cold 
weather) typical of the páramo grasslands [7, 53], and the 
relatively stable SOC between consecutive years based on 
weather information available from the study area [45], 
images from the next year with similar dates were used 
for the filling on the North scene.

Fig. 1  Distribution of the SOC sampling points in the study area location in Ecuador Chimborazo province
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The images were downloaded in GEOTIFF format, pre-
senting a L1T pre-processing level, i.e., images with radi-
ometric and geometric systematic correction by means of 
the incorporation of the ground control points [54] and 
ortho-rectification through the DEM. A verification was 
made by means of topographic maps and base cartogra-
phy of rivers and roads, at a scale of 1:50,000, georefer-
enced in the UTM Datum WGS84 projection, from the 
Military Geographic Institute of Ecuador [55].

The downloaded satellite images contain the spectral 
information stored in digital numbers (DN) from the 
16-bit L8 sensors to be converted to physical units such 
as radiance and reflectance. A radiometric calibration 
was applied through the Radiometric Calibration tool 
of the software ENVI 5.1 [56] to obtain radiance values 
at the top of the atmosphere (TOA). TOA radiance val-
ues were after converted to surface reflectance values by 
means of the FLAASH Atmospheric Correction tool also 
of ENVI 5.1, to remove the atmospheric dispersion based 
on two factors, (1) the radiance reflected by the canopy 
or earth surface to the sensor, and (2) the radiance that is 
dispersed by the atmosphere before arriving at the sensor.

Due to the climatic and atmospheric conditions, the 
mountainous páramo areas are highly affected by cloud 
presence. For this reason, the histogram of the images 
was analysed for cloud screening. Next, clouds were 
removed using the 16-bit Quality Assessment band to 
generate a mask, the Quality Assessment band is equal 
in size to the bands of the L1T product. This band has 
a decimal value at each pixel that represents the combi-
nations of surface fill bits, atmosphere and sensor condi-
tions that can affect the overall usefulness of a pixel [57].

Finally, the image mosaic was generated by means of the 
processed image of the scene LC80100612016325LGN01 
that covers the north, center and part of the south 
zone of the study area and the processed image of 
the scene LC80100622016325LGN01 that covers the 
South zone. Cloud cover pixel gaps were filled in by 
the processed scenes LC80100612017263LGN00 and 
LC80100612017023LGN01 (Table 1).

Temperature was studied by means of the TIRS sen-
sor [57], using the mean of bands 10 and 11. The top of 
atmosphere brightness temperature, TOA Brightness 

Temperature, is obtained in Kelvin (K) and converted to 
its corresponding value in degrees Celsius (oC). The annual 
variation in meteorological air temperature of the páramo 
is low [58], so, likewise the mosaic of the optical OLI sensor 
images, a mosaic of the TIRS band information was made 
with the images mentioned in Table 1.

Spectral indices
Few studies use satellite sensors for SOC estimation [59]. 
However, the soil and the above-ground environment can 
be closely related allowing us to understand the biologi-
cal, chemical and physical processes that govern the soil 
functions [60]. In recent years, however, SOC estimation 
and mapping based on remote sensing data are undergo-
ing major developments including the use of new variable 
predictors [34]. In this regard, spectral indices can describe 
the surface characteristics in terms of vegetation cover, 
land use, and its changes. These characteristics can be fur-
ther related to the soil properties and the soil type, such as 
soil moisture, and possibly establish covariance with SOC 
storage data [61, 62], by its influence into the global cycle 
of carbon [16, 63]. Different studies use the visible region 
considering that soils with higher carbon content have a 
darker appearance [63]. An extended literature review on 
remote sensing SOC estimates shows that different authors 
obtain good results in the 400–2200 nm spectral range [34, 
64–68]. Here we use L8 OLI and TIRS spectral bands in 
the visible, near-infrared and thermal region (range 10.6 to 
11.19 μm and 11.5 to 12.51 μm) to calculate spectral indi-
ces that are evaluated as possible indicators of SOC seques-
tration including indices related to the vegetation and soil 
moisture (NDVI, SAVI, WDRVI, EVI2, VARIg, NDMI), 
water (NDWI), bare soil (BI), snow cover (NDSI) and burnt 
soil (NBR, NBR2) in the case of the OLI sensor, and tem-
perature in the case of the TIRS sensor (TOA Brightness 
Temperature). Table  2 shows the name, formulation and 
source of the spectral indices used.

