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Abstract 

Background: Reliable information about the spatial distribution of aboveground biomass (AGB) in tropical forests 
is fundamental for climate change mitigation and for maintaining carbon stocks. Recent AGB maps at continental 
and national scales have shown large uncertainties, particularly in tropical areas with high AGB values. Errors in AGB 
maps are linked to the quality of plot data used to calibrate remote sensing products, and the ability of radar data 
to map high AGB forest. Here we suggest an approach to improve the accuracy of AGB maps and test this approach 
with a case study of the tropical forests of the Yucatan peninsula, where the accuracy of AGB mapping is lower than 
other forest types in Mexico. To reduce the errors in field data, National Forest Inventory (NFI) plots were corrected to 
consider small trees. Temporal differences between NFI plots and imagery acquisition were addressed by consider‑
ing biomass changes over time. To overcome issues related to saturation of radar backscatter, we incorporate radar 
texture metrics and climate data to improve the accuracy of AGB maps. Finally, we increased the number of sampling 
plots using biomass estimates derived from LiDAR data to assess if increasing sample size could improve the accuracy 
of AGB estimates.

Results: Correcting NFI plot data for both small trees and temporal differences between field and remotely sensed 
measurements reduced the relative error of biomass estimates by 12.2%. Using a machine learning algorithm, 
Random Forest, with corrected field plot data, backscatter and surface texture from the L‑band synthetic aperture 
radar (PALSAR) installed on the on the Advanced Land Observing Satellite‑1 (ALOS), and climatic water deficit data 
improved the accuracy of the maps obtained in this study as compared to previous studies  (R2 = 0.44 vs  R2 = 0.32). 
However, using sample plots derived from LiDAR data to increase sample size did not improve accuracy of AGB maps 
 (R2 = 0.26).

Conclusions: This study reveals that the suggested approach has the potential to improve AGB maps of tropical dry 
forests and shows predictors of AGB that should be considered in future studies. Our results highlight the importance 
of using ecological knowledge to correct errors associated with both the plot‑level biomass estimates and the mis‑
match between field and remotely sensed data.
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Background
Tropical forests are a significant reservoir of carbon 
within terrestrial ecosystems, helping to mitigate climate 
change and providing numerous valuable ecosystem 
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services [1, 2]. Tropical dry forests (TDF) specifically, are 
the largest land cover type in the tropics [3] containing 
over 18% of the carbon stocks found in all tropical for-
ests [4]. Tropical dry forests are particularly widespread 
in Mexico, which is home to 38% of Neotropical TDF [3]. 
However, TDF also experience higher rates of forest loss 
compared to the humid tropics due to higher population 
densities. Therefore, understanding the spatial distribu-
tion of aboveground biomass (AGB) and the associated 
carbon stock of TDF is essential to help maintain these 
stocks and mitigate climate change. Recent studies have 
produced maps of AGB or carbon density at continental 
and national scales [5–11]. However, such maps often 
have large uncertainties, particularly in tropical areas 
with complex vegetation structure and high AGB values 
[8, 9]. Within Mexico, studies by Rodriguez-Veiga et  al. 
[8] and Cartus et al. [10] mapped AGB, reporting higher 
relative errors in the tropical dry forests of the Yucatan 
peninsula compared to other forest types in Mexico.

A commonly used approach to map the spatial distri-
bution of AGB or carbon density is by combining forest 
plot data with remotely sensed information [12]. In many 
cases, field data is collected by national forest inventories 
(NFIs), which provide extensive and detailed information 
of vegetation attributes [13]. However, NFI plot networks 
can contain errors, one of them is related to the mini-
mum diameter at breast height (DBH) used. Thus, field 
estimates of AGB may have errors, particularly for some 
vegetation types and young secondary forests [14]. Mexi-
can NFI only measured trees > 7.5 cm DBH [15]. Exclud-
ing small trees from inventories is particularly important 
in TDF, as a large proportion of trees are small [16]. Small 
stems (< 10  cm DBH) represent between 15 and 40% of 
AGB in mature TDF of Mexico [17, 18], and up to 80% 
of AGB in young secondary TDF [17]. As the major-
ity of the vegetation in the Yucatan peninsula consists 
of tropical dry secondary forest [17], NFI plots could be 
vastly underestimating the AGB of these forests. Another 
limitation of NFIs is the time involved in collecting the 
plot data. The last complete Mexican NFI was con-
ducted between 2009 and 2014, within this 6-year time 
interval significant changes in AGB could occur, mainly 
by tree growth, recruitment and mortality processes. 
Poorter et  al. [19] estimated that, after 20  years of sec-
ondary succession, Neotropical forests recover between 
30 and 60% of old-growth forest AGB values. Therefore, 
a 6-year time interval could result in an error in AGB of 
10 to 20%. Such changes in AGB are particularly chal-
lenging for remote sensing as selecting data from a sin-
gle date within this six-year time interval does not take 
into account changes in biomass. Data obtained from 
chronosequences can help build predictive models of 
biomass changes over time [20], which could be used 

to correct for AGB values of NFI plots. However, whilst 
these sources of error have been recognized [8, 10], very 
few studies mapping AGB or carbon density have actually 
addressed it [21, 22].

In addition, different sample sizes of forest plots within 
different forest types, can affect the accuracy of AGB pre-
dictions in some areas. For example, deciduous forests in 
the Mexican NFI have a quarter the number of samples 
compared to semi-deciduous and semi-evergreen for-
ests, despite covering a similar area. As a complementary 
approach to field inventories, LiDAR (Light Detection 
and Ranging) data can offer information about the veg-
etation structure, similar to and almost as accurately as 
field plots [23]. LiDAR is able to penetrate the forest can-
opy [24], producing a three-dimensional cloud of points 
of the forest structure, which can estimate AGB accu-
rately [25]. However, due to the high costs of LiDAR data 
acquisition, wall-to-wall LiDAR coverage for many NFI 
programs is not possible, particularly in developing coun-
tries. Therefore, an alternative approach for mapping 
AGB with LiDAR is through the application of a two-
stage upscaling method, whereby AGB from field plots 
is related to LiDAR data to estimate AGB along LiDAR 
transects. Then, the AGB of plots extracted from AGB 
LIDAR maps is related to satellite imagery and/or envi-
ronmental information covering the entire area of inter-
est [23, 26, 27]. This method has been shown to improve 
the accuracy of estimation for several vegetation struc-
ture parameters in diverse forest systems [26, 27], but, to 
our knowledge, has not been evaluated in TDF.

Synthetic Aperture Radar (SAR) data has also been 
used to successfully map AGB. Moderate wavelength 
SAR instruments such as the Advanced Land Observ-
ing Satellite (ALOS) Phased Array L-band Synthetic 
Aperture Radar (PALSAR) instrument from the Japa-
nese Aerospace Exploration Agency (JAXA), which has 
a wavelength of 15 to 30  cm, can penetrate the forest 
canopy interacting with stems and branches, where the 
majority of biomass is stored [28]. The intensity of the 
radar backscatter signal is then related to AGB. However, 
mapping forest AGB using L-band SAR data does have 
some limitations. The relationships between radar back-
scatter intensity and AGB can saturate [28], typically at 
around 150  Mg  ha-1 [29, 30], depending on vegetation 
type, complexity of canopy structure, or topography. The 
AGB in some sites of the Yucatan peninsula can exceed 
320  Mg  ha-1, therefore, solely using L-band SAR back-
scatter to map AGB would likely lead to underestimation 
in this region.

Several methods have been tested to overcome satura-
tion problems, such as using SAR polarization ratios to 
identify the contribution of the volume of scattering from 
different polarizations [31–33]. Alternatively, remotely 
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sensed information related to the vertical and horizontal 
structure of vegetation can be used for estimating AGB 
[34]. As with LiDAR data [24, 25], L-band SAR is sensi-
tive to the vertical structure of vegetation due to its abil-
ity to penetrate through the forest. Tropical forests have 
a heterogeneous structure with forest canopy, canopy 
openings, and spacing between trees. Furthermore, for-
ests exhibit landscape-scale heterogeneity due to land use 
changes that create a mosaic of forest patches of different 
ages. Such variations in horizontal vegetation structure 
have been characterized using the texture of very high-
resolution imagery [35, 36]. Although the resolution of 
ALOS PALSAR imagery cannot discriminate individual 
trees and canopy openings, it can capture broader scale 
variation in the horizontal structure of vegetation related 
to the presence of forest patches with different succes-
sional age and hence forest structure [37–39]. However, 
the use of SAR texture data to help map AGB in TDF is 
still poorly understood.

Several studies have found that biomass is affected by 
climatic variables. Variation in temperatures and precipi-
tation have been shown to influence forest biomass [4], 
as well as variation in water availability, measured as the 
difference between precipitation and evapotranspira-
tion [40]. Water availability influences plant growth; sites 
with high water supply have higher rates of growth and 
recruitment, leading to high AGB. Therefore, variation 
in water availability influences the spatial distribution of 
forest biomass [19, 40]. Water availability is particularly 
important in seasonally dry forests, which experience 
severe climatic water deficit (CWD) during the dry sea-
son, which limits recruitment and tree growth [41]. Thus, 
including CWD data may improve the accuracy of bio-
mass maps in TDF.

