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Abstract 

Background:  Developing countries participating in the mitigation mechanism of reducing emissions from defor-
estation and forest degradation (REDD+), are required to establish a forest reference emission level (FREL), if they wish 
to seek financial support to reduce carbon emissions from deforestation and forest degradation. However, establish-
ment of FREL relies heavily on the accurate estimates of carbon stock as one of the input variable for computation 
of the emission factors (EFs). The product of an EF and activity data, such as the area of deforestation, results in the 
total emissions needed for establishment of FREL. This study presents the carbon stock estimates for different land 
cover classes based on an analysis of Tanzania’s national forest inventory data generated through the National Forest 
Resources Monitoring and Assessment (NAFORMA).

Results:  Carbon stocks were estimated in three carbon pools, namely aboveground, belowground, and deadwood 
for each of the three land cover classes (i.e. Forest, non-forest, and wetland). The weighted average carbon stock was 
33.35 t C ha−1 for forest land, 4.28 t ha−1 for wetland and 5.81 t ha−1 for non-forest land. The uncertainty values were 
0.9% for forest land, 11.3% for wetland and 1.8% for non-forest land. Average carbon stocks for land cover sub-classes, 
which make up the above mentioned major land cover classes, are also presented in our study.

Conclusions:  The values presented in this paper correspond to IPCC tier 3 and can be used for carbon estimation at 
the national scale for the respective major primary vegetation type for various purposes including REDD+. However, 
if local based estimates values are needed, the use of auxiliary data to enhance the precision of the area of interest is 
recommended.
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Background
The significance of forests, particularly tropical forests, 
in the global carbon cycle has led to the consideration 
and recognition of forest-based climate change mitiga-
tion measures in the international climate negotiations, 
agreements and policy frameworks. Accordingly, to date 
a number of agreements have been reached [1]. Mostly 
notably, is the adoption of the Bali Action/roadmap in 
2007 at the 13th Conference of Parties (COP13) and the 
subsequent recognition of REDD+ scheme, which is an 

initiative referring to reducing emissions from defor-
estation and forest degradation [2]. Essentially, REDD+ 
involves implementation of a variety of policy approaches 
and incentive plans to the activities related with reduc-
tion in deforestation and forest degradation, as well as 
forest conservation, sustainable management of forests 
and the enhancement of forest carbon stocks in the tropi-
cal forests [3]. This mechanism has been accepted as a 
low-cost and promising approach for mitigating climate 
change [4] that will also secure many ecological functions 
of forests, including biodiversity conservation and provi-
sion of a number of ecosystem services.

The interest among developing countries to prepare for 
implementation of REDD+ projects, and in testing the 
potential mechanisms, has increased tremendously since 
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the initial discussions under UNFCCC in 2005. However, 
in order to effectively implement REDD+ at the national 
level, countries are required to develop four key compo-
nents if they aim to undertake REDD+ activities and to 
be eligible for financial compensation [5]: (1) a national 
strategy or action plan; (2) a national forest reference 
emission level (FREL) and/or forest reference level (FRL); 
(3) a robust and transparent national forest monitor-
ing system for Measurement, Reporting and Verification 
(MRV) of the REDD+ activities; and (4) a system for pro-
viding information on how the safeguards are addressed 
or respected. Forest reference emission level (FREL) 
being among the four key elements of the REDD+ is 
defined as the benchmark for carbon emissions against 
which a country’s performance in implementing REDD+ 
activities can be assessed and credited [1]. However, esti-
mation of carbon emission as key variables for setting up 
FREL, requires information on activity data (AD) which 
refers to the area of forest change (in hectare), e.g., forest 
converted to grassland or forest converted to cropland 
and Emission Factors (EF) which relates to the carbon 
stock change estimations per unit of activity (in carbon 
per hectare) [6, 7]. To ensure that there is consistency 
in estimation of carbon emission, the Intergovernmen-
tal Panel on Climate Change (IPCC) had provided three 
hierarchical tiers for reporting the different levels of 
detail and accuracy. The Tier 1 approach employs the 
default emission factors provided in the IPCC Guidelines 
while Tier 2 approach uses country-specific emission 
factors. On the other hand, Tier 3 approach uses higher 
order methods including models and inventory measure-
ment systems tailored to address national circumstances, 
repeated over time, and driven by high-resolution activity 
data and disaggregated at sub-national to fine grid scales 
[10]. The IPCC recommends using higher Tiers for the 
measurement of important sources and sinks. Tier 2 or 
3 methods are regarded as higher tiers since they provide 
the desired level of accuracy for important components 
of the greenhouse gas (GHG) inventory. However, higher 
Tier methods require more data and are more expensive, 
because they involve monitoring of local variables [8]. 
This causes a challenge to many of the REDD+ countries 
due to the lack of the data from continuous National For-
est Inventories (NFI) which can support estimation of EF 
using higher Tier approaches.