Meteorological, topographical, geological and taxonomic 
data
Meteorological and climatic data
The SOC level in the soil is related to the amount of OM 
[83], which mainly depends on temperature, since at low 

Table 1  Landsat-8 images used

a  Cloud cover (CC) percentage
b  Image quality for the bands (9 = best, 0 = worst, − 1 = not calculated) (Qlty)

L8 scene ID Date Use—path, row (WRS-2) % CCa Qltyb

LC80100612016325LGN01 2016/11/20 Base image (North scene)—010, 061 19.78 9

LC80100622016325LGN01 2016/11/20 Base image (South scene)—010, 062 25.59 9

LC80100612017263LGN00 2017/09/20 Filling—010, 061 32.44 9

LC80100612017023LGN01 2017/01/23 Filling—010, 061 57.94 9
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temperatures biological activity is reduced, reducing the 
mineralization of the OM and allowing its accumulation 
in large quantities. Both temperature and precipitation 
are moreover determining the distribution and growth of 
vegetation making them very important control variables 
for both biomass growth and carbon storage in the soil 
[42].

The temperature at the páramo generally decreases 
between 0.5  °C to 0.7  °C for each 100 m of elevation 
(from 2000 m a.s.l) [53]. Data on air temperature and 
precipitation are collected by the weather stations in the 
area (Fig. 2). The seasonal trend in temperature and pre-
cipitation data of the study area in practically equatorial 
territory show only small alterations in time, indicating 
humid and cold conditions with small fluctuations < 2 °C 
on a yearly basis, with month average temperatures com-
monly low 10  °C [40]. Therefore, it was decided to use 
the average annual air temperature data, as well as the 
total precipitation for the 2015 year, from the meteoro-
logical stations closest to study zone, taking into account 
the availability, quantity and quality of the data. The data 
from meteorological stations located within the Chim-
borazo province is provided by the National Institute 
of Meteorology of Ecuador (INAMHI, 21 stations), the 
data from the southeast of the Chimborazo province by 
the National University of Chimborazo (UNACH, 3 sta-
tions) (Fig. 2), and additional data from 33 meteorologi-
cal station belonging to INAMHI located in surrounding 

areas out of the study area. Spatial interpolation methods 
are used to obtain weather information at a particular 
place where it can’t be attained directly [84]. Ordinary 
kriging stochastic interpolation method is widely used 
for spatial interpolation of meteorological data [24, 85]. 
We generated distribution layers of the surface variables 
through geostatistical analysis with the OK method and 
with a semivariogram adjustment taking into account the 
spatial variation of relationships between stations [84]. 
Most part of the study zone has an average annual tem-
perature between 8 and 14  °C, with minimum of aver-
age temperature of 5  °C and a mean around 11  °C. The 
annual accumulation of precipitation in the study area 
has a minimum and maximum of 390 mm and 2380 mm, 
respectively.

Topographic data
Soil erosion can alter and change the SOC by causing a 
significant loss of relatively stable and long-term stored 
SOC in the top soil layers [86]. From the DEM, the slope 
and orientation variables were analyzed and, in order 
to evaluate the effect of soil erosion, the dimensionless 
Slope Length and Steepness Factor (LS Factor) variable 
was calculated [87].

The LS Factor describes the topographic effect on the 
soil erosion, and it incorporates the potential for soil ero-
sion due to surface runoff. This is based on two factors; 
the factor L informs about the impact of the length of the 

Table 2  Established vegetation indices used in this study

Index/references Formula Formula with specific L8 bands

Normalized Difference Vegetation Index—NDVI [69] NDVI = NIR−R
NIR+R

NDVI = B5−B4
B5+B4

Soil-Adjusted Vegetation Index—SAVI [70], L value according [71] SAVI = NIR−R
NIR+R+L

(1+ L)

L = 0.15

SAVI = B5−B4
B5+B4+0.15

(1+ 0.15)

Wide Dynamic Range Vegetation Index—WDRVI [72], a value according [71] WDRVI = aNIR−R
aNIR+R

a = 0.05

WDRVI = 0.05B5−B4
0.05B5+B4

Enhanced Vegetation Index 2—EVI2 [73] EVI2 = 2.5 NIR−R
NIR+2.4R+1

EVI2 = 2.5 B5−B4
B5+2.4B4+1

Normalized Difference Water Index—NDWI [74] NDWI = G−NIR
G+NIR

NDWI = B3−B5
B3+B5

Visible Atmospherically Resistant Vegetation Index green—VARIg [75, 76] VARIG =
G−R
G+R