Here we address the sources of error in field and 
remotely sensed data and account for water availability 
to improve the accuracy of AGB estimates in the tropi-
cal dry forests of the Yucatan peninsula. We aim to: (1) 
evaluate the effect of correcting NFI plots by estimat-
ing the contribution of small trees to AGB and by tak-
ing into account biomass dynamics to better match the 
timing between field and remotely sensed measurements. 
We expect that these corrections will improve the accu-
racy of AGB estimates. (2) to evaluate the accuracy of 
biomass maps using three modelling approaches: a field 
plots approach, which corrects the values of AGB in NFI 
plots; a LiDAR plots approach, which increases sample 
size by estimating AGB values from a two-stage upscal-
ing method (from field data to LiDAR transects and 
then from Lidar AGB maps to the whole study area); and 
finally a combination of these two approaches (field and 
LiDAR plots approach). We expect that this combined 
approach will yield the best estimates of AGB, since they 

can capture the range of forest structure and effectively 
increase of the sample size. Finally, (3) compare AGB 
map obtained in this study with existing biomass maps 
in Yucatan peninsula. We expect that our map will per-
form better and show lower estimation errors compared 
to previous maps.

Methods
Study area
The study was conducted in three sites of 3600 Km2 each, 
which cover the full environmental gradient of the most 
important TDF ecosystems of the Yucatan Peninsula, 
Mexico: deciduous, semi-deciduous and semi-evergreen 
(Fig.  1). The climate in the peninsula is tropical warm 
with a dry season from November to April and a fairly 
flat topography [42]. The mean annual temperature is 27°, 
26° and 25 °C with a mean annual precipitation range of 
(800–900, 1000–1100, 1000–1300)  mm  year−1 for the 
deciduous, semi-deciduous and semi-evergreen TDF, 
respectively. Deciduous forests have the lowest canopy 
height, while the semi-evergreen forest have the tallest 
canopy height with a more complex vegetation structure 
than the other sites [12, 43].

Field data
We used two different data sets of field plots for calcu-
lating aboveground biomass, National Forest Inven-
tory (NFI) plots sampled between 2009 and 2014 and 
Intensive Carbon Monitoring (ICM) plots sampled in 
2014 and 2015. Each NFI sampling unit consists of 4 cir-
cular 400  m2 plots within an area of 1  ha, in which all 
trees > 7.5  cm diameter at breast height (DBH, 1.3  m) 
were identified and measured. In total, 232 sampling 
units were established and inventoried in the study area, 
on a fixed grid of 5 × 5  km in the semi-deciduous and 
semi-evergreen forests, and 10 × 10 km in the deciduous 
forest [15]. The ICM plots have a similar design to that 
of the NFI, with the addition of a nested 80 m2 subplot 
where all trees with DBH between 2.5 and 7.5  cm were 
sampled. A total 80 ICM sample units were measured in 
the study area using a systematic sampling design [12] 
(Fig. 1). All plants inside each sampling unit were iden-
tified at species level, and several vegetation attributes 
were measured, including DBH, and height. In both 
data sets, those sampling units where at least one plot 
was deforested or converted to another land use by 2015 
were discarded from the analyses (n = 14 from NFI plots, 
n = 11 from ICM plots); we used the remaining 287 plots 
(n = 218 from NFI plots, n = 69 from ICM plots) for AGB 
mapping and validation.

We used local and regional allometric equations to 
calculate aboveground biomass (AGB) of tropical dry 
forests (TDF). The equations take into consideration 
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the vegetation type as well as DBH, height and wood 
density of trees (Table 1). For most of the tree species 
sampled, we obtained wood density values from local 
studies, while for some tree species these values were 

obtained from the literature (see Additional file  1: 
Table S1). For those species without wood density val-
ues, we assigned the average of the values at the genus 

Fig. 1 Location of the study area showing the three sites in the forest ecosystems of the Yucatan peninsula. a The spatial distribution of Intensive 
Carbon Monitoring (ICM) and National Forest Inventory (NFI) field plots as well as LiDAR data for each site of tropical dry forest: deciduous (b), 
semi‑deciduous (c) and semi‑evergreen (d)

Table 1 Description of allometric equations used to estimate aboveground biomass for field plots

Author of equation Type of forest Biological form/class size Allometric equation

Ramírez et al. [44] Deciduos and semi‑deciduos Tree/DBH < 10 cm EXP(− 4.1392 + 0.99 * LN(DBH2 
* LENG) + 1.2268 * DENS)

Chave et al. [45] Deciduos and semi‑deciduos Tree/DBH ≥ 10 cm DENSI * EXP(− 0.667 + 1.784 * LN(DBH) + 0.207 * 
LN(DBH)2 − 0.0281 * LN(DBH)3)

Guyot [46] Semi‑evergreen Tree/DBH < 10 cm EXP(1.3636 * LN(DBH) + 1.615 * 
LN(LENG) − 2.9267)

Cairns modified [47] by 
Urquiza‑Haas et al. 
[48]

Semi‑evergreen Tree/DBH ≥ 10 cm EXP(− 2.12605 + 0.868 * LN(DBH2 * TH) + (0.0939/
2)) * (DENS/0.7)

Chave et al. [49] Deciduos, semi‑deciduos and semi‑evergreen Liana/DBH ≥ 2.5 cm EXP(0.049 + 2.053 * LN(DBH))

Frangi and Lugo [50] Deciduos, semi‑deciduos and semi‑evergreen Palms/DBH ≥ 10 cm − 4.51 + (7.7 * LENG)
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level or for a sampling unit. All plot-level AGB values 
were transformed to standard units (Mg ha−1).

As small trees (< 7.5  cm DBH) were not measured in 
NFI plots, we used ICM plots to calculate an AGB cor-
rection factor for NFI plots in each forest type (hereafter 
small tree correction). The proportion of small trees var-
ies with successional age, which is also strongly related to 
AGB in TDF [18]. Since stand age was not measured in 
NFI plots, we used AGB as a proxy for forest stand age 
and stratified both NFI and ICM plots in 5 strata using 
10, 25, 50 and 75% percentiles of AGB. Then, we calcu-
lated a correction factor in each stratum using the AGB 
calculated for small trees in the ICM plots. The correc-
tion factor for each class and type of TDF are shown in 
Additional file 2: Table S2.

Since NFI plots were measured over a 6-year time 
interval (2009–2014) we also corrected NFI plots by 
stand age (hereafter age corrected), considering the 
AGB vs stand age functions obtained from two chron-
sequences: one for the deciduous and semi-deciduous 
forests [51] and the other for semi-evergreen forests [52] 
(see Additional file 3 Fig. S1). We corrected NFI plots to 
have a baseline year of 2015. First an approximate age for 
each sampling unit was estimated using the inverse of the 
AGB vs age function. Then, the difference between 2015 
and the year of the field measure was added to the esti-
mated age. Finally, AGB was calculated using the AGB vs 
stand age function for the updated age.

Finally, to achieve objective 1 (to evaluate the effect 
of correcting NFI plots using ecological information), 
we used exclusively the NFI plots (218): 70% (152 plots) 
were utilized to calibrate the models, while the 30% (66 
plots) were used for validation. For objective 2 (to evalu-
ate if increasing sample size by using biomass estimated 
with LiDAR plots could increase the accuracy of AGB 
estimates), we used both NFI and ICM plots (287). We 
used 200 of these plots (70%) to calibrate the models 

while the remaining 87 plots (30%) were used to validate 
the models. The plots used for validation were selected in 
the same proportion considering the three different TDF 
types and the 5 strata of AGB values.

LiDAR data
Lidar data were collected under two different canopy 
conditions: leaf–on and leaf-off by a private contractor 
and NASA G-LiHT airborne imager [53] respectively, 
during 2014 (Fig.  1). Both datasets were collected with 
the same LiDAR sensor, with similar settings and flight 
parameters, see [54]. Both data sets had the same pulse 
density (> 5 pulses per  m2). The accuracy of predictions of 
AGB, in this area, is not significantly influenced by using 
leaf-on or leaf-off LIDAR data, with differences in the rel-
ative RMSE of less than 2% [54].

LiDAR data were normalized with a 1  m2 resolution 
digital terrain model to eliminate the elevation of the 
ground from the height of returns. The LiDAR met-
rics were calculated at 1 m2 resolution. See Table 2 for a 
description of the LiDAR explanatory variables. We used 
the FUSION software for processing LiDAR data [55].

SAR data
Six ALOS PALSAR-2 (Advanced Land Observing Sat-
ellite Phased Array L-band Synthetic Aperture Radar) 
mosaic tiles with 25 m resolution covering the study area 
during 2015 were obtained from the Japanese Aerospace 
Exploration Agency. The 4 orbits covering the 6 mosaic 
tiles were acquired form September 11 and November 18 
during the rainy season. The PALSAR-2 mosaic data has 
undergone pre-processing, which includes; ortho-recti-
fication, slope correction and radiometric calibration for 
both polarizations: HH and HV [56]. The digital number 
in these mosaics were converted into backscatter coeffi-
cients (γ°) using the following equation [57]:

Table 2 Description of explanatory variables used to estimate above ground biomass

Type of variable Variable Description

LiDAR Height metrics These metrics includes mean, median, mode, maximum and minimum of canopy height, the vari‑
ations of canopy height (variance, coefficient of variation) as well as percentiles 1, 5, 10…100 and 
L‑moments. See [49] for description and formulas.

Point density metrics Metrics used to evaluate canopy coverage. See [49] for description and formulas.

ALOS PALSAR HH Radar backscatter HH polarization

HV Radar backscatter HV polarization

NDBI The normalized difference backscatter index between the HH and HV bands. [32].

Texture of HH, HV and NDBI The second‑order texture measures used in this study are homogeneity (hom), contrast (cont), dissimi‑
larity (dis), entropy (ent), angular second moment (asm), mean (mean), variance (var), and correlation 
(cor). See Haralick et al. [50] for details and formulas.