Mainland Tanzania, unlike many other developing 
countries, has wealth of up to-date NFI data that can sup-
port estimation of EF. The first NFI in Mainland Tanza-
nia was implemented between 2009 and 2014 through 
National Forest Resources Monitoring and Assessment 
(NAFORMA) Project. The NFI covered different land 
cover types including different vegetation and land use 
types where the three IPCC carbon pools of aboveground 

biomass (AGB), belowground biomass (BGB) and dead 
wood biomass (DWB) were assessed [9]. This allows for 
land cover specific estimation of emissions of greenhouse 
gas and reduces uncertainties. This is in line with IPCC 
guidelines which emphasize that estimation and report-
ing of greenhouse gases should be complete by consider-
ing all land covers [10]. A quarter of all inventoried plots 
are permanent sample plots for the purpose of repeated 
measurement over time. Irrespective of such initiatives, 
this paper is the first attempt to document carbon densi-
ties for different land cover type using the NFI data. Such 
information is important for the ongoing REDD+ report-
ing activities as well as for conventional objectives related 
with sustainable forest management.

Furthermore, according to IPCC [10], for complete 
inventory of greenhouse gas emissions, uncertainties 
should be estimated at different spatial scales as well as 
for the component parts such as carbon densities, emis-
sion factors, activity data and other estimation param-
eters for each category. Therefore, in line with this, our 
study also reports the uncertainty of carbon stocks for 
different land cover sub-classes.

Methods
Study area
The United Republic of Tanzania is a union of Main-
land Tanzania and Zanzibar, it is located between lon-
gitude 29° and 41° East and Latitude 1° and 12° South. 
Tanzania mainland is endowed with a wide range of 
natural resources. The country has a very diverse cli-
mate, depending on altitude and latitude. The mean 
annual rainfall varies from below 500 to over 2000  mm 
per annum. The rainfall for the large part of the country 
is bimodal with short rains from October to December 
and long rains from March to May. The main forest types 
include deciduous miombo woodlands in the western, 
central and southern parts of the country, Acacia-Com-
miphora woodlands in the northern regions, coastal for-
ests and woodland mosaics in the east, mangrove forests 
along the coast of the Indian Ocean, and closed canopy 
forests, which grow on the ancient mountains of the 
Eastern Arc, along the Albertine Rift close to Lake Tan-
ganyika in the west, and on the younger volcanic moun-
tains in the north and central parts of the country [11].

Based on the recently land use land cover (LULC) 
change analysis for Mainland Tanzania there are four pri-
mary land cover classes of (1) forest, (2) non-forest, (3) 
water and (4) wetlands (Table 1 and Fig. 1). Each primary 
class consists of several land cover sub-classes. In this 
regard ‘Forest’ means an area of land with at least 0.5 ha, 
with a minimum tree crown cover of 10% or with exist-
ing tree species planted or natural having the potential 
of attaining more than 10% crown cover, and with trees 
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which have the potential or have reached a minimum 
height of 3 m at maturity in situ [12].

Sampling design
The data used for estimation of carbon stocks presented 
in this paper were based on the Mainland Tanzania NFI 
data which is commonly referred as NAFORMA, carried 
out from 2009 to 2014. The NFI was developed based on 
double sampling for stratification and optimal alloca-
tion of plots. The first-phase sample consists of clusters 
of plots laid on a 5 × 5 km grid over mainland Tanzania. 
The first-phase clusters were stratified based on a combi-
nation of three criteria namely; predicted growing stock, 
time consumption for cluster measurements and slope of 
the terrain. At national level, the first-phase clusters were 
assigned to 18 pre-defined strata according to the three 

criteria [see 13, 14]. Within each stratum, second-phase 
samples of clusters were selected using optimal alloca-
tion [15] with cost functions tailored for each stratum 
using a simulation approach described in Tomppo, Mal-
imbwi, Katila, Mäkisara, Henttonen, Chamuya, Zahabu 
and Otieno [13]. As a result, greater sampling intensity 
was allocated to strata with more variation and larger 
predicted growing stock and less sampling intensity to 
strata with less variation and smaller predicted growing 
stock. The distributions of the second phase plots within 
the entire Tanzania is presented in Fig. 2. Ten plots per 
cluster were used for each stratum (Fig. 3). The distance 
between plot centers within a cluster was 250 m, which 
translates to 1280  m cluster lengths in east–west and 
north–south directions.