VARIG =
B3−B4
B3+B4

Normalized Difference Snow Index—NDSI [77] NDSI = SWIR1−NIR
SWIR1+NIR

NDSI = B6−B5
B6+B5

Bare Soil Index- BI [78] BI =
(SWIR1+R)−(NIR+B)
(SWIR1+R)+(NIR+B)

BI =
(B6+B4)−(B5+B2)
(B6+B4)+(B5+B2)

Normalized Difference Moisture Index—NDMI [79, 80] NDMI = NIR−SWIR1
NIR+SWIR1

NDMI = B5−B6
B5+B6

Normalized Burn Ratio—NBR [81] NBR =
NIR−SWIR2
NIR+SWIR2

NBR =
B5−B7
B5+B7

Normalized Burn Ratio 2—NBR2 [82] NBR2 =
SWIR1−SWIR2
SWIR1+SWIR2

NBR2 =
B6−B7
B6+B7

TOA Brightnees Temperature [57] T =
K2

ln

(

K1
L�

)

+1

T = TOA Brightness Tempera-
ture
Lλ = spectral radiance
K1 y K2 = thermal conversion 
constants

B10, B11TIRSsensor
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slope while the factor S explains the effect of the slope’s 
inclination. This factor is appropriate for estimating land-
scape erosion in complex topographies. The procedure 
was performed in ArcGis 10.2 software applying Eqs. 1, 2, 
3, 4, 5 and 6 [88].

with the L factor calculated as:

where Ai,j is the accumulation area with coordinates (i,j) 
[m2]; D is the length of the pixel size [m]; x is the shape 

(1)LS = L ∗ S

(2)β =

sinθ
0.0896

3sinθ0.8 + 0.56

(3)m =
β

β + 1

(4)L =

[

Ai,j + D
](m+1)

− Ai,j
(m+1)

xmDm+2(22.13)m

coefficient [dimensionless]; m has values between 0 and 
1 [dimensionless]; θ is the slope angle [rad]; and β is the 
ratio of rill to interill erosion [dimensionless].

The S factor is calculated as:

Geological and soil taxonomic data
The geological classification of the soil is based on its 
origin and evolution over time. The national geological 
mapping classification was used [45] containing 31 geo-
logical unities with names referring to the site locations 
(Fig. 3a).

There are soils of volcanic origin, which would have a 
high content of OM. On the outer slopes there are peren-
nial forested areas, often with thick cloud cover present. 
These soils are partially covered by recent volcanic ash 
and rejuvenated by the soil erosion. There are also soils 
with sediments of recent and long-standing volcanic ori-
gin. Similarly, alluvial soils with some agricultural activity 
occur [7]. These characteristics and geological conditions 
in the páramo herbaceous soils may favor the storage of 
SOC in high quantities.

Further, the variable layer of the soil taxonomy was 
included. According to this variable, the soil is considered 
as a natural body comprising solids (minerals and OM), 
liquids and gases on the land surface. It is characterized 
by horizons or layers distinguished from the initial mate-
rial as a result of additions, losses, transfers and transfor-
mations of energy, also by the ability to support plants 
in a natural environment. To categorize the soil based 
on their taxonomy, the USDA Soil Taxonomy was used, 
recognized in Latin America [89]. The soils in the study 
area include predominately Andosols, together with Enti-
sols, Histosols, Inceptisols and Mollisols (Fig. 3b). Due to 
the volcanic origin of these soils, they have high OM and 
SOC content, differences in SOC stock capacity can be 
evaluated based on this taxonomy variable.

SOC prediction with Random Forest Regression
For the SOC prediction Random Forest (RF) regression 
was used (Salford Systems software, version SPM8.2). 
RF is a combination of tree predictors and formed by 
growing a tree structure depending on a random vector 
while the tree predictor takes on numerical values [31]. 
RF regression was performed to obtain the quantitative 
value of SOC, with taking numerical values instead of 
class labels as tree predictors and the training set is inde-
pendently extracted from the random vector distribution. 

(5)S = 10.8sinθ + 0.03, if tg θ < 0.09

(6)S = 16.8sinθ − 0.05, if tg θ ≥ 0.09

Fig. 2  Location of weather stations with temperature and/or 
precipitation sensors
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One of the advantages of RF is that it is robust despite 
the presence of noise, i.e. the presence of anomalous data 
[31]. The algorithm is based on classification and regres-
sion trees (CART) [90, 91]. The CART finds the variables 
with predictive possibility and the division points that 
reduce the quadratic and absolute error in order to pre-
dict the dependent variable SOC with greater accuracy. 
CART evaluates all possible predictors and all possible 
split points for each predictive variable and determines 
the best split for each one, making a comparison between 
the best splits of each possible predictor and choosing 
the split based on the standard deviation of each option. 
In Fig. 4a, the process followed by a CART algorithm to 
find the best break or split point in the tree is shown.