Climate CWD The Climatic Water Deficit (CWD), calculated as the difference between rainfall and evapotranspiration 
in the dry months [51].
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where DN is the digital number expressed as unsigned 
short integer. To reduce the speckle noise without sac-
rificing image structure, we applied 3 × 3 pixel LEE filter 
[58] to ALOS-PALSAR-2 backscatter images.

We also calculated the normalized difference backscat-
ter index (NDBI) between the HH and HV backscatter 
coefficients with the equation:

This ratio index helps to differentiate vegetation types 
due to the different contribution of volume scattering in 
different polarizations [30–32].

We used SAR texture analysis to produce more infor-
mation that could be related to AGB estimation. Texture 
analysis quantifies the variability in backscatter values 
of neighboring pixels [59]. We calculated eight second-
order texture measures for the two backscatter polariza-
tions (HH and HV), and for the NDBI ratio index using 
‘glcm’ pack of R software [60]. Since most of the Yucatan 
peninsula is on flat terrain, an averaged texture value was 
obtained from the values for four directions (0°, 45°, 90°, 
135°). The texture measures employed in this study are 
shown in Table 2. A window size of 3 × 3 pixels was used 
to calculate the second-order texture measures, because 
the resulting area is the closest to the field plot size (1 ha). 
We extracted 24 variables considering 8 texture measures 
and three bands that were used in a random forest model 
to relate with biomass field data.

Climate data
A total of 497 climatic stations covering the Yucatan pen-
insula and two adjacent States (Chiapas and Tabasco) 
were used to obtain a continuous surface of temperature, 
rainfall and evapotranspiration using spatially interpo-
lated values through the kriging method (Additional file 4 
Fig S2 (b)). Climate data were obtained from 1920 to 2012 
from the Climate Computed Project [61]. After a quality 
control of the meteorological stations, we removed 72 
stations that did not contain the full 12-month data or 
did not have the complete series of data in the interval of 
1920 to 2012. In total we used 425 stations for modeling, 
presenting a homogeneous distribution throughout the 
study area, with adequate spatial coverage.

Raster data of rainfall and evapotranspiration in the 
12  months covering only the Yucatan peninsula were 
used to calculate the climatic water deficit (CWD) map 
(see Additional file  4: Fig S2 (a)). This index measures 
the deficit of water in the dry months and is calculated 
as the difference between rainfall and evapotranspiration 

(1)γ ◦(dB) = 10 log10

(

DN
2
)

− 83.0

(2)NDBI =
HH −HV

HH +HV

during these months, in this case from February to May 
[19, 62]:

where Pi is the monthly rainfall, ETi monthly potential 
evapotranspiration and i is the month. The ETi was esti-
mated from the Priestley-Taylor equation [63] one of the 
most commonly used to calculate potential evapotranspi-
ration at wide spatial scales, which incorporates tempera-
ture, latitude and solar net radiation and was calculated 
using the ‘EcoHydRology’ package of R software [60].

The CDW measures drought condition and, by defini-
tion, has negative values. This means that places with 0 
values do not have a water deficit, while areas with high 
water stress have negative values of the index. In addi-
tion, CWD is highly correlated with AGB, because when 
there are lower (more negative) values of CWD, there is 
less water availability, resulting in lower forest biomass 
growth [19].

Estimation and mapping of AGB from LiDAR data
We carried out a regression analysis between AGB and 
LiDAR metrics using 69 NFI and ICM field plots that 
fell within the LiDAR transects, using a subset regres-
sion procedure with ‘leaps’ pack of R software [60]. The 
response variable (AGB) was square-root transformed 
to meet linearity assumptions [64], and the independ-
ent variables were the mean LiDAR metrics values of 
1 m2 for each sampling plot. The validation of the mod-
els was evaluated by the leave-one-out cross-procedure 
[65]. The predicted and observed values of AGB were 
compared using the coefficient of determination  (R2), the 
root mean square error (RMSE), the relative root mean 
square error (%RMSE) calculated as the RMSE divided 
by mean observed values of AGB and the bias was calcu-
lated as the average values of errors (difference between 
predicted and observed AGB values).

In addition, we mapped AGB in areas covered with 
LiDAR data using a map band function based on the fit-
ted regression equation as well as the layers of the LiDAR 
metrics included in the model using 1  m2 pixel resolu-
tion. Then, AGB LIDAR values were extracted as means 
values of estimated biomass inside a circular plot of 1 ha. 
In total we have 5021 plots that filled the area covered 
by LiDAR data, which covered only 0.46% of total study 
area.

AGB model development and validation
We built random forest models to estimate AGB using 
backscatter and texture variables from ALOS PAL-
SAR, as well as CWD. The number of decision trees 
was set to 500 and we determined the optimal number 

(3)CWD(i) =

∑i=12

i=1
Min(0,Pi − ETi)
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of predictor variables to retain at each node for each 
model, using the ‘ModelMap’ package in R [66].

To evaluate the effect of small tree and stand age cor-
rections on the accuracy of AGB estimates, we built the 
following four random forest models to estimate AGB 
using: (1) NFI plots (small tree corrected); (2) NFI plots 
(age corrected); (3) NFI plots corrected by both factors; 
(4) uncorrected NFI plots. Approximately 70% of the 
data (152 plots) were selected using a stratified random 
design and were used to fit the models. The remain-
ing 30% of data (66 plots) were used to test model per-
formance. The accuracy of the estimated forest AGB 
from each model was evaluated by directly compar-
ing the estimated result with an independent set of 
data of ground inventory plots (66 plots). We used  R2, 
RMSE,  %RMSE, bias and calculated standard deviation 
of errors to compare the predicted and observed values 
of AGB. Additionally, a spatial autocorrelation test was 
applied on residuals of calibrated models using Moran’s 
I test.

To evaluate the effects of using AGB estimates 
from LiDAR and/or field plots, we used three model 
approaches. The first approach (field plots approach) 
used AGB from NFI (corrected values) and ICM plots to 
calibrate the model. The second approach (LiDAR plots 
approach) used estimated AGB values from LiDAR maps, 
we applied a two-stage upscaling method; from field 
plots to LiDAR strips and then from LiDAR AGB maps 
to the entire study area. The third approach (field and 
LiDAR plots approach) combined both sources of AGB 
values: field plots and LiDAR plots. In the three mod-
els, the validation plots from the field plots approach (87 
plots) were used as an independent data set to validate 
the models performance using  R2, RMSE,   %RMSE and 
bias. This set of data was chosen to preserve the overall 
distribution of AGB values. Seventy percent of the sam-
pling field plots (200 plots) were used to fit the model 
in the approach that used field plots. In the case of the 
LiDAR plots approach, we used 5021 AGB sample units, 
obtained from AGB maps derived from LiDAR strips, to 
calibrate the model. Finally, the approach that combined 
both sets of data, had 5221 sample units to fit the model.

Maps with the spatial distribution of AGB and coef-
ficient of variation of AGB estimates in the study area, 
were created with the random forest model using the 
‘ModelMap’ pack of R software. The random forest model 
was performed considering the mean of all the trees of 
the response variable, in this case AGB. Therefore, these 
individual tree predictions can also be used to map meas-
ures of uncertainty such as coefficient of variation maps 
(dividing the standard deviation by the mean). These 
maps provide a visualization of spatial regions of higher 
uncertainty.

Comparison of mapped AGB with other studies
The mapped AGB values from the best model in this 
study was compared to previous maps of AGB or car-
bon density maps previously converted to biomass [8, 
10]. These studies both used the NFI plots to produce 
an AGB or carbon density for Mexico, however we only 
compared the results for the tropical dry forests of the 
study area. The study of Cartus [10] mapped AGB car-
bon density using random forest and three groups of 
variables: canopy density estimates from Landsat, back-
scatter from ALOS PALSAR and elevation derived from 
shuttle radar topography mission (STRM). The study of 
Rodriguez-Veiga [8] estimated AGB with the maximum 
entropy algorithm using several explanatory variables: 
vegetation indices derived from MODIS, backscatter 
from ALOS PALSAR and elevation obtained from SRTM. 
Neither previous study corrected AGB values from NFI 
plots for small trees and stand age (biomass dynamics). 
We compared the AGB maps in the three studies with 
the AGB estimated in validation plots (87 plots) using 
 R2, RMSE,  %RMSE and bias. In addition, we calculated 
the distribution of AGB maps in the 3 studies and we also 
obtained the mean values and 95% confidence intervals 
of the differences between reference and predicted AGB 
values stratified by reference AGB ranges.

Results
AGB estimated in LiDAR transect data
To estimate AGB along the LiDAR transects, we have 
69 plots from NFI and ICM that were located within 
the LiDAR data, the frequency distribution of AGB val-
ues of these plots for each forest type can be seen in 
Fig.  2. Results of linear regression analysis showed a 
high association between AGB and LiDAR data with an 
 R2 = 0.87 (Additional file  5: Table  S3). The cross-valida-
tion results showed that the AGB estimation based on 
LiDAR data is accurate with a high  R2 = 0.85 and low 
RMSE = 34.8 Mg ha−1. In addition, the relative RMSE has 
a value of 19.7% and a bias close to 0 (− 1.1) (Additional 
file 6: Fig. S3). Therefore, values of AGB estimated from 
LiDAR data could be suitable for calibration in models 
used to estimate AGB from ALOS PALSAR and CWD 
for the study area.

