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Abstract 

Background:  United States forests can contribute to national strategies for greenhouse gas reductions. The objective 
of this work was to evaluate forest sector climate change mitigation scenarios from 2018 to 2050 by applying a sys-
tems-based approach that accounts for net emissions across four interdependent components: (1) forest ecosystem, 
(2) land-use change, (3) harvested wood products, and (4) substitution benefits from using wood products and bio-
energy. We assessed a range of land management and harvested wood product scenarios for two case studies in the 
U.S: coastal South Carolina and Northern Wisconsin. We integrated forest inventory and remotely-sensed disturbance 
data within a modelling framework consisting of a growth-and-yield driven ecosystem carbon model; a harvested 
wood products model that estimates emissions from commodity production, use and post-consumer treatment; 
and displacement factors to estimate avoided fossil fuel emissions. We estimated biophysical mitigation potential by 
comparing net emissions from land management and harvested wood products scenarios with a baseline (‘business 
as usual’) scenario.

Results:  Baseline scenario results showed that the strength of the ecosystem carbon sink has been decreasing in the 
two sites due to age-related productivity declines and deforestation. Mitigation activities have the potential to lessen 
or delay the further reduction in the carbon sink. Results of the mitigation analysis indicated that scenarios reducing 
net forest area loss were most effective in South Carolina, while extending harvest rotations and increasing longer-
lived wood products were most effective in Wisconsin. Scenarios aimed at increasing bioenergy use either increased 
or reduced net emissions within the 32-year analysis timeframe.

Conclusions:  It is critical to apply a systems approach to comprehensively assess net emissions from forest sector 
climate change mitigation scenarios. Although some scenarios produced a benefit by displacing emissions from fossil 
fuel energy or by substituting wood products for other materials, these benefits can be outweighed by increased car-
bon emissions in the forest or product systems. Maintaining forests as forests, extending rotations, and shifting com-
modities to longer-lived products had the strongest mitigation benefits over several decades. Carbon cycle impacts of 
bioenergy depend on timeframe, feedstocks, and alternative uses of biomass, and cannot be assumed carbon neutral.
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Background
Sustainable forestry activities aimed at maintaining or 
enhancing carbon (C) stocks in both forest ecosystems 
and wood products, including product substitution ben-
efits, can make a significant contribution to reducing 
greenhouse gases (GHG) emissions [43, 45]. To date, the 
U.S. remains legally committed to reducing net GHG 
emissions by 26–28% by 2025 compared with 2005 lev-
els [54]. Furthermore the U.S. Mid-Century Strategy set 
ambitious goals of an economy-wide reduction of GHG 
emissions of at least 80% below 2005 levels by 2050 [54]. 
Achieving these goals requires a diverse range of miti-
gation activities across all economic sectors, including 
substantial contributions from forests and wood prod-
ucts. Carbon sequestration by U.S. forests currently off-
sets approximately 15% of annual C emissions from fossil 
fuels in the U.S. [58] and studies have indicated signifi-
cant potential to increase this service [37, 41], as well as 
reduce or delay the expected decline in the forest C sink 
[58].

To evaluate the potential contribution of forest sec-
tor mitigation, a systems-based approach is necessary, 
which examines net emissions from four interdependent 
systems: (1) the forest ecosystem, (2) land-use change, 
(3) harvested wood products (HWP), and (4) emis-
sions avoided by using wood-based products in place 
of emission-intensive construction materials and fos-
sil fuels (Fig. 1) [32, 34, 41, 45, 49, 50, 54, 58, 76]. A sys-
tems approach accounts for the trade-offs and synergies 

between mitigation activities that seek to maximize eco-
system carbon stocks and carbon storage in wood prod-
ucts, and minimize emissions by using wood instead of 
emissions intensive products and fossil energy. If any one 
component of the forest sector is examined in isolation, it 
could misrepresent the net emissions to the atmosphere 
and climate change mitigation potential; hence, the need 
to examine all simultaneously [32, 45, 48, 54, 58].

The flow of C through forested ecosystems is complex 
and influenced by many factors including growth and 
decay rates, disturbance regimes, deforestation, climate 
change, atmospheric concentrations of CO2, and nitrogen 
deposition [e.g. 50]. Emissions from the wood products 
sector are determined by the type and life cycles of com-
modities produced, quantity of mill residues and wastes, 
decay of retired products in landfills, and life cycle emis-
sions of displaced products [58, 54]. Given these complex 
and interacting influences on C emissions between forest 
ecosystems and the products and energy sectors, quanti-
fying the mitigation potential at a landscape scale using 
an integrated systems approach is essential, but infre-
quently conducted in the U.S.