Therefore, the RF regression algorithm adjusts multiple 
CART trees to independent sample bootstrap data and 
then combines the predictions. A bootstrap is a random 
sample for replacement purposes, it is created by ran-
domly selecting one record at a time from the original 
data, an observation can be chosen more than once. The 
process is carried out until the same number of records 
of the original data are completed. A CART tree is cre-
ated in each bootstrap, and only K variables selected ran-
domly are considered in each partition of the tree instead 
of all of them. The process is performed M times accord-
ing to the number of bootstraps created. At the end a 
prediction record for each tree is obtained, and the final 

prediction is the result of the average of M predictions. 
The performance of the algorithm depends on param-
eters such as K and M, set in this study. In this way the 
RF prediction is an average of the prediction of the CART 
trees created in each bootstrap (from 1–M) (Fig.  4b). 
Each of the records of the matrix are submitted down 
each bootstrap decision tree, generating at the end of its 
step a prediction based on the bootstrap CART (1–M).

Model training, optimization and calibration process
The methodology used to calibrate the RF regression algo-
rithm for the prediction model is summarized in Fig.  5a. 
The training and calibration dataset was created based on 
the extraction of all prediction variables to the 500 in situ 
SOC sample X, Y coordinates. 315 SOC samples were used 
for training and 185 for calibration Out of Bag (OOB). The 
training of the prediction model uses sets of variables based 
on different combination ways to evaluate their predictive 
functionality. In total 20 variables are evaluated as possible 
SOC predictors in this study (see Table 3), including spec-
tral variables (EVI2, WDRVI, SAVI, NDVI, NDWI, VARIG, 
NDSI, BI, NDMI, NBR, NBR2, TOA Brightness Tempera-
ture (TBrT)), topographic variables (elevation, LS Factor, 
slope and orientation), climatic variables (average annual 
air temperature and precipitation), and variables corre-
sponding to Ecuador’s soil base mapping (geological unit 
and soil taxonomy). The use of the variables was jointly and 

Fig. 3  a Geological unities map of the páramo herbaceous ecosystem; b Soil taxonomic map under the páramo herbaceous ecosystem in the 
study area
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Fig. 4  a Process followed by a CART algorithm to find the best split; b Diagram of the process carried out by the RF regression algorithm. Based on 
[31, 91, 92]

Table 3  Characteristics of variables evaluated as possible SOC predictors

Type of variable Variable Spatial 
resolution/
scale

Source

Spectral Indices: EVI2, WDRVI, SAVI, NDVI, NDWI, VARIG, 
NDSI, BI, NDMI, NBR, NBR2

30 m Landsat 8 images—OLI sensor (see Table 1) [57]

Spectral TOA Brightness Temperature (TBrT) 100 m Landsat 8 images—TIRS sensor (see Table 1) [57]

Topographical Elevation, LS Factor, Slope, Orientation 30 m DEM Ecuador-SNI Ecuador [45]

Climatic Average annual air temperature, precipitation - Interpolations using data of meteorological stations 
(54 stations belonging to INAMHI and 3 belonging to 
UNACH)

Geological and soil taxonomic Geological Unit, Soil Taxonomy 1:50,000 Geology, taxonomy of Ecuador-SNI Ecuador [45]
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thus also through combined subgroups, to rule out non-
useful variables and to optimize the model. The model cali-
bration starts with all variables (20). Then, variables with 
less relative importance are discarded, these variables pro-
vide limited information to improve the model. The num-
ber of tree nodes used is adjusted when the RMSE is stable, 
the final model is obtained when the maximum determi-
nation coefficient (R2) was reached (Eqs. 7, 8 and 9). The 
Mean Squared Error (MSE) (Eq. 10), Mean Absolute Devi-
ation (MAD) (Eq. 11) and Mean Absolute Percentage Error 
(MAPE) (Eq. 12) also were observed.

(7)R2
= 1−

SSE

SSY

(8)SSY =

n
∑

i

(yi − y)2

where SSY is the total sum of squares; and SSE is the sum 
of squares of residuals; yi is the observed value; fi is the 
predicted value; y is the mean of the observed data; and n 
is the number of sample points.