Effects of small trees and stand age on the accuracy of AGB 
estimates
The random forest models used to estimate AGB from 
three sets of explanatory variables (backscatter and tex-
ture from ALOS PALSAR as well as CWD), indicate 
moderate percentage of AGB variance explained by the 
models in the calibration data  (R2 values are from 0.17 to 
0.19), and validation data  (R2 values are from 0.10 to 0.13) 
(Table 3). We found no significant spatial autocorrelation 
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(p > 0.05) of residuals for any of the four models. The per-
formance of the models in the validation procedure indi-
cated that  R2 values increased and the error decreased as 
each correction factor was applied. The relative RMSE 
decreased by 8.4 and 6.2% when the correction for small 
trees and stand age were applied respectively (Table  3, 
Fig. 3). This result indicates that the correction for small 
trees performed better than the correction by stand age. 
However, when both types of corrections are applied 
to the AGB estimates from the NFI, the relative RMSE 
decreases by 12.2%. The bias in all groups of corrected 
and uncorrected plots were close to 0 (from 0.2 to 5.6), 
which explains why RMSE and SD of error have very sim-
ilar values, since  RMSE2 = bias2 + SD2.

Effects of using AGB estimates from LiDAR and/or field 
plots
The random forest model estimated AGB from three 
sets of explanatory variables (backscatter and tex-
ture from ALOS PALSAR as well as CWD) indicating 

moderate to high agreement between observed and pre-
dicted values for the calibration data  (R2 values from 
0.52 to 0.84), and validation data  (R2 values from 0.26 
to 0.44). There was no significant spatial autocorrela-
tion (p > 0.05) for the residuals of the three models. For 
the calibration data the  R2 values had higher correspond-
ence between observed and predicted data and lower 
errors for the modelling approaches that used LiDAR 
plots alone or Lidar and field plots combined (LiDAR 
only;  R2 = 0.84,   %RMSE = 20.3, bias = 0.6, LiDAR & 
Field plots;  R2 = 0.83,   %RMSE = 21.4, bias = 1.2), com-
pared to that which used only field plots  (R2 = 0.52 
and   %RMSE = 37.4, Table  4). However, validation data 
showed the opposite pattern: a higher correspondence 
between observed and predicted data and lower errors 
for the modelling approach that used only field plots 
 (R2 = 0.44,  %RMSE = 32.1), compared to those that used 
the LiDAR plots alone or LiDAR and field plots combined 
(LiDAR only;  R2 = 0.26,   %RMSE = 63.4, bias = 43.9, 
LiDAR & Field plots;  R2 = 0.35,   %RMSE = 41.8, 

Fig. 2 Frequency histograms of AGB from field plots within LiDAR data for each tropical dry forest type: deciduous (a), semi‑deciduous (b) and 
semi‑evergreen (c)

Table 3 Evaluation statistics for  predicting aboveground biomass from  ALOS PALSAR and  climate variables, using 
corrected and uncorrected NFI plot data

Data NFI plots R2 RMSE %RMSE Bias SD of error

 Calibration (n = 152)  Uncorrected 0.17 44.7 48.1 − 0.3 44.3

 Corrected by small trees 0.18 41.1 37.4 0.5 44.9

 Corrected by age 0.19 44.8 43.7 0.2 41.2

 Corrected by age and small trees 0.18 42.0 35.4 0.2 42.2

 Validation (n = 66)  Uncorrected 0.10 41.3 45.0 5.6 40.8

 Corrected by small trees 0.13 40.1 36.6 4.5 39.8

 Corrected by age 0.10 39.5 38.8 4.2 39.2

 Corrected by age and small trees 0.13 38.9 32.8 4.9 38.6
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bias = 18.5; Table  4, Fig.  4). Thus, the accuracy of pre-
dictions of AGB is higher and with low bias values when 

using field plots compared to LiDAR plots. The posi-
tive high bias values using LiDAR plots indicate over 

Fig. 3 Model validation showing observed versus predicted AGB (Mg ha−1): uncorrected AGB values of NFI plots (a), AGB values of NFI plots 
corrected for small trees (b), AGB values of NFI plots corrected for stand age (c) and AGB values of NFI plots corrected for both small trees and stand 
age (d)

Table 4 Evaluation statistics for predicting aboveground biomass from ALOS PALSAR and climate variables, using field 
and LiDAR biomass plots

Data Approach n R2 RMSE %RMSE Bias SD of error

 Calibration  Field plots 200 0.52 49.0 37.4 1.2 49.1

 LiDAR plots 5021 0.84 31.3 20.3 0.5 31.3

 Field and LiDAR plots 5221 0.83 32.8 21.4 0.6 32.8

 Validation  Field plots 87 0.44 43.8 32.1 − 1.1 43.8

 LiDAR plots 87 0.26 86.7 63.4 43.9 74.6

 Field and LiDAR plots 87 0.35 57.1 41.8 18.5 54.0
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estimation of biomass and explain why SD of errors are 
higher than RMSE.

Spatial distribution of ABG and its uncertainty
The forest AGB map of this study showed values ranging 
from 40 Mg ha−1 for deciduous TDF to 283 Mg ha−1 for 
the semi-evergreen TDF (Fig. 5). The average AGB esti-
mated values were 99.2 Mg ha−1 with a standard devia-
tion of 48.1 Mg ha−1. The average value for each type of 
TDF was 69.3, 100.4 and 127.5 Mg ha−1 respectively for 
deciduous, semi-deciduous and semi-evergreen forests. 
The uncertainties in most of the cases were below 40% of 
the CV;, however, the deciduous TDF presented higher 
uncertainties of up to 60% of CV (Fig.  6). These results 
are in agreement with the number of samples in each 
forest type, since the lowest number of samples corre-
sponded to the deciduous TDF.

Comparison of AGB maps with previous studies
The validation analysis revealed that the agreement 
between observed and predicted values was better 
for this study  (R2 = 0.44) compared to previous ones 
 (R2 = 0.32 for the map of Cartus [10] and  R2 = 0.17 for the 
map of Rodriguez-Veiga [8]. Similarly, the relative RMSE 
of this study was the lowest of the three maps (32.1% in 
this study, 51.1% in the study of Cartus [10] and 49.0% in 
that of Rodriguez-Veiga [8]) (Fig.  7). We also observed 
that the bias in this study was close to 0 (− 1.04) com-
pared with the high negative bias values of − 50.3 and 
− 40.4 for the studies of Cartus [10] and Rodriguez-Veiga 
[8] respectively, indicating large under estimations of 
biomass in the study area. In addition, the ranges and 
mean AGB values differed among the three maps. The 
map from this study displays significantly higher values 
of AGB compared to the previous studies, but showed 

Fig. 4 Model validation showing observed versus predicted AGB (Mg ha−1): AGB calculated from field data (ICM and NFI plots) (a), AGB estimated 
from LiDAR plots (b) and AGB obtained from both field data and LiDAR plots. c Red lines show 1:1 reference lines and dashed lines show regression 
lines

Fig. 5 Above ground biomass maps for each tropical dry forest site: deciduous (a), semi‑deciduous (b) and semi‑evergreen (c)
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Fig. 6 Above ground biomass uncertainty maps for each tropical dry forest site: deciduous (a), semi‑deciduous (b) and semi‑evergreen (c)

Fig. 7 Observed versus predicted AGB (Mg ha−1) of validation plots in this study (a), in the study of Cartus et al. [9] (b) and in the study of 
Rodriguez‑Veiga et al. [7] (c) within our three study sites. Red lines show 1:1 reference lines and dashed blue lines show regression lines

Fig. 8 Boxplots of the reference data (used for validation) and predicted AGB in this study, and in those by Cartus et al. [9] and Rodriguez‑Veiga 
et al. [7] (a). Mean values and 95% confidence intervals obtained as the differences between reference and predicted AGB values of this study, and 
those of Cartus et al. [9] and Rodriguez‑Veiga et al. [7] and stratified by reference AGB ranges (b)
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similar ranges and mean AGB values compared to the 
reference data from the NFI and ICM plots (Fig. 8a).

When dividing the estimates of AGB from the three 
maps into five categories of AGB ranges and compar-
ing them to the reference data, we can see an overesti-
mation of AGB in the three maps for low biomass values 
(< 50 Mg ha−1), with no significant differences among the 
three maps. However, our study also presented a small 
overestimation of AGB in biomass levels between 50 and 
100 Mg ha−1. This graph also revealed that all studies pre-
sented under estimation of AGB for biomass values larger 
than 100 Mg ha−1. Nevertheless, the differences between 
reference data and estimated AGB values were lower in 
this study compared to the previous ones (Fig. 8b).

Finally, the maps and the frequency distribution of 
AGB in the three studies showed that the maps of Cartus 
[10] and Rodriguez-Veiga [8] have a narrow distribution 
of AGB values with few observations above the mean val-
ues (Additional file 7: Fig. S4).

Discussion
To achieve the main objective of the research, improving 
the accuracy of AGB maps of tropical dry forests in the 
Yucatan peninsula, we revised the main sources of errors 
that can affect AGB estimation. In addition, we evalu-
ated ways of correcting the main groups of errors: (i) in 
biomass estimation at the plot level, (ii) sampling error, 
(iii) the match between field and remote sensing meas-
ures and (iv) in AGB estimation using remote sensing 
and environmental data [67]. To reduce the errors for 
assessing biomass at the plot level, we used local allomet-
ric equations and wood density values that were meas-
ured in the study area [68]. However, another important 
error for estimating AGB in the plots is that NFI did not 
measure small trees (DBH < 7.5 cm), which account for a 
considerable proportion of AGB in the secondary TDF of 
the Yucatan peninsula [18]. To address this problem, we 
measured an additional set of plots (ICM plots) to cor-
rect the AGB values of the NFI plots as described in the 
methods. An evaluation of the effect of these corrections 
indicated that the relative RMSE for estimating AGB 
from ALOS PALSAR and climate data, decreases by 8.4% 
compared to the uncorrected plots.