Plot cluster design aimed to increase efficiency during 
the forest inventory [16]. The sample plots were nested 
whereby they included 1, 5, 10 and 15 m radius concen-
tric plots (Fig.  4). In uneven-aged natural forest stands, 
the number of small trees is much higher than the num-
ber of large trees. Therefore, to make the sampling effi-
cient, small trees were measured within small sub-plots 
and large trees were measured within large sub-plots.

Data collection
Within each plot, trees were measured for diameter at 
breast height (dbh, 1.3  m above soil surface) using cali-
per and identified for species [16]. The minimum dbh 
of trees measured within each nested concentric circle 
are specified in Fig. 4. Within 15 m radius, dead woods 
(≥ 5  cm) were also measured for length and diameter 
at their terminal ends. The plot size considered were of 
15 m radius (0.07 ha) and minimum diameter stem was 
5 cm until 14th May 2011 when adjustments were made 
to minimum diameter of 10 cm and plot radius of 10 m 
(0.031 ha) in order to improve data collection speed. For 
all sample plots, slope was recorded. Plot radius was cor-
rected for slope when slope exceeded 5%.

Land cover sub‑classes expansion factors
Estimation of carbon stock was based on plot layout 
design of the NFI described earlier. Accordingly, it was 
necessary to calculate Expansion Factor (ExF) for each 
respective stratum since simple mean of carbon stock 
would ignore the nature of the sampling design upon 
which the data were collected. The ExF describes the area 
in which a sample plot represents in each stratum. Since 
first phase sampling units were distributed proportion-
ally to stratum area, the area of the stratum p (Ap) was 
estimated as follows:

(1)Â=A ∗
np

n1

Table 1  Classification of  land cover types in  Mainland 
Tanzania

Land cover sub-class Primary class

Forest: Plantation Forest

Forest: Mangrove Forest

Forest: Humid montane Forest

Forest: Lowland Forest

Woodland: Closed (> 40%) Forest

Woodland: Open (10–40%) Forest

Cultivated land (Wooded crops): Mixed tree cropping Forest

Cultivated land (Wooded crops): Wooded crops Forest

Woodland (Wooded crops): Scattered cropland (Unspeci-
fied density)

Forest

Bushland: Thicket Forest

Bushland: Thicket with emergent trees Forest

Bushland: Dense Non forest

Bushland: Emergent trees Non forest

Bushland: Open Non forest

Bushland: Scattered cultivation Non forest

Cultivated land: Agro-forestry system Non forest

Cultivated land: Grain crops Non forest

Cultivated land: Herbaceous crops Non forest

Grassland: Bushed Non forest

Grassland: Open Non forest

Grassland: Scattered cropland Non forest

Grassland: Wooded Non forest

N/A Non forest

Open land: Bare soil Non forest

Open land: Rock outcrops Non forest

Open land: Salt crusts Non forest

Other areas Non forest

Water: Inland water Wetland

Water: Swamp Wetland
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where: np is number of first phase plots in stratum p 
(ha); n1 is total number of first phase plots; and A is total 
inventory area (Mainland Tanzania area (ha)). Practical 
sequences of computation are shown below and further 
described in Tomppo, Malimbwi, Katila, Mäkisara, Hent-
tonen, Chamuya, Zahabu and Otieno [13].

Plot area ExF of stratum p was computed as follows

(2)ExFp =
Âp

np

where: Âp is area of stratum p; and np total number of 
plots observed in stratum p.

Consider nk ,p number of plots of landcover sub-class k 
falling in stratum p. The area Âkp of landcover sub-class k 
in stratum p was computed as:

where: nk ,p number of plots of land cover sub-class k in 
stratum p; and ExFp is Expansion Factor of stratum p.

(3)Âkp =
∑

kεp

nk,p ∗ ExFP

Fig. 1  Distribution of the four primary land cover classes
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Area of land cover sub-class k in the country is the 
summation of areas of land cover sub-classes k found in 
each stratum, i.e. Âk = Âk1 + Âk2 + Âk3 + . . . . . . Âkp 
where kp is land cover sub-class k in stratum p.

Estimation of tree and deadwood carbon values
Tree AGB and BGB
The AGB and BGB values of each measured tree in sam-
ple plot were estimated directly using appropriate allo-
metric biomass models presented in Malimbwi et  al. 
[17], URT [18] and tabulated further in Appendix 1. The 
models are based on the sample trees covering different 
land cover types in Mainland Tanzania. The plot levels 
values were then scaled up to per hectare level. Biomass 
models for few land cover types such as Open land: Salt 
crusts, Water: Inland water and tree species such as Dal-
bergia melanoxylon, Grevillea robusta, and Eucalyptus 
spp., were lacking. In such cases, volume models were 
used to compute volume which was then converted to 
biomass using appropriate species-specific wood density 
from the Global Wood Density database [19] and expan-
sion factor of 1.4. For cases where species-specific wood 

Fig. 2  Distribution of sample plots in Mainland Tanzania
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Fig. 3  NFI cluster design (black solid circles = plot)
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density values were missing from the database, a default 
wood density value of 500 kg m−3 [9] was applied. BGB 
for some species including. Adansonia digitata, Grevillea 
robusta, Eucalyptus spp., Dalbergia melanoxylon, Anac-
ardium occidentale and others could not be estimated 
directly using appropriate allometric BGB models. For 
such species BGB was estimated indirectly using a root to 
shoot ratio of 0.25 [20].