Concretely, the accuracy of each SOC prediction model 
is obtained after the algorithm calibration based on the 

(9)SSE =

n
∑

i

(yi − fi)
2

(10)MSE =
SSE

n

(11)MAD =

∑n
i |yi − fi|

n

(12)MAPE =
100

n

n
∑

i

|yi − fi|

fi

Fig. 5  a Methodology for generating the SOC prediction model through the Salford Systems software SPM8.2; b Application of the trained and 
calibrated SOC algorithm for SOC pixel-based prediction mapping in the study area
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OOB dataset, which are about one-third of the data-
points left out conforming the OOB for each bootstrap 
[31]. Each OOB record is subjected to the algorithm as 
it passes through its decision trees and its accuracy is 
recorded. Similarly, the OOB dataset is used to evaluate 
the importance of each predictor variable to optimize the 
model, obtaining the precision and an indicator of the 
variable importance for the model [71]. Each variable is 
evaluated individually considering the decrease in preci-
sion when erroneous values are entered, then the vari-
ables are rescaled to have values between 0 and 100 (for 
each variable). The most important variable is given 100% 
while the rest of variables are relatively expressed to this 
one [31].

To predict the SOC for each pixel, the spatial resolu-
tion of the satellite images was used to create a homo-
geneous spatial distribution of points in the study area, 
and with their respective associated coordinates (X, Y), 
forming the prediction file. Then, predictors data values 
are extracted into the prediction file. Each record is eval-
uated into the model of SOC prediction generated, finally 
the quantitative value of SOC content for each pixel in 
the study area is predicted (see Fig. 5b).

In addition to the calibration of the predictions vali-
dated through OOB, a final independent validation pro-
cess was carried out with additional in situ data not used 
in the training/calibration and not used on the OOB. For 
this purpose, post-validation sample points were used (29 
additional points, detailed in Sect. 2.2), obtaining the real 
value of SOC through a laboratory analysis. Twenty-nine 
validation points collected in 2018 were used, by which 
the accuracy between the predicted model and in  situ 
value was evaluated based on the root mean square error 
(RMSE).

Results
Multiple model optimization and calibration tests were 
carried out, evaluating each spectral, meteorologi-
cal, topographical, geological and taxonomic variable, 
in order to find the optimal calibration and final list of 
SOC predictors. This is a long process that starts using 
all variables (20), then each non-contributing variable 
to improve the model is discarded, until the best model 
and combination of variables is found. Figure  6 shows 
the results of the three most relevant models, with the 
highest determination coefficients (R2), and at the same 
time the lowest RMSE. The algorithm sorts the evaluated 
variables according to their relative importance so that 
the user can locate and choose to discard one or more 
variables. Tree nodes between 400 and 1000 was probed, 
with 400 tree nodes the R2 value was low and the RMSE 
is not stable. With 1000 tree nodes a highest value R2 was 
obtained with a stable RMSE, with 500 tree nodes the 

results were the same, so in order to optimize the model 
on this study 500 tree nodes were used.

The best performing models with highest accuracy are 
presented on Fig.  6. The predictors GU, T, Pr, Tx, Elev 
and Asp are common on the three models (A, B and 
C). The model A was based on 9 predictors noticeably 
improved the model, reducing the RSME and reach a R2 
of 0.82. In the models B and model C the R2 decrease, 
variables such as NDVI, NDWI, SAVI, EVI2 vegetation 
indices decreased the performance of the model (model 
C). Variables such as VARIG, SLP, NDVI, NDWI, SAVI, 
EVI2, WDRVI, NDSI, NDMI, NBR, NBR2 were discarded 
due to their minor statistical relevance for the prediction. 
These variables do not have a strong link established with 
SOC. While other studies have shown results with NDVI 
index as a SOC predictor [93–95], the index is shown less 
relevant for the complex Andean ecosystem.

The correlation matrix of model A predictors variables 
is shown in Table 4. Where, a natural correlation between 
SOC (in weight %) and SOC (in Mg/ha) is observed, the 
correlation between SOC with Soil Taxonomy and Pre-
cipitation also stands out. On the other hand, there is a 
negative correlation between SOC and Average annual 
temperature. Figure 6 indicates the relative importance of 
the predictive variables according to their contribution to 
the performance of the SOC prediction in model A (see 
advanced statistics in Table 5). For 185 OOB testing data 
points, a RMSE of 1.72% and a R2 of 0.82 for the predic-
tive model of SOC % were obtained. SOC in Mg/ha is not 
proportional to SOC %, as the unit conversion depends 
on the soil bulk density, so the model A was used but with 
the SOC dataset values in units of Mg/ha. The results 
were a RMSE of 25.8 Mg/ha and a R2 of 0.77. Finally, the 
SOC mapping in the profile 0–30  cm, was obtained in 
units of % and then in units of Mg/ha see Fig. 7.