Another common group of errors derives from mis-
matches between field and remotely sensed measure-
ments; such mismatches include spatial location and the 
differences between the size of the sampled unit and the 
pixels of the imagery. However, these two errors decrease 
as plot size increases [12, 68]. Here we used a sample 
unit of 1  ha, and adjusted the grain size of the imagery 
accordingly, so we expect low error values. Neverthe-
less, another mismatch arises from temporal differences 
between field and remotely sensed measurements. In this 

study, NFI plots were measured between 2009 and 2014, 
while ALOS PALSAR was acquired in 2015. To solve this 
problem, we used predictive models of biomass changes 
over time, using additional data from two chronose-
quences [51, 52], which accounted for growth, recruit-
ment and mortality of trees [20]. Our evaluation of the 
effect of taking into account biomass dynamics revealed 
that when this correction was used, the relative RMSE for 
estimating AGB from ALOS PALSAR and climate data, 
decreases by 6.2% compared to uncorrected data. Few 
previous studies have handled this error, one of them 
applied an approach for updating biomass values of plots 
using growth rates [21]. We used the chronosequence 
approach to estimate stand age based on AGB and then 
estimated temporal increases in AGB during the time 
elapsed between the field inventory and image acquisi-
tion. However, in this study, one of the chronosequence 
models was built for the semi-deciduous forest and it was 
applied to both deciduous and semi-deciduous forests. 
This may be one of the reasons for the greater uncer-
tainty in the deciduous compared to semi-deciduous 
forest (Fig. 6), since the rate of AGB change across sec-
ondary succession varies between forest types and land-
use history [22].

An important and novel result of this research was 
to correct AGB values of NFI plots for failing to meas-
ure small trees as well as temporal differences between 
remotely sensed data and field measurements. Consider-
ing both sources of error, our study found that the relative 
RMSE decreased by 12.2% compared to the uncorrected 
plot data. These results suggest that reducing errors at 
the plot-level is critical to improve the accuracy AGB 
maps, as well as for reducing uncertainty of these maps. 
Improving the accuracy of AGB estimates requires 
reducing the errors from the different processes involved 
in mapping AGB or carbon density over large areas. Most 
studies so far have focused on the errors due to meth-
ods of prediction and the type of remotely sensed and 
environmental data used to estimate biomass. Recently, 
field-based biomass estimation errors have gained more 
importance among the remote sensing community [13, 
21, 29].

Another group of errors is related to differences in 
sampling intensity; as we pointed out earlier, deciduous 
forest had almost a quarter the number of samples com-
pared to semi-deciduous and semi-evergreen forests in 
the Yucatan peninsula [15]. We used an approach to over-
come this problem by combining both field and LiDAR 
plots or using LiDAR plots for training a model to pre-
dict AGB in larger areas. Contrary to our expectations, 
we found that the correspondence between observed and 
predicted values of AGB was lower and the relative error 
was much higher for the LiDAR plots approach  (R2 = 0.26 
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and   %RMSE = 63.4), compared to the approach that 
used only field plots  (R2 = 0.44 and   %RMSE = 32.1), so 
combining both data sets did not improve the accuracy of 
AGB estimation  (R2 = 0.35 and  %RMSE = 41.8) obtained 
from field plots. Therefore, the evaluation using an inde-
pendent set of plots showed that the field approach per-
formed better than the other two methods. These results 
concur with those of Urbazaev et  al. [6] who mapped 
AGB for all of Mexico.

Several studies have shown that using biomass esti-
mated from LiDAR plots in a two-stage upscaling 
method improved the accuracy of predictions of canopy 
height of woodlands [69], AGB of tropical forests [70] 
and several vegetation-structure attributes of boreal 
forest [71]. Such success requires a good performance 
of the model that relates field AGB measurements and 
LiDAR metrics, together with a good representation by 
the LIDAR plots of the range of AGB conditions over 
the different vegetation types in the study area [69, 71]. 
In our study, the model that related AGB field measure-
ments and LiDAR data provided high model fit and AGB 
estimation accuracy  (R2 = 0.87 and 0.85, respectively) as 
well as low relative error (%RMSE = 19.7). Nevertheless, 
field plots located within the LiDAR data did not cap-
ture the range of variability of AGB in the three types 
of TDF (Fig.  2) and therefore AGB in LiDAR plots was 
overestimated (see high positive values of bias in Fig. 7). 
For example, there are few observations of LiDAR plots 
with biomass values lower than the mean AGB in the 
semi-evergreen TDF (Additional file  8 Fig. S5 (e)). This 
is because the LiDAR flights covered a small area domi-
nated by old-growth forests with high AGB values where 
the ICM plots were located. In addition, the area sam-
pled with LiDAR was very small (less than 1% of the total 
study area) and not representative enough. This is likely 
why we found a better prediction of AGB values using 
the field plots approach, since field plots covered a much 
larger and more representative area. Consequently, a rec-
ommendation for making LiDAR plots representative of 
the area of interest is to acquire at least 6% of the study 
area in a random sampling strategy [69]. Another alter-
native is applying a stratified sampling design for data 
acquisition, which will reduce the area sampled but will 
requires a priori knowledge of the vegetation types and 
the spatial variability of AGB in the study area [71].

Developing an AGB estimation model and applying it 
for mapping AGB in large areas involves several uncer-
tainties. One of the main problems is that SAR imagery 
underestimates AGB in areas of high forest biomass, due 
to saturation of backscatter in dense vegetation [29]. Our 
results showed a slight under estimation for high values 
of biomass (Fig.  7, bias 0 − 1.04), even though we used 
texture measures and climatic data to improve the AGB 

estimation (Fig.  3a). However, compared to the studies 
of Rodriguez-Veiga et  al. [8] and Cartus el al. [10], the 
underestimation at high levels of biomass was consid-
erably lower in this study (Fig. 8b, Fig/bias = − 50.3 and 
− 40.4 respectively). The ranking of variables in random 
forest indicated that CWD and some texture meas-
ures contributed more than HH polarization to explain 
the variation in AGB estimation (Additional file  9: Fig. 
S6). These results suggest that the saturation in the SAR 
imagery can be reduced by using relevant environmen-
tal data to predict biomass –in this case, water deficit, 
which is one of the most important factors limiting for-
est growth in tropical dry forests [19, 20]. Additionally, 
the lower underestimation error of AGB at high biomass 
values in this study may be partly attributed to the use 
of texture measurements, which can capture variation 
in horizontal forest structure attributes of paramount 
importance for biomass estimation, such as differences in 
tree height and crown diameter of patches of forest with 
different stand age [37–39]. Therefore, the use of these 
two groups of variables, together with backscatter may 
have improved the biomass estimation. In contrast, the 
results of this study showed an overestimation of AGB 
at smaller biomass values, as commonly reported by sev-
eral studies [6, 38]. This overestimation may be caused 
by open areas or non-forest areas (with almost null AGB 
values) contributing to the backscatter signal. One way 
to further improve AGB estimation and reduce the over-
estimation of AGB at small levels of biomass is by add-
ing time series of remotely sensed data to capture forest 
changes in reflectance values, or estimating forest stand 
age, especially early in succession [26].

When using random forest to estimate AGB it is 
important to test for spatial autocorrelation in the residu-
als of the models, since deviations from the assumption 
of independence (i.e. no autocorrelation) can result in 
declaring significant effects when there are none [72]. 
Here, we found no significant spatial autocorrelation in 
all random forest models tested. However, there are some 
statistical analysis that combine regression models with 
ordinary kriging of regression residuals, to take into con-
sideration both the autocorrelation and the associations 
between AGB and explanatory variables [73]. In a similar 
way, random forest has been combined with model resid-
uals for mapping the spatial distribution of AGB [74].

To put our results in perspective, we compared the 
performance of the AGB map of this study with those 
from two previous studies [8, 10]. Although, the three 
maps were generated using the same source of field 
data (the national forest inventory) and similar remotely 
sensed imagery, the map validation analysis indicated 
that our map performed better. Our map had higher 
model fit values and lower relative RMSE  (R2 = 0.44 
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and   %RMSE = 32.3) compared to the previous stud-
ies of Cartus  (R2 = 0.32 and   %RMSE = 69.7) and Rod-
riguez-Veiga  (R2 = 0.17 and   %RMSE = 69.9). Besides, 
the ranges and mean AGB values differed among the 
three maps. The map of this study displayed significantly 
higher values of AGB in comparison to the previous 
studies and showed more similar ranges and mean AGB 
values compared to the reference data (Fig.  8a). These 
differences are mainly due to the processes of correct-
ing NFI plot data, for not considering small trees and 
for temporal differences between imagery data acquisi-
tion and field measurements. On the other hand, the 
three maps underestimate AGB for biomass values larger 
than 100 Mg ha−1 and overestimate at low levels of bio-
mass. However, the underestimation of AGB was lower 
in this study compared to previous ones (Fig. 8b, see bias 
in Fig.  7). These differences could be explained by the 
fact that we generated models for the three main types 
of TDF in the Yucatán peninsula using local wood den-
sity values and allometric equations. We also used rele-
vant environmental variables to predict biomass, such as 
CWD, one of the most important factors limiting growth 
in tropical dry forests [19, 20]. In addition, we used tex-
ture measures to predict biomass, which are important 
for capturing variation in horizontal forest structure 
among patches of different successional age [28]. Finally, 
the three studies reported higher error for the decidu-
ous than for the semi-deciduous and semi-evergreen 
forests. This may be due to the differences in sample size 
between those forests. Although we tested an approach 
to improve the accuracy of predictions of AGB by using 
LiDAR plots (in a two-stage upscaling method), we did 
not succeed because LiDAR plots could not capture the 
range of AGB variability in these forests.