Dwb
DWB was estimated as the product of volume and spe-
cific wood density. Volume was computed using Smalian 
formula. The same procedures for conversion of tree vol-
ume to biomass were applied in conversion of dead wood 
volume to DWB although this did not involve the use of 
expansion factor. Irrespective of species, a wood density 
reduction factor of 0.97 was used for solid woods and 
0.45 was used for the more decayed wood [10].

Expansion of Tree AGB, BGB and DWB to plot level
Expansion of tree AGB and BGB; and DWB to plot level 
considered the concentric plot design (Fig. 4).

AGB, BGB and DWB plot values were obtained using 
the Eq. 4:

where Yj is AGB, BGB or DWB per hectare of a plot j; Ŷi is 
AGB, BGB or DWB of a tree i in plot j; and ai is inclusion 
area (area of sub-plot s) of tree i in plot j.

Estimation of carbon pools values of land cover sub‑classes
The carbon pool values for the different land cover 
sub-classes (Table  1) were computed from plot values 
obtained in previous section. To obtain these values, ExF 
were applied as shown in the following equation

(4)Yj =

∑

kεj Ŷi

ai

where j and k correspond to every plot j with land cover 
sub-class k; ExFp plot expansion factor of stratum p 
where plot j resides.

The mean AGB, BGB or DWB per hectare for the land 
cover sub-class k can be computed using Eq. 6 below:

where: Ȳk is the mean AGB, BGB or deadwood per ha in 
landcover sub-class k; Ŷk is the total AGB, BGB or DWB 
in land cover sub-class k; and Âk is total area of landcover 
sub-class k.

The AGB, BGB and DWB values were converted to 
aboveground carbon (AGC), belowground carbon (BGC) 
and Deadwood Carbon (DWC) by multiplying the bio-
mass by the default IPCC carbon fraction value of 0.47 
[10].

Aggregation of carbon pools values from sub‑classes 
to primary classes
The sub-classes for the primary land cover classes were 
further aggregated into primary land cover classes level 
(i.e. forest, non-forest and wetland). The carbon pools 
values of each primary land cover class were estimated as 
a mean of the land cover sub-class estimates, which were 
weighted by their corresponding areas. The carbon pool 
value of a given primary land cover class was therefore 
computed using Eq. (7).

where: Ym is the weighted estimate of AGC, BGC or 
DWC per hectare, a is the area of land cover sub-class 
k, X is AGC, BGC or DWC per ha of the land cover sub-
class and n is the number of land cover sub-classes in the 
primary land cover class.

Estimation of uncertainty for carbon stock
Firstly, variance (Ϭ2) for stratum p was first estimated fol-
lowed by estimation of Standard Error (SE) of land cover 
sub-class k using the Eq. 8.

where: SEk is Standard Error of land cover sub-class k; rp 
is proportion of stratum area to total area of land cover 
sub-class k; SEp Standard Error of stratum p; np number 
of sampling units for pth stratum.

(5)
Ŷk =

∑

j∈k

Yj × ExFp

(6)Ȳk = Ŷk
/

Âk

(7)YM =

∑n
k=1 Yk × Âk
∑n

i=1 Âk

(8)SEk =
2

√

∑ r2p × SE2
p

np

 

     

Radius: 15 m, trees: > 20 cm 

Radius: 10 m, trees: > 10 cm 

Radius: 5 m, trees: > 5 cm 

Radius: 1 m, trees: > 1 cm 

Fig. 4  Layout of concentric sample plot
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Confidence Interval (X) of the mean for a land cover 
sub-class k was computed using the Eq. 9.

where: CIk is Confidence Interval of the mean; SEk is the 
stratum Standard Error and t is value read from t-distri-
bution table at 95% confidence level.

Estimation of uncertainty of the carbon stock in each 
primary land cover followed the procedure described 
in Eq.  3.2 of IPCC [10] (Eq.  10). Errors were weighted 
and propagated for parameters with the same units of 
measurement.