This study builds upon previous research that exam-
ined modeling approaches to assess past and present 
changes in forest C stocks at sites in North America [27, 
38, 39]. Our principal objective was  to use a systems-
based approach (Fig.  1) that complies with IPCC and 
national reporting guidelines to evaluate forest sector 
climate change mitigation scenarios against projected 

Fig. 1  A complete accounting of net forest sector carbon emissions to the atmosphere and mitigation potential requires a systems-based 
approach which considers the relationships between the forest ecosystem, land use change, harvested wood products, and the substitution 
benefits associated of using bioenergy (biofuel) and wood products in place of fossil fuel energy and other more emission intensive materials 
(Graphic reproduced from Nabuurs et al. [45], IPCC Assessment Report 4, Working Group 3, p. 549)
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“business as usual” (BAU) baseline scenarios across two 
regionally-representative landscapes in the U.S. This 
study was part of a coordinated tri-national investiga-
tion which applied a consistent methodology across a 
total of six sites in the U.S., Canada [58] and Mexico [49] 
representing a range of forest ecosystems, climates, and 
disturbances, and management regimes. The data and 
methods also build upon past studies which assessed his-
torical baseline ecosystem C stocks and influences across 
the U.S. National Forest System [6, 17, 50]. We expand 
the previous research to include analyses of projected C 
dynamics across two, multi-ownership landscapes and by 
integrating accounting of HWPs and substitution ben-
efits. In consultation with stakeholders from each site, 
we evaluated a limited set of site-specific scenarios that 
represent practical ways to sustainably manage forests to 
reduce GHG emissions while minimizing tradeoffs with 
other ecosystem services and if possible, increasing pro-
duction of forest commodities.

Methods
Study areas
In consultation with study sponsors and companion 
studies in Canada [58] and Mexico [49], we selected two 
study sites to serve as case studies, Coastal South Caro-
lina (SC) and northern Wisconsin (WI). Both sites are 
strongly oriented around the timber industry and thus 
have significant opportunities to implement changes in 

land management activities and the HWP sector. Each 
site represents a heterogeneous, multi-ownership land-
scape (Fig. 2) with a range of management regimes, dis-
turbance histories, and stand-age structures. Forests in 
both study areas are affected by a history of intensive har-
vesting and reversion of abandoned agricultural land to 
forest in the early 1900s, followed by a period of recovery, 
forest management, and restoration [4]. In the Northern 
WI site, the legacy effects of past land use are evident in 
the age-class distribution (Fig.  3) and declining growth 
rates of stands that continue to age without recent dis-
turbance. In contrast, forests in coastal SC are recovering 
from the destructive 1989 Hurricane Hugo [54], result-
ing in younger, more productive forests at the start of the 
simulation (Fig.  3). The coastal SC site has experienced 
substantial deforestation, especially on private lands, due 
to rapid development and population growth in Charles-
ton, SC in recent years [58], while urbanization pressures 
are smaller in Northern WI.

Data and models
To assess net GHG emissions and mitigation potential in 
forest ecosystems and the land-use sector, we employed 
a spatially-referenced approach with the Carbon Budget 
Model for the Canadian Forest Sector (CBM-CFS3). 
This is a growth-and-yield driven model that employs a 
gain–loss method consistent with the IPCC reporting 
guidelines [22]. CBM-CFS3 quantifies the cycling of C 

Fig. 2  The coastal South Carolina and Northern Wisconsin study areas. Areas not coded as other public, tribal, or national forest are privately owned
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through the ecosystem. The model incorporates (1) for-
est inventory data to stratify stands by classifiers such as 
forest types, ownerships, stand origin and stand ages, (2) 
estimates of historical disturbances, harvests, and land-
use change to target activities to specific stands and areas 
using the classifiers and eligibility rules, and (3) growth 
and yield curves to model growth rates and recovery. See 
Kull et al. [27], Kurz et al. [27], and Additional file 1 for 
details on CBM-CFS3 and data inputs. We also compared 
historical forest C stocks derived from the CBM-CFS3 to 
other empirical and process model results [6, 58] to vali-
date CBM-CFS3 baseline results and to infer the poten-
tial C impacts of climate and atmospheric conditions.