Conclusion
We present a potentially useful approach for mapping 
AGB in tropical forests using random forest models with 
AGB estimated from field plots. By addressing the main 
sources of errors encountered when mapping AGB and 
applying ecological knowledge to plot data we improved 
the accuracy of AGB maps for the tropical dry forests of 
the Yucatan peninsula. Small stems (< 7.5 cm DBH) make 
a significant contribution to AGB in TDF, additionally, 
since the NFI plots were measured over a 6-year time 
window, annual increases in AGB mean that the tempo-
ral difference between field and remotely sensed meas-
urements should be accounted for. By correcting plot 
data for small stems and the temporal difference between 
field and remotely sensed measurements, we reduced rel-
ative error of biomass estimates by 12.2%.

In order to minimize the error associated with small 
sample size, we increased the sample size by combining 

both field and LiDAR plots or using LiDAR plots to train 
a model for predicting AGB in larger areas. However, we 
found a better performance of the approach that used 
only field plots  (R2 = 0.44 and  %RMSE = 32.1), compared 
to the approach that combined both data sets  (R2 = 0.35 
and  %RMSE = 41.8) because the LiDAR plots showed a 
poor performance  (R2 = 0.26 and   %RMSE = 63.4). This 
low performance contrasted with the good performance 
of the model that related field AGB measurements and 
LiDAR metrics, indicating that LiDAR plots, which cov-
ered less than 1% of the study area, did not capture the 
range of AGB variability of our study forests.

Our results also showed that the inclusion of cli-
matic data and texture measures from ALOS PALSAR 
reduced the saturation effect, since a relevant environ-
mental variable, such as CWD is also highly related to 
forest biomass. Similarly, texture measures can cap-
ture variations in forest structure over the study area 
that are related to biomass. Finally, our results suggest 
that, understanding the main sources of errors during 
the process of estimating AGB, as well as using of some 
approaches to correct those errors, improved the accu-
racy of AGB estimates compared to previous studies.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1302 1‑020‑00151 ‑6.

Additional file 1: Table S1. List of wood density values of plant species 
and the corresponding references.

Additional file 2: Table S2. Factors to correct National Forest Inventory 
plots for failing to consider small (DBH < 7.5 cm) trees in each percentile 
class and forest type.

Additional file 3: Fig S1. Above ground biomass as a function of succes‑
sional stand age for the tropical dry forests of our study area: deciduous 
and semi‑deciduous (a) and semi‑evergreen (b).

Additional file 4: Fig. S2. Climatic water deficit map of the Yucatan 
peninsula calculated with interpolated evapotranspiration and rainfall 
monthly maps (a). Area for interpolating climatic variables (rainfall, tem‑
perature and evapotranspiration) from 425 meteorological stations.

Additional file 5: Table S3. Regression parameters of the best model 
used to estimate aboveground biomass from LiDAR data.

Additional file 6: Fig S3. Results of cross validation analyses of the 
regression model between AGB and LiDAR data. The red line shows 1:1 
reference line and the dashed line show the regression line.

Additional file 7: Fig S4. Frequency histograms and maps of estimated 
AGB in a 3600 km2 window of tropical dry semi‑deciduous forest in 
this study (a, d), in the study of Cartus et al. [9] (b, e) and in the study of 
Rodriguez‑Veiga et al. [7] (c, f ).

Additional file 8: Fig S5. Frequency histograms of AGB from field plots 
for three types of tropical dry forests: deciduous (a), semi‑deciduous (b) 
and semi‑evergreen (c); and of AGB estimated from LiDAR plots: decidu‑
ous (d), semi‑deciduous (e) and semi‑evergreen forests (f ).

Additional file 9: Fig S6. Importance of random forest predictors for 
modelling AGB from backscatter HH and HV polarization, normalized dif‑
ference backscatter index (NDBI) and texture measures from ALOS PALSAR 
as well as climatic water deficit (CWD).

https://doi.org/10.1186/s13021-020-00151-6
https://doi.org/10.1186/s13021-020-00151-6


Page 15 of 17Hernández‑Stefanoni et al. Carbon Balance Manage           (2020) 15:15  

Abbreviations
AGB: Aboveground biomass; TDF: Tropical dry forests; DBH: Diameter at breast 
height; NFI: National forest inventory; IMC: Intensive monitoring carbon; NDBI: 
Normalized difference backscatter index; CWD: Climatic water deficit; ALOS–
PALSAR: Advanced land observing satellite–phased array type l‑band synthetic 
aperture radar; LiDAR: Light detection and ranging; SAR: Synthetic aperture 
radar; SRTM: Shuttle radar topography mission; RMSE: Root mean square error; 
%RMSE: Relative root mean square error; R2: Coefficient of determination.

Acknowledgements
We thank the ejidos of Xkobehnaltún, Xuul, Yaxhachén and Felipe Carrillo 
Puerto for allowing us to work in their lands and for their assistance with field 
work. James Callaghan and Reserva Biocultural Kaxil Kiuic provided logistic 
support.

Authors’ contributions
JLH‑S conceived the research, designed the experiments. JLH‑S and JMD 
wrote the manuscript. FT‑D, SPC‑G and GR‑P processed the field and LiDAR 
data. RV processed climate data. JLH‑S, JA‑M and BC‑B GR‑P processed ALOS 
PALSAR imagery. JLH‑S and JA‑M performed the statistical analysis. All authors 
discussed the results, commented on the manuscript, shared equally in the 
editing of the manuscript. All authors read and approved the final manuscript..

Funding
Ecometrica LTD and the United Kingdom Space Agency financed this research 
as part of the project Forests 2020.

Availability of data and materials
The ALOS PALSAR data used in this study was downloaded from (https ://www.
eorc.jaxa.jp/ALOS/en/top/obs_top.htm). The LiDAR data can be accessed at 
(https ://gliht .gsfc.nasa.gov/). Data from national forest inventory in Mexico 
can be obtained by request to CONAFOR (Comisión Nacional Forestal, https 
://www.gob.mx/conaf or). The additional datasets used in this manuscript are 
available upon request to corresponding author.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
None declared.

Author details
1 Centro de Investigación Científica de Yucatán A.C. Unidad de Recursos Natu‑
rales, Calle 43 # 130. Colonia Chuburná de Hidalgo, C.P. 97200 Mérida, Yucatán, 
Mexico. 2 El Colegio de la Frontera Sur, Laboratorio de Análisis de Información 
Geográfica y Estadística, Carretera Panamericana y Periférico sur s/n., San 
Cristóbal de las Casas, CP 29290 Chiapas, Mexico. 3 Centro de Investigaciones 
en Geografía Ambiental, Universidad Nacional Autónoma de México, Campus 
Morelia, Antigua Carretera a Pátzcuaro 8701, Col. Ex‑Hacienda de San José 
de La Huerta, C.P. 58190 Morelia, Mexico. 4 University of Edinburgh, School 
of GeoSciences, Edinburgh EH9 3FF, UK. 5 CONACYT ‑ Consorcio de Investi‑
gación, Innovación y Desarrollo para las Zonas Áridas (CIIDZA), El Colegio de 
San Luis (COLSAN), Parque de Macul 155, Fracc. Colinas del Parque, San Luis 
Potosí, S.L.P, Mexico. 

Received: 12 December 2019   Accepted: 22 July 2020

References
 1. Houghton RA, Byers B, Nassikas A. A role for tropical forests in stabilizing 

atmospheric CO2. Nat Clim Change. 2015;5:1022–3.
 2. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, 

Shvidenko A, Lewis SL, Ganadell JG, Ciais P, Jackson RB, Paccala SW, 
McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. A large and persistent 
carbon sink in the world’s forests. Science. 2011;333:988–93.

 3. Portillo‑Quintero CA, Sánchez‑Azofeifa GA. Extent and conservation of 
tropical dry forests in the Americas. Biol Conserv. 2010;143:144–55.

 4. Keith H, Mackey BG, Lindenmayer DB. Re‑evaluation of forest biomass 
carbon stocks and lessons from the world’s most carbon‑dense forests. 
Proc Natl Acad Sci. 2009;106(28):11635–40.

 5. Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta 
BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel 
A. Benchmark map of forest carbon stocks in tropical regions across 
three continents. Proc Natl Acad Sci. 2011;108:9899–904.

 6. Rodríguez‑Veiga P, Quegan S, Carreiras J, Persson HJ, Fransson JE, Hos‑
cilo A, Ziółkowski D, Stereńczak K, Lohberger S, Stängel M, Berninger A. 
Forest biomass retrieval approaches from earth observation in different 
biomes. Int J Appl Earth Observ Geoinform. 2019;77:53–68.

 7. Urbazaev M, Thiel C, Cremer F, Dubayah R, Migliavacca M, Reichstein 
M, Schmullius C. Estimation of forest aboveground biomass and 
uncertainties by integration of field measurements, airborne LiDAR, 
and SAR and optical satellite data in Mexico. Carbon Balance Manage. 
2018;13(1):5.