(9)Xk = SEk × t

(10)Utotal =

√

(U1 × X1)
2 + (U2 × X2)

2 + · · · + (Un × Xn)
2

|X1 + X2 + · · · +Xn|

where:  Utotal= percentage uncertainty of the sum of 
quantities (half the 95% confidence interval, divided by 
the total (i.e. the mean) and expressed as a percentage). 
The term “uncertainty” is based on the 95% confidence 
interval. Xi and  Ui= uncertainty quantity and the associ-
ated percentage uncertainties, respectively.

Results
Carbon stocks for different land cover types
The average carbon stocks for the three carbon pools 
(AGC (t C ha−1), BGC (t C ha−1) and DWC (t C ha−1)) 

Table 2  Area coverage and average carbon stock in three IPCC pools for different land cover classes

Primary 
land cover 
class

Land cover sub-class Area (ha) AGC (t C ha−1) BGC (t C ha−1) DWC (t C ha−1) Total 
carbon 
(t C ha−1)

Forest Forest: Plantation 543,025.2 20.0 4.8 0.4 25.2

Forest Forest: Mangrove 158,404.6 34.3 32.9 11.7 78.9

Forest Forest: Humid Montane 953,866.4 62.0 15.5 4.8 82.4

Forest Forest: Lowland 1,663,340.3 43.7 10.9 3.4 58.0

Forest Woodland: Closed (> 40%) 9,006,125.9 32.4 13.9 1.6 47.8

Forest Woodland: Open (10–40%) 36,219,223.5 20.0 8.8 1.1 29.9

Forest Cultivated land (Wooded crops): Mixed tree cropping 148,306.2 18.1 4.5 2.1 24.7

Forest Cultivated land: Wooded crops 1,493,112.2 10.9 3.5 0.7 15.1

Forest Woodland: Scattered crop woodland (unspecified 
density) (wooded crops)

2,518,260.2 9.0 4.2 0. 8 14.0

Forest Bushland: Thicket 951,895.3 6.3 1.578 0.5 8.4

Forest Bushland: Thicket with emergent trees 303,396.0 14.7 8.1 2.2 25.0

Non forest Bushland: Dense 1,961,501.5 9.0 2.2 0.6 11.8

Non forest Bushland: Emergent trees 320,526.0 9.3 5.1 1.0 15.4

Non forest Bushland: Open 2,796,873.4 10.0 4.0 0.2 14.3

Non forest Bushland: Scattered cultivation 1,139,605.7 7.1 4.5 0.9 12.5

Non forest Cultivated land: Agro-forestry system 1,352,158.0 4.0 1.0 0.5 5.5

Non forest Cultivated land: Grain crops 9,748,899.9 2.5 0.6 0.2 3.3

Non forest Cultivated land: Herbaceous crops 4,971,302.0 2.4 0.6 0.7 3.6

Non forest Grassland: Bushed 433,078.4 3.3 1.4 0.1 4.8

Non forest Grassland: Open 3,115,798.5 0.3 0.1 0.03 0.3

Non forest Grassland: Scattered cropland 582,387.0 1.5 0.8 0.4 2.7

Non forest Grassland: Wooded 4,667,016.0 4.8 2.2 0.2 7.2

Non forest Not classified 4903.9 3.4 0.8 0.0 4.2

Non forest Open land: Bare soil 159,354.4 2.0 0.5 1.2 3.7

Non forest Open land: Rock outcrops 94,368.6 4.8 1.2 0.1 6.0

Non forest Open land: Salt crusts 17,807.6 1.6 0.4 0.0 2.0

Non forest Other areas 1,861,784.0 5.4 1.3 0.5 7.2

wetland Water: Inland water 149,490.0 4.9 1.2 1.9 7.9

wetland Water: Swamp 998,490.1 2.7 0.7 0.3 3.7
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for each of the Land cover sub-class are presented 
in (Table  2). The areas of the respective land cover 
sub-class before aggregation into the primary veg-
etation sub-class are also presented in Table  2. The 
average total carbon stocks for aggregated land cover 
sub-classes (vegetation types) were computed and 
presented in Table 3. The values of the land cover sub 
classes ranged from 12.40 to 78.8 t C ha−1. The highest 
value was observed in mangrove while the lowest value 
was for thicket and wetland. When aggregating the 
land cover sub classes into primary land cover, the total 
carbon stock values for the three pools were ranging 
from 4.28 t C ha-1 to 33.35 t C ha−1. Uncertainty analy-
sis was also done in line with the IPCC requirements. 
Among the three primary vegetation classes, wetland 
had higher uncertainty values of the carbon stock esti-
mates compared to forest and non-forest class.