Geological unit, soil taxonomy, precipitation and eleva-
tion were the variables that provided the most informa-
tion in the SOC prediction model. This is in line with 
the studies of dynamics in SOC and its decomposition 
[96–99], where, environment and soils properties like soil 
texture and structure, precipitation, and average temper-
ature have a great impact. To identify the SOC variations 
is a difficult task, in particular on sites without human 
intervention. The SOC variations can be related to vari-
ables from biological and pedogenic processes [100], 
explained by the high importance of geological unit and 
soil taxonomy. In short, it was possible to find that the 
variables that drive the SOC prediction model maintain 
a physical–chemical relationship with the dynamics of 
carbon sequestration [8, 98], where, the soil geology, the 
composition, soil properties, surface soil conditions and 
topographic factors as well as the climate environment 
play a very important role. Also, it allows us to know the 
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degree of importance of each variable around the amount 
of SOC prediction and sequestration (see Fig. 6).

One spectral index, the Bare Soil Index (BI), was found 
relevant in the prediction model, with high values of BI 
indicating a decrease of SOC content. The same effect 
was noted with values of the soil erosion factor (LS 

Table 4  Correlation matrix based on Pearson correlation coefficient of model A predictors

Elev Tx GU LSF Asp BI TBrT Pr T SOC % SOC Mg/ha

Elev 1.00

Tx − 0.11 1.00

GU 0.24 − 0.28 1.00

LSF − 0.30 0.06 − 0.29 1.00

Asp − 0.15 − 0.13 0.07 0.08 1.00

BI 0.32 − 0.14 0.27 − 0.28 − 0.11 1.00

TBrT − 0.09 0.02 0.16 − 0.23 − 0.29 0.46 1.00

Pr − 0.12 − 0.33 0.17 − 0.17 0.05 0.18 0.17 1.00

T − 0.01 0.18 − 0.24 0.15 0.004 − 0.15 − 0.18 − 0.47 1.00

SOC % 0.001 − 0.43 0.25 − 0.05 0.09 0.12 -0.003 0.50 − 0.26 1.00

SOC Mg/ha 0.02 − 0.30 0.20 − 0.05 0.07 0.11 0.01 0.39 − 0.17 0.88 1.00

Table 5  Advanced statistics for model prediction of SOC (Model 
A)—Model error measures from the OOB testing data

RMSE R2 MSE MAD MAPE

SOC % 1.72 0.82 2.96 1.20 0.14

SOC in Mg/ha 25.78 0.77 664.82 18.60 0.17
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Factor). It can explained by the fact that when the better 
conserved the soil, it has more organic matter, better car-
bon storage and better water regulation [101]. Also soil 
erosion by wind and water, subsequent sediment trans-
port, and depositional processes may lead to soil organic 
carbon (SOC) loss [86]. Since the scale of the variables 

geological unit and taxonomy have a rather low spatial 
resolution, predictors variables such as BI index derived 
from satellite images and derived from DEM could 
increase the resolution of the spatial prediction. How-
ever, these variables show only a minor relative impor-
tance to the main variable, 1.17 and 1.32%, respectively.

Fig. 7  Result map of SOC prediction (in Mg/ha) in the 0–30 cm profile
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Figure  7 shows the SOC map obtained from Model 
A, showing that the largest percentage (over 57%) of 
the study area, contains high concentrations of SOC, 
between 150 and 205 Mg/ha and lowest SOC values were 
between 50 and 75 Mg/ha, principally on Andosols and 
Inceptisols soils. The high SOC content found is larger 
compared to SOC content values in pristine soils in other 
world areas, while the low SOC content values are similar 
to the content values in intervened soils [102]. Processes 
related to erosion, decomposition and leaching decrease 
the SOC content [86, 103].

An independent validation test of the Model A with 
the additional dataset of 29 points is performed. Figure 8 
shows the validation statistics for both SOC predictions 
in % and Mg/ha for the 29-points. Through the addi-
tional field sampling performed, it can be observed that 
the results of both models are good, although the SOC 
(%) based prediction model has less error. This could be 
explained due to the complexity to account for the soil 
bulk density by the prediction model. Soil bulk density 
is a relevant property to obtain more correct SOC values 
in Mg/ha on an area basis [8, 50, 51], but a uncertainty 
error by the soil bulk density can be added [104]. Figure 8 
resumes the results based on errors values, obtaining 
fairly good values of relative RMSE in both cases (16.1 
and 19.5%). Also, we can note that high concentrations 
of SOC would be more difficult to predict. It would be 
explained due to the soils with high in organic carbon are 
also the most affected by the variability in soil bulk den-
sity [105].