 8. Rodríguez‑Veiga P, Saatchi S, Tansey K, Balzter H. Magnitude, spatial dis‑
tribution and uncertainty of forest biomass stocks in Mexico. Remote 
Sens Environ. 2016;183:265–81.

 9. Avitabile V, Herold M, Heuvelink GB, Lewis SL, Phillips OL, Asner 
GP, Armston J, Ashton PS, Banin L, Bayol N, Berry NJ. An integrated 
pan‑tropical biomass map using multiple reference datasets. Global 
Change Biol. 2016;22(4):1406–20.

 10. Cartus O, Kellndorfer J, Walker W, Franco C, Bishop J, Santos L, Fuentes 
J. A national, detailed map of forest aboveground carbon stocks in 
Mexico. Remote Sens. 2014;6(6):5559–88.

 11. Baccini AG, Goetz SJ, Walker WS, Laporte NT, Sun M, Sulla‑Menashe D, 
Hackler J, Beck PS, Dubayah R, Friedl MA, Samanta S. Estimated carbon 
dioxide emissions from tropical deforestation improved by carbon‑
density maps. Nat Clim Change. 2012;2(3):182.

 12. Hernández‑Stefanoni J, Reyes‑Palomeque G, Castillo‑Santiago M, 
George‑Chacón S, Huechacona‑Ruiz A, Tun‑Dzul F, Rondon‑Rivera D, 
Dupuy J. Effects of sample plot size and gps location errors on above‑
ground biomass estimates from LiDAR in tropical dry forests. Remote 
Sens. 2018;10(10):1586.

 13. Réjou‑Méchain M, Barbier N, Couteron P, Ploton P, Vincent G, Herold M, 
Mermoz S, Saatchi S, Chave J, de Boissieu F, Féret JB. Upscaling Forest 
biomass from field to satellite measurements: sources of errors and 
ways to reduce them. Surv Geophys. 2019;40:1–31.

 14. Searle EB, Chen HY. Tree size thresholds produce biased estimates of 
forest biomass dynamics. For Ecol Manage. 2017;400:468–74.

 15. Comisión Nacional Forestal. Inventario Nacional Forestal y de Suelos. 
México: Procedimientos de muestreo, CONAFOR; 2013.

 16. Romero‑Duque LP, Jaramillo VJ, Pérez‑Jiménez A. Structure and diver‑
sity of secondary tropical dry forests in Mexico, differing in their prior 
land‑use history. For Ecol Manage. 2007;253(1–3):38–47.

 17. Jaramillo JV, Kauffman BJ, Rentería‑Rodríguez L, Cummings LD, Elling‑
son JL. Biomass, carbon, and nitrogen pools in mexican tropical dry 
forest landscapes. Ecosystems. 2003;6:609–29.

 18. Read L, Lawrence D. Recovery of biomass following shifting cultivation 
in dry tropical forests of the Yucatan. Ecol Appl. 2003;13(1):85–97.

 19. Poorter L, Bongers F, Aide TM, Zambrano AM, Balvanera P, Becknell JM, 
Boukili V, Brancalion PH, Broadbent EN, Chazdon RL, Craven D. Biomass 
resilience of Neotropical secondary forests. Nature. 2016;530(7589):211.

 20. Chazdon RL, Letcher SG, Van Breugel M, Martínez‑Ramos M, Bongers 
F, Finegan B. Rates of change in tree communities of secondary Neo‑
tropical forests following major disturbances. Philos Transact Royal Soc 
B Biol Sci. 2006;362(1478):273–89.

 21. Avitabile V, Camia A. An assessment of forest biomass maps in Europe 
using harmonized national statistics and inventory plots. For Ecol Man‑
age. 2018;409:489–98.

 22. Gonçalves F, Treuhaft R, Law B, Almeida A, Walker W, Baccini A, Dos 
Santos JR, Graça P. Estimating aboveground biomass in tropical forests: 
field methods and error analysis for the calibration of remote sensing 
observations. Remote Sens. 2017;9(1):47.

 23. Lefsky MA, Harding DJ, Keller M, Cohen WB, Caraba‑jal CC, Espirito‑
Santo FD, Hunter MO, de Oliveira R. Estimates of forest canopy 
height and above‑ground biomass using ICESat. Geophys Res Lett. 
2005;32:L22S02.

https://www.eorc.jaxa.jp/ALOS/en/top/obs_top.htm
https://www.eorc.jaxa.jp/ALOS/en/top/obs_top.htm
https://gliht.gsfc.nasa.gov/
https://www.gob.mx/conafor
https://www.gob.mx/conafor


Page 16 of 17Hernández‑Stefanoni et al. Carbon Balance Manage           (2020) 15:15 

 24. Næsset E. Predicting forest stand characteristics with airborne scanning 
laser using a practical two‑stage procedure and field data. Remote Sens 
Environ. 2002;80(1):88–99.

 25. Matasci G, Hermosilla T, Wulder MA, White JC, Coops NC, Hobart GW, Zald 
HSJ. Large‑area mapping of Canadian boreal forest cover, height, biomass 
and other structural attributes using Landsat composites and lidar plots. 
Remote Sens Environ. 2018;209:90–106.

 26. Zald HSJ, Wulder MA, White JC, Hilker T, Hermosilla T, Hobart GW, Coops 
NC. Integrating Landsat pixel composites and change metrics with lidar 
plots to predictively map forest structure and aboveground biomass in 
Saskatchewan, Canada. Remote Sens Environ. 2016;176:188–201.

 27. Wulder MA, White JC, Nelson RF, Næsset E, Ørka HO, Coops NC, Hilker T, 
Bater CW, Gobakken T. Lidar sampling for large‑area forest characteriza‑
tion: a review. Remote Sens Environ. 2012;121:196–209.

 28. Joshi N, Mitchard ET, Brolly M, Schumacher J, Fernández‑Landa A, 
Johannsen VK, Marchamalo M, Fensholt R. Understanding ‘saturation’of 
radar signals over forests. Nat Sci Rep. 2017;7(1):3505.

 29. Mermoz S, Réjou‑Méchain M, Villard L, Le Toan T, Rossi V, Gourlet‑Fleury 
S. Decrease of L‑band SAR backscatter with biomass of dense forests. 
Remote Sens Environ. 2015;159:307–17.

 30. Morel AC, Saatchi SS, Malhi Y, Berry NJ, Banin L, Burslem D, Nilus R, Ong 
RC. Estimating aboveground biomass in forest and oil palm plantation 
in Sabah, Malaysian Borneo using ALOS PALSAR data. For Ecol Manage. 
2011;262:1786–98.

 31. García M, Saatchi S, Ustin S, Balzter H. Modelling forest canopy height by 
integrating airborne LiDAR samples with satellite Radar and multispectral 
imagery. Int J Appl Earth Obs Geoinf. 2018;66:159–73.

 32. Mitchard ETA, Saatchi SS, White LJT, Abernethy KA, Jeffery KJ, Lewis SL, 
Collins M, Lefsky MA, Leal ME, Woodhouse IH, Meir P. Mapping tropical 
forest biomass with radar and spaceborne LiDAR in Lopé National Park: 
gabon: overcoming problems of high biomass and persistent cloud. 
Biogeosciences. 2012;9:79–191.

 33. Almeida‑Filho R, Shimabukuro YE, Rosenqvist A, Sánchez GA. Using dual‑
polarized ALOS PALSAR data for detecting new fronts of deforestation in 
the Brazilian Amazônia. Int J Remote Sens. 2009;30:3735–43.

 34. Fischer R, Knapp N, Bohn F, Shugart HH, Huth A. The relevance of forest 
structure for biomass and productivity in temperate forests: new per‑
spectives for remote sensing. Surv Geophys. 2019;40(4):709–34.

 35. Ploton P, Barbier N, Couteron P, Antin CM, Ayyappan N, Balachandran N, 
Barathan N, Bastin JF, Chuyong G, Dauby G, Droissart V. Toward a general 
tropical forest biomass prediction model from very high resolution opti‑
cal satellite images. Remote Sens Environ. 2017;200:140–53.

 36. Zhou JJ, Zhao Z, Zhao J, Zhao Q, Wang F, Wang H. A comparison of 
three methods for estimating the LAI of black locust (Robinia pseu‑
doacacia L.) plantations on the Loess Plateau, China. Int J Remote Sens. 
2014;35(1):171–88.

 37. Huang H, Liu C, Wang X, Zhou X, Gong P. Integration of multi‑resource 
remotely sensed data and allometric models for forest aboveground 
biomass estimation in China. Remote Sens Environ. 2019;221:225–34.

 38. Zhao P, Lu D, Wang G, Liu L, Li D, Zhu J, Yu S. Forest aboveground biomass 
estimation in Zhejiang Province using the integration of Landsat TM and 
ALOS PALSAR data. Int J Appl Earth Obs Geoinf. 2016;53:1–15.

 39. Thapa RB, Watanabe M, Motohka T, Shimada M. Potential of high‑
resolution ALOS–PALSAR mosaic texture for aboveground forest carbon 
tracking in tropical region. Remote Sens Environ. 2015;160:122–33.

 40. Álvarez‑Dávila E, Cayuela L, González‑Caro S, Aldana AM, Stevenson PR, 
Phillips O, Cogollo Á, Peñuela MC, von Hildebrand P, Jiménez E, Melo O. 
Forest biomass density across large climate gradients in northern South 
America is related to water availability but not with temperature. PloS 
ONE. 2017;12(3):e0171072.