Discussion
The overall objective of this paper was to compute car-
bon stocks for different land cover types of Mainland 
Tanzania using NFI (i.e. NAFORMA) data, which was 
conducted over a 5-year period of 2009 and 2014 by the 
Tanzania Forest Agency.

NAFORMA field plots cover all the land categories, 
making assessment of the areas and area change of all 
IPCC land categories and carbon pools possible. In this 
study carbon estimates have been reported for three 
IPCC carbon pools which included, above ground, below 
ground and deadwood. These pools are selected because, 
data have been collected on them through ground sur-
veys as part of NAFORMA and, importantly, they are 
considered to represent the most important IPCC car-
bon pools for REDD+ reporting purposes. Based on 
this, total carbon was computed based on the three IPCC 
carbon pools as presented in Tables  2 and 3. Of all the 
land cover sub-classes, mangrove, lowland and humid 

montane forests had relatively higher total carbon esti-
mates compared to other categories. This may be attrib-
uted by the presence of large trees in terms of dbh and 
height as compared to other land cover sub catego-
ries (Table 2). According to Brown et  al. [21], large size 
trees tend to account for a large proportion of the AGB 
in mature forests; often between 30 and 40% of the AGB 
can be found in trees with diameters greater than 70 cm. 
On the other hand, lower values in other categories such 
as savanna may be attributed by the nature of the tree 
species as well as exposure different threats such as fire 
and selective logging. Generally, the carbon estimates 
presented for different categories reflect the carbon esti-
mates values of the specific vegetation type for the preci-
sion intended at the national scale. There might be small 
deviations with the previous results reported in MNRT 
[9]. Given that the same dataset was used previously and 
reported in MNRT (2015) as well as the current study, the 
results presented in this paper are different from those 
reported previously in MNRT [9]. The noted differences 
may be attributed to the use of newly developed allo-
metric models [See 17, 18], which are National and land 
cover specific. Specific vegetation type allometric models 
and direct biomass estimation approach are likely to be 
less biased and have smaller residual standard errors [22, 
23] which may reduce error propagation at different scale 
of forest inventory.

In the previous reports, e.g. [9] estimation of biomass 
was done by indirect method as the product of wood 
density and tree stem volume. This was attributed by the 
lack of allometric models which were under construction 
at that time [see 13]. According to Njana [24] the use of 
indirect methods may results into large uncertainties of 
AGB estimates compared to the use tree allometric mod-
els. Thus the values presented in this paper may be highly 
relevant for REDD+ reporting as compared to the values 
reported in MNRT [9] and may be of interest for under-
standing the forest resources of Tanzania and their distri-
bution across different land cover types at the National 
Scales. Results reported in our paper may also be dif-
ferent from reported case studies, such differences are 
attributable to scale (sub-national and national) and sam-
pling design employed. However, if sampling employed is 
appropriate the margin of differences in estimates is not 
very large. There might be variations also in carbon esti-
mates which results from the differences in the sampling 
design. As previously mentioned NAFORMA data was 
intended for generating the estimates of forest attributes 
at the national level precision, and thus may not capture 
much of the local variability presented by other studies. 
But since REDD+ reporting so far is currently aimed at 
the National scales the NAFORMA estimates are more 
appropriate. However, if NAFORMA has to be used for 

Table 3  Average total carbon stocks and  uncertainties 
for different aggregated land cover sub-classes

Land cover sub-classes Carbon (t C ha−1) Uncertainty (%)

Forest: Closed woodland (> 40%) 47.82 0.62

Forest: Open woodland (10–40%) 29.93 1.24

Forest: Plantation 25.19 1.44

Forest: Mangrove 78.86 0.78

Forest: Montane and lowland 66.90 1.56

Forest: Thickets 12.40 1.34

Forest: Wooded crops 14.77 4.34

Overall for forest 33.35 0.93

Wetland 4.28 11.3

Non-forest 5.81 1.8
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small area estimations, options for enhancing the preci-
sion using auxiliary remote sensing data will be the obvi-
ous choice [13]. Such approach is widely accepted as the 
best way of using NFI data for local based reporting [see 
25–27].

Aggregation of the Land cover sub-classes to a more 
homogeneous classes was done to have larger number of 
sample units per respective category but also to be in line 
with categories which are used for reporting activity data 
in the country. Carbon stocks for respective aggregated 
land cover sub-classes are presented in Table 3. Mangrove 
seemed to have large values of average total carbon stock 
compared to other categories, this could be explained 
by large amount DWC in mangrove forests. The overall 
average carbon stock for the three major categories, i.e. 
forest, wetland and non-forest are less than the IPCC 
default values which range from 56 to 200  t  C  ha−1 for 
AGC. Most of the values reported in our paper fall below 
the lower-end of this range however the country specific 
estimates are considered to be more accurate and more 
appropriate to use. Thus in the context of IPCC levels of 
methodology, the reporting values of carbon stocks will 
support the country to report carbon emission at Tier 3 
which essentially uses country-specific data (i.e. National 
inventory and allometric biomass models). The reported 
estimates also serve the purpose of forest carbon moni-
toring, either as an initial inventory of stocks from which 
changes can be estimated based on knowledge of effects 
of different factors such as harvesting and natural dis-
turbances, or as a direct estimate of stock change from 
repeated inventories.