Discussion
The results of the RF models selected expose the most 
relevant SOC predictors from a group of 20 variables, 
carefully chosen for their possible relationship with SOC 

sequestration. A model with nine variables predicting 
SOC storage was calibrated with a good accuracy. The 
most important SOC predictors from the model are 
given by geological unit, soil taxonomy, precipitation 
and elevation. This was expected, considering the well-
documented classes of soils present in the herbaceous 
páramo ecosystem based on the Geological unities (31) 
and the soil taxonomy classification (Andosols, Entisols, 
Histosols, Inceptisols and Mollisols). Environmental fac-
tors on the land surface moderates the exchange of water, 
energy, and greenhouse gases between the land and the 
atmosphere [106, 107]. In the páramo region the dynamic 
SOC storage is known to linearly increase with precipi-
tation intensity [108]. A higher precipitation provides 
moisture in soils and contributes in its amount of water 
retention, influenced by the type of soil and vegetation, 
among others. Jenny [106] and Adhikari et al. [107] found 
that topographic variables had a higher influence at finer 
scales, whereas climatic variables were more important 
at coarser scales. Therefore, due to the large study area 
of 1667.6 km2 and large elevation range between 2303 
and 4501 m a.s.l, it is possible to explain the importance 
of elevation and another topographic predictors for the 
resulting model.

Other studies on SOC estimations provided equal value 
ranges and accuracies. A SOC case study in Cameroon, 
on 3 horizons (0–15  cm, 15–30  cm and 30–100  cm) of 
soil used a hybrid machine learning modelling and legacy 
soil data, provided R2 values between 0.52 and 0.67 for 
SOC ranges between 11 and 210 Mg/ha at the 0–30 cm 
horizon. In the case of study areas with large elevation 
ranges, the elevation and the weather variables precipi-
table water vapor and rain are typically linked with SOC 
[109]. In a Chinese case study with great variety of veg-
etation and soil types and distribution patterns, 67% of 
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SOC variation was explained by DEM and NDVI param-
eters through an artificial neural network combined with 
kriging (ANN- kriging), and regression tree (RT) models 
[28]. A north American case study in the state of Indiana 
showed the highest prediction accuracy (R = 0.75) using 
ordinary kriging over a study area with low variation in 
elevation [24]. In general, hybrid spatial models applied 
based on ML algorithms including auxiliary variables 
(slope, elevation, Topographic Wetness Index (TWI), 
among others) could increase the accuracy of predic-
tions, but if the selection of variables is not appropriate 
for the study area model predictions might be rather 
poor [27].

Including remote sensing techniques for the prediction 
of SOC has led to poor to good results (R2 = 0.23–0.67) 
[34], where spectral information from Environmental 
Mapping and Analysis Program (EnMAP) and Sentinel-2 
sensors have shown the best results [67, 68]. In this work, 
L8 imagery was used and processed to correct and elimi-
nate clouds cover, obtaining spectral information for the 
entire study area, without the necessity of eliminate sec-
tions for cloudiness concept. The rich database used in 
this study, with 500 SOC data point trying to encompass 
all soil heterogeneity, made it possible to obtain enough 
information to calibrate the RFR model with high accu-
racy. Moreover, terrain knowledge of the study area was 
fundamental to prioritize the election of variables to be 
evaluated as a SOC predictors.

Several remote sensing techniques that varying 
depending on their spatial, spectral, temporal and radio-
metric resolution and the platforms that are mounted 
on (spaceborne platforms, airborne platforms and 
unmanned aerial systems) can help to quantify the soil 
carbon sequestration [34]. Gholizadeh et al. [110] found 
that Red and NIR bands, also spectral indices BI, SAVI 
among others provide the strongest correlations with 
SOC. Which agrees with the results of this study, where 
the BI was found as SOC predictor, so too the TOA 
Brightness Temperature.

Only few SOC studies focus were performed in the 
páramo region [39, 111]. Due to the soil chemistry of 
these alpine tundra ecosystems they are known to con-
tain very high carbon in the soil [7, 58], but predicting 
the SOC stock and its distribution remains a complex 
task. A large sampling density is in favor for RF regres-
sion for SOC mapping but due to some limited access of 
certain areas a homogeneous sampling over the entire 
herbaceous páramo was not possible. This was the rea-
son to use a stratification of sampling units as a sample 
design, avoiding sampling points in the edges, to reduce 
errors by delimitation of stratification or precision by 
GPS. The limitation on this sampling design is the lower 

density of sample data points within zones difficult to 
access. On the other hand, areas with less accessibility are 
less exposed to anthropic interventions, therefore SOC 
alterations in these areas are expected to be low.