 41. van der Sande MT, Peña‑Claros M, Ascarrunz N, Arets EJ, Licona JC, Toledo 
M, Poorter L. Abiotic and biotic drivers of biomass change in a Neotropi‑
cal forest. J Ecol. 2017;105(5):1223–34.

 42. Carnevali G, Ramírez IM, González–Iturbe JA. Flora y vegetación de la 
Península de Yucatán. In: Colunga–García–Marín, P. and Larqué‑Saavedra, 
A. Eds. Naturaleza y Sociedad en el Área Maya, Pasado, Presente y Futuro, 
Academia Mexicana de Ciencias y Centro de Investigación Científica de 
Yucatán, México, D. F. 2003; pp. 53‑68,.

 43. Flores‑Guido JS, Durán‑García R, Ortiz‑Díaz JJ. Comunidades vegetales 
terrestres. In: R. Durán‑García & M.E. Méndez‑González (eds), Biodiversi‑
dad y Desarrollo Humano en Yucatán, Centro de Investigación Científica 

de Yucatán; Programa de Pequeñas Donaciones del Fondo para el Medio 
Ambiente Mundial; Comisión Nacional para el Conocimiento y Uso de la 
Biodiversidad; Secretaría de Desarrollo Urbano y Medio Ambiente. 2010; 
pp 125‑129.

 44. Ramírez G, Dupuy Rada JM, Ramírez Y, Avilés L, Solorio Sánchez FJ. Eval‑
uación de ecuaciones alométricas de biomasa epigea en una selva medi‑
ana subcaducifolia de Yucatán. Madera y Bosques. 2017;23(2):163–79.

 45. Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster 
H, Fromard F, Higuchi N, Kira T, Lescure JP. Tree allometry and improved 
estimation of carbon stocks and balance in tropical forests. Oecologia. 
2005;145(1):87–99.

 46. Guyot J. Estimation du stock de carbone dans la végétation des zones 
humides de la Péninsule du Yucatan. Memoire de fin d’etudes. (Tesis de 
licenciatura no publicada). AgroParis Tech‑El Colegio de la Frontera Sur. 
2011; pp 110.

 47. Cairns MA, Olmsted I, Granados J, Argaez J. Composition and above‑
ground tree biomass of a dry semi‑evergreen forest on Mexico’s Yucatan 
Peninsula. For Ecol Manage. 2003;186:125–32.

 48. Urquiza‑Haas T, Dolman PM, Peres CA. Regional scale variation in forest 
structure and biomass in the Yucatan peninsula, Mexico: effects of forest 
disturbance. For Ecol Manage. 2007;247(1–3):80–90.

 49. Chave J, Condit R, Lao S, Caspersen JP, Foster RB, Hubbell SP. Spatial and 
temporal variation of biomass in a tropical forest: results from a large 
census plot in Panama. J Ecol. 2003;91:240–52.

 50. Frangi JL, Lugo AE. Ecosystem dynamics of a subtropical floodplain forest. 
Ecol Monogr. 1985;55(3):351–69.

 51. Hernández‑Stefanoni JL, Dupuy JM, Tun‑Dzul F, May‑Pat F. Influ‑
ence of landscape structure and stand age on species density and 
biomass of a tropical dry forest across spatial scales. Landscape Ecol. 
2011;26(3):355–70.

 52. Miranda‑Plaza EA. Comparación de la estructura y composición de la 
vegetación en dos paisajes con bosques tropicales seco de la península 
de Yucatán. Tesis de Maestría. Posgrado en Ciencias Biológicas, CICY. 2014; 
pp 120

 53. Cook B, Nelson R, Middleton E, Morton D, McCorkel J, Masek J, Ranson 
K, Ly V, Montesano P. NASA Goddard’s LiDAR, hyperspectral and thermal 
(G‑LiHT) airborne imager. Remote Sens. 2013;5(8):4045–66.

 54. Hernández‑Stefanoni JL, Johnson KD, Cook BD, Dupuy JM, Birdsey R, 
Peduzzi A, Tun‑Dzul F. Estimating species richness and biomass of tropical 
dry forests using LIDAR during leaf‑on and leaf‑off canopy conditions. 
Appl Veg Sci. 2015;18(4):724–32.

 55. McGaughey RJ. FUSION/LDV: Software for LIDAR data analysis and 
visualization. United States Department of Agriculture, Forest Service, 
Pacific Northwest Research Station, 2012; p 154. Available online: http://
forsy s.cfr.washi ngton .edu/fusio n/fusio n_overv iew.html (Accessed 11 Dec 
2019).

 56. Shimada M, Itoh T, Motooka T, Watanabe M, Shiraishi T, Thapa R, Lucas R. 
New global forest/non‑forest maps from ALOS PALSAR data (2007–2010). 
Remote Sens Environ. 2014;155:13–31.

 57. Shimada M, Ohtaki T. Generating large‑scale high‑quality sar mosaicdata‑
sets: application to palsar data for global monitoring. IEEE J Sel Top Appl 
Earth Obs. 2010;3(4):637–56.

 58. Lee JS. Digital image enhancement and noise filtering by use of local 
statistics. IEEE Trans Pattern Anal Mach Intel. 1980;2(2):165–86.

 59. Haralick RM, Shanmugam K, Dinstein I. Textural features for image clas‑
sification. IEEE Transac Syst Man Cybern. 1973;3:610–21.

 60. R Development Core Team. A Language and Environment for Statistical 
Computing; R Foundation for Statistical Computing: Vienna, Austria. 2018; 
ISBN 3‑900051‑07‑0.

 61. CLICOM. Datos climáticos diarios del sistema de software de manejo de 
datos climatológicos del SMN con gráficas del CICESE [on line] [Consulta‑
tion date: December 11, 2019]. 2019. http://clico m‑mex.cices e.mx.

 62. Chave J, Réjou‑Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti 
WB, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M. Improved 
allometric models to estimate the aboveground biomass of tropical trees. 
Global Change Biol. 2014;20(10):3177–90.

 63. Priestley CHB, Taylor RJ. On the assessment of surface heat flux 
and evaporation using large‑scale parameters. Mon Weather Rev. 
1972;100(2):81–92.

 64. Zar JH. Biostatistical analysis; prenctice hall: upper saddle river. USA: NJ; 
1999.

http://forsys.cfr.washington.edu/fusion/fusion_overview.html
http://forsys.cfr.washington.edu/fusion/fusion_overview.html
http://clicom-mex.cicese.mx


Page 17 of 17Hernández‑Stefanoni et al. Carbon Balance Manage           (2020) 15:15  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

 65. Picard RR, Cook RD. Cross‑validation of regression models. J Am Stat 
Assoc. 1984;79:575–83.

 66. Freeman EA, Frescino TS. Modeling and map production using random 
forest and stochastic gradient boosting. Ogden: USDA Forest Service, 
Rocky Mountain Research Station; 2009. p. 65.

 67. Réjou‑Méchain M, Muller‑Landau HC, Detto M, et al. Local spatial struc‑
ture of forest biomass and its consequences for remote sensing of carbon 
stocks. Biogeosciences. 2019;11:6827–40.

 68. Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R. Error propa‑
gation for tropical forest biomass estimates. Phil Trans R Soc Lond B. 
2004;359:409–20.

 69. Wilkes P, Jones SD, Suarez L, Mellor A, Woodgate W, Soto‑Berelov M, Hay‑
wood A, Skidmore AK. Mapping forest canopy height across large areas 
by upscaling ALS estimates with freely available satellite data. Remote 
Sens. 2015;7(9):2563–12587.

 70. Xu L, Saatchi SS, Shapiro A, Meyer V, Ferraz A, Yang Y, Bastin JF, Banks N, 
Boeckx P, Verbeeck H, Lewis SL. Spatial distribution of carbon stored in 
forests of the Democratic Republic of Congo. Sci Rep. 2017;7(1):15030.

 71. Luther JE, Fournier RA, van Lier OR, Bujold M. Extending ALS‑based map‑
ping of forest attributes with medium resolution satellite and environ‑
mental data. Remote Sens. 2019;11(9):1092.

 72. Dormann FC, McPherson M, Araújo J, Bivand BM, Bolliger R, Carl J, Davies 
GR, Hirzel A, Jetz W, Daniel Kissling W, Kühn I. Methods to account for spa‑
tial autocorrelation in the analysis of species distributional data: a review. 
Ecography. 2007;30(5):609–28.

 73. Hernández‑Stefanoni JL, Gallardo‑Cruz JA, Meave JA, Rocchini D, Bello‑
Pineda J, López‑Martínez JO. Modeling α‑and β‑diversity in a tropical 
forest from remotely sensed and spatial data. Int J Appl Earth Obs Geoinf. 
2012;19:359–68.

 74. Chen L, Wang Y, Ren C, Zhang B, Wang Z. Assessment of multi‑wave‑
length SAR and multispectral instrument data for forest aboveground 
biomass mapping using random forest kriging. For Ecol Manage. 
2019;447:12–25.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Improving aboveground biomass maps of tropical dry forests by integrating LiDAR, ALOS PALSAR, climate and field data
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Study area
	Field data
	LiDAR data
	SAR data
	Climate data
	Estimation and mapping of AGB from LiDAR data
	AGB model development and validation
	Comparison of mapped AGB with other studies

	Results
	AGB estimated in LiDAR transect data
	Effects of small trees and stand age on the accuracy of AGB estimates
	Effects of using AGB estimates from LiDAR andor field plots
	Spatial distribution of ABG and its uncertainty
	Comparison of AGB maps with previous studies

	Discussion
	Conclusion
	Acknowledgements
	References