Uncertainty estimates are an essential element of a 
complete inventory of greenhouse gas emissions and 
removals. They should be derived for both the national 
level and the trend estimate, as well as for the component 
parts such as emission factors, activity data and other 
estimation parameters for each category. In this study 
we presented analysis of uncertainty which are within 
the bound of our expectations. There is high uncertainty 
in wetland, given the high variability of carbon stock in 
this category but also may be attributed by small number 
of field plots on this category as compared to forest and 
non-forest categories. However, generally the values of 
uncertainties for the three classes are within the reason-
able ranges. As such they can be used for accounting the 
uncertainty for carbon emission factors elsewhere but 
also for computing overall uncertainty of carbon emis-
sion in construction of FREL for REDD+.

Conclusion
In this paper, we have demonstrated that NFI data can 
be used for estimation of carbon stock for different 
land cover types. The study also demonstrate carbon 

stored in non-forestland. Non-forestland represents a 
land cover remaining after deforestation according to 
the national forest definition. Mangrove, lowland and 
humid montane forests store large quantities of car-
bon per unit area, if such forestlands are converted to 
non-forestland they lead into large emissions. Equally, 
in addition to large area occupied, woodlands also store 
large quantities of carbon. For the purpose of reduc-
ing emissions from deforestation and by considering 
national circumstances, all land covers should be man-
aged although the management intensity and priorities 
should consider the significance emissions and other 
utilities such as biodiversity. The values presented in 
this paper correspond to IPCC tier 3 and can be used 
for estimation of land cover specific emission factors 
for and subsequently use emission factors to derive 
FREL for REDD+. However, if local based estimates 
values are needed, use of auxiliary data to enhance the 
precision of the area of interest should be considered.
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Appendix 1: Allometric AGB, volume and BGB 
models for different land cover classes in Mainland 
Tanzania
Appendix 1a
See Table 4.

Table 4  Allometric AGB models for different land cover classes in Mainland Tanzania

Land cover sub-class Species AGB Source

Forest: Humid Montane All 0.3571 × dbh1.744 × ht0.4713 [28]

Forest: Lowland All 0.3571 × dbh1.744 × ht0.4713 [28]

Forest: Mangrove Avicenia marina 0.25128 × dbh2.24351 [29]

Soneratia alba 0.25128 × dbh2.21727 [29]

Rhizophora mucronata 0.25128 × dbh2.26026 [29]

Others 0.19633 × dbh2.010853 × ht0.29654 [29]

Forest: Plantation Tectona grandis 0.1711 × dbh2.0047 × ht0.3767 [30]

Pinus patula 0.0550 × dbh2.5968 [31]

Woodland: Closed (> 40%) All 0.0763 × dbh2.2046 × ht0.4918 [23]

Baobab 2.234966 × dbh1.43543 [32]

Woodland: Open (10–40%) All 0.0763 × dbh2.2046 × ht0.4918 [23]

Baobab 2.234966 × dbh1.43543 [32]

Bushland: Thicket, dense Pseudoprosopis fischeri 0.4276 × dbh2.4053 st0.5290 [33]

Combretum celastroides 0.7269 × dbh2.6710 × ht0.5737 st0.2039 [33]

Baobab 2.234966 × dbh1.43543 [32]

Bushland: Emergent trees All 1.2013 × dbh1.5076 [33]

Bushland: Thicket with emergent trees All 1.2013 × dbh1.5076 [33]

Bushland: Open Others 0.0763 × dbh2.2046 × ht0.4918 [23]

Acacia and Commiphora spp. 0.0292 × dbh2.0647 × ht1.0146 [34]

Grassland: Wooded Others 0.0763 × dbh2.2046 × ht0.4918 [23]

Acacia and Commiphora spp. 0.0292 × dbh2.0647 × ht1.0146 [34]

Baobab 2.234966 × dbh1.43543 [32]

Grassland: Bushed
Grassland: Open

Others 0.0763 × dbh2.2046 × ht0.4918 [23]

Acacia and Commiphora spp. 0.0292 × dbh2.0647 × ht1.0146 [34]

Baobab 2.234966 × dbh1.43543 [32]

Woodland: Scattered cropland (Unspecified 
density)