Erosion, transport, and depositional processes redis-
tribute landscape SOC [86], whence in this study, the 
topographic factor and the use of remote sensors were 
widely analyzed to decrease errors by produced by these 
environmental phenomena in the model. Further, this 
study analyzed the link and predictive power of soil 
(cover) variables, using remotely sensed vegetation indi-
ces, including also the TOA Brightness Temperature, in 
addition to classic SOC predictors. Combined with L8 
(OLI and TIRS sensors) spectral data, the RFR model 
based on a wide set of climatologic, geophysical and bio-
physical predictor variables resulted in good predictions.

A future extension of this work would be to use other 
satellite sensors such as Sentinel-2 [112], based on the 
automatic products such as Leaf Area Index (LAI), Frac-
tional Vegetation Cover (FVC), Leaf Chlorophyll Content 
(Cab) and Canopy Water Content (CWC) among others. 
Hence, biophysical variables, available at higher spatial 
resolution, could be further used to explain a possible 
linking with the SOC storage capacity of the herbaceous 
páramo soils.

Conclusions
In this research, a soil organic carbon multi-predictor 
model for the complex Andean páramo area was cali-
brated with an accuracy level of 82% for SOC in weight 
% and 77% for SOC in Mg/ha. The spatial estimation of 
SOC is challenging to achieve for complex areas due to 
effects of climate, topographical variability and geologi-
cal diversity, among others. By optimizing a Random 
Forest (RF) automatic learning algorithm, nine environ-
mental variables related to the dynamics of SOC seques-
tration were selected. The variables geological unit, soil 
taxonomy, precipitation, height, orientation, LS factor, BI 
index, average annual temperature and TOA Brightness 
Temperature were found to have great relevance in the 
quantification of SOC.

The prediction of SOC is strongly driven by the geo-
logical unit and the soil taxonomy, followed by the mean 
yearly precipitation and elevation. Considering the ter-
rain topographical complexity to be studied, as well as the 
geological heterogeneity, variables with better spatial res-
olution may improve the resolution for SOC distribution 
results. This is the case of the variables obtained through 
the OLI and TIRS remote sensors. Only a few spectral 
indices were important for SOC prediction model, i.e. the 
BI index and the TOA Brightness Temperature. Nonethe-
less, due to the heterogeneity of the study area, predictors 
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with less relative importance for the model such as the 
BI index, orientation, LS Factor, average temperature 
and TOA Brightness Temperature helped to increase the 
accuracy of the RF regression model.

The use of remote sensing data for the mountain-
ous páramo ecosystem, was challenging due to extreme 
weather conditions causing high percentages of cloudi-
ness in the satellite images. For this reason, the time 
dedicated to image selection, treatment, and detection of 
cloud areas, as well as filling in was a laborious, meticu-
lous and a critical process. Even so, the methodology 
used in image processing and geographic information 
generation was useful and it was possible to achieve valu-
able information for the model. The next research step 
for these complex environments would be to consider 
how to introduce alternatives where the atmospheric 
influence can be minimized, as is the case with RADAR—
Radio Detection and Ranging sensors.

The proposed methodology could be used by research 
groups studying similar complex ecosystems, as the high 
Andean areas. The results of the SOC quantification and 
mapping in the herbaceous páramo ecosystem are of 
vital importance to the global objective of knowing and 
quantifying the SOC reserves. The high SOC values fur-
ther demonstrate the importance of knowing the SOC 
reserves in these ecosystems, including the factors which 
control or affect the mineralization process on the one 
hand, and the soil degradation effects due to erosion, on 
the other hand. Moreover, the results obtained through 
the digital mapping of the high reserves of SOC repre-
sent a great contribution in the soil characterization of 
the Ecuadorian territory. This will allow to establish pro-
vincial and national regulations to prevent soil degrada-
tion in this type of ecosystem, given their importance in 
soil structures stabilization, water regulation and carbon 
storage. Such actions will further allow a better conser-
vation and management of these valuable carbon storage 
ecosystems from a local towards a global perspective.
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ness Index; RMSE: Root mean square error; R2: Determination coefficient; MSE: 
Mean Squared Error; MAD: Mean Absolute Deviation; MAPE: Mean Absolute 
Percentage Error; SSY: Total sum of squares; SSE: Sum of squares of residuals; 
OOB: Out of Bag.
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