All 0.0763 × dbh2.2046 × ht0.4918 [23]

Baobab 2.234966 × dbh1.43543 [32]

Bushland: Scattered cultivation All 1.2013 × dbh1.5076 [33]

Baobab 2.234966 × dbh1.43543 [33]

Grassland: Scattered cropland All 1.2013 × dbh1.5076 [33]

Cultivated land: Agro-forestry system All 0.051 * (dbh2 * ht)0.93 [35]

Cultivated land: Wooded crops Coconut trees 3.7964 × ht1.8130 [36]

Cashew nut trees 0.3152 × dbh1.7722ht0.5003 [37]

Others 0.0763 × dbh2.2046 × ht0.4918 [23]

Cultivated land: Herbaceous crops All 0.051 * (dbh2 * ht)0.93 [35]

Cultivated land: Mixed tree cropping All 0.051 * (dbh2 * ht)0.93 [35]

Cultivated land: Grain crops All 0.051 * (dbh2 * ht)0.93 [35]
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Appendix 1b
See Table 5.

Appendix 1c
See Table 6.

Table 5  Allometric volume models for different land cover classes in Mainland Tanzania

Land cover sub-class Species Volume (m3) Source

Forest: Plantation Eucalyptus spp. 0.000065 × dbh1.633ht1.137 [38]

Grevillea robusta 0.000065 × dbh1.633ht1.137 [38]

Others 0.5 × 3.14 × (0.01 × dbh/2)2 × ht [39]

Woodland: Closed (> 40%) Dalbergia melanoxylon 0.00023 × dbh2.231 Malimbwi 2000

Woodland: Open (10–40%) Dalbergia melanoxylon 0.00023 × dbh2.231 Malimbwi 2000

Open land: Bare soil All 0.5 × 3.14 × (0.01 × dbh/2)2 × ht [39]

Open land: Salt crusts All 0.5 × 3.14 × (0.01 × dbh/2)2 × ht [39]

Open land: Rock outcrops All 0.5 × 3.14 × (0.01 × dbh/2)2 × ht [39]

Water: Inland water All 0.5 × 3.14 × (0.01 × dbh/2)2 × ht [39]

Water: Swamp All 0.5 × 3.14 × (0.01 × dbh/2)2 × ht [39]

Other areas All 0.5 × 3.14 × (0.01 × dbh/2)2 × ht [39]

Table 6  Allometric BGB models for different land cover classes in Mainland Tanzania

Land cover sub-class Species BGB Source

Forest: Mangrove Avicenia marina 1.42040 × dbh1.44260 [29]

Soneratia alba 1.42040 × dbh1.65760 [29]

Rhizophora mucronata 1.42040 × dbh1.68979 [29]

Others 1.42040 × dbh1.59666 [29]

Forest: Plantation Tectona grandis 0.0279 × dbh1.7430 × ht0.7689 [30]

Pinus patula 0.0027 × dbh3.0579 [31]

Woodland: Closed (> 40%) All 0.1766 × dbh1.7844ht0.3434 [23]

Baobab AGB × 0.25 [32]

Dalbergia melanoxylon AGB × 0.25 [9]

Woodland: Open (10–40%) All 0.1766 × dbh1.7844ht0.3434 [23]

Bushland: Thicket, dense Pseudoprosopis fischeri 0.1442 × dbh4.1534 st0.4117 [33]

Combretum celastroides 0.1006 × dbh4.0062 st0.33499 [33]

Bushland: Emergent trees All 1.3803 × dbh1.1671 [33]

Bushland: Thicket with emergent trees All 1.3803 × dbh1.1671 [33]

Bushland: Open Others 0.1766 × dbh1.7844ht0.3434 [23]

Acacia and Commiphora spp. 0.0593 × dbh1.4481 × ht1.0210 [34]

Grassland: Wooded Others 0.1766 × dbh1.7844ht0.3434 [23]

Acacia and Commiphora spp. 0.0593 × dbh1.4481 × ht1.0210 [34]

Grassland: Bushed

Grassland: Open Others 0.1766 × dbh1.7844ht0.3434 [23]

Acacia and Commiphora spp. 0.0593 × dbh1.4481 × ht1.0210 [34]

Woodland: Scattered cropland (Unspecified density) All 0.1766 × dbh1.7844ht0.3434 [23]

Bushland: Scattered cultivation All 1.3803 × dbh1.1671 [33]

Baobab AGB × 0.25 [33]

Grassland: Scattered cropland All 1.3803 × dbh1.1671 [33]

Cultivated land: Wooded crops Coconuts trees 13.5961 × ht0.6635 [36]

Others 0.1766 × dbh1.7844ht0.3434 [23]
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