To assess the mitigation potential in the products sec-
tor, C transferred from the forest to products was tracked 
with the Carbon Budget Modelling Framework for Har-
vested Wood Products (CBMF-HWP) [54, 58, 76]. The 
model estimates emissions of harvested C through the 
lifecycle of manufactured commodities and includes 
burning of bioenergy, mill residue use and waste, exports, 

and post-consumer treatment (landfill and/or waste 
incineration) (see Additional files 1, 2).

We compiled site-specific model input data for the his-
torical period of 1990 to 2011—the last year for which data 
were uniformly available. We obtained information on for-
est characteristics such as ownership, forest type, stand 
age (Fig. 3), and growth and yield curves (e.g. Additional 
file  1: Figure S1) from the Forest Inventory and Analysis 
(FIA) database and tools [74, 75]. We determined annual 
area disturbed from Landsat satellite imagery-based dis-
turbance maps [12, 17] and followed the approach of 
Mascorro et  al. [38, 39] to attribute the causes of distur-
bances to fire, insects, and abiotic factors using ancillary 
data. We used historical land-cover change estimates from 
the National Land Cover Database (NLCD) [9, 18, 19] as 
a proxy for land-use change. We utilized the FIA Timber 
Product Output (TPO) database to determine the volume 
of timber removals by ownership on public and private 
lands. We obtained data on product ratios (e.g. pulpwood, 
saw logs, composites, etc.) (Additional file  1: Figure S5) 
and production and export of HWP from periodic regional 
timber industry assessments (e.g. 26,  [15]) and national 
statistics [20, 23]. Product half-lives for each commodity 
were based on values from Skog [58] and the IPCC [23]. 
We applied average annual land-use change, disturbances 
rates, and commodity production data from 2002 to 2011 
to the projection period baseline (2012–2050).

Displaced emissions, defined as the difference in 
the amount of C emitted if alternative fuel sources or 
products had instead been utilized [50], [54], were also 
included in the systems-approach. Displacement factors 
were used to describe the avoided fossil carbon emis-
sions per unit of wood carbon used. We applied the fol-
lowing average displacement factors, calculated at the 
national level for Canada [54]: 0.54  tC displaced per tC 
of saw and veneer logs, 0.45 tC displaced per tC of pan-
els, and 0.89 tC displaced per tC of bioenergy. Our study 
applied similar system boundaries and end-use prod-
ucts as Smyth et al. [54]. Displacement factors for wood 
substitution were based on the relative emissions from 
a more wood-intensive product versus a less wood-
intensive product for general end-uses of wood (homes, 
multiuse building, furniture, flooring, and decking) and 
included emissions associated with extraction and trans-
portation of raw materials and manufacturing. Displace-
ment factors for bioenergy substitution assume that only 
energy from fossil fuel sources were displaced and were 
derived by comparing bioenergy facility emission-inten-
sities to those for the production of energy from fossil 
fuels for heat, electricity or combined heat and power. 
To calculate the avoided emissions for each product type, 
displacement factors were multiplied by the increase or 
decrease in wood products or bioenergy [54, 58, 76].
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Mitigation scenarios
Based on consultation with stakeholders who were 
knowledgeable about regional forest practices and con-
ditions represented by the study sites, we selected eight 
mitigation scenarios for the coastal SC site (Table 1) and 
five for the northern WI site (Table 2). Scenarios targeted 
individual ownerships, and typical forest management 
activities and/or product ratios.

Total emissions for each scenario were calculated as the 
sum of (1) net forest ecosystem emissions due to carbon 
removals from the forest, on-site decay of harvest resi-
dues, and disturbance and land-use change impacts, (2) 
HWP emissions from commodity production, product 
use (including bioenergy burning), export, and decom-
position from mill wastes and post-consumer use, and 
(3) changes in emissions due to substitution of bioen-
ergy for fossil fuels and solid-wood products for more 

Table 1  Indicators for the eight mitigation scenarios for the coastal South Carolina site

a  The parameter changes are relative to the baseline scenario
b  Residues would otherwise decompose on forest floor
c  Private lands only
d  Evaluated against a hurricane baseline scenario which assumes no salvage logging
e  Salvage rates are a percentage of the hurricane-induced mortality

Scenario Description Parameter changeda Parameter valuea

Residues Increase collection of harvest residues for 
bioenergyb

Residues recovered (%)
HWP component changes

40% to 70%
Bioenergy + 30%

Productivityc Increase productivity of half of existing, 
loblolly pine plantations through silvicul-
tural activities

Additional disturbance type
Proportion targeted
Increase growth curve

Increase productivity
50%/year
15% increase

Reduce deforestationc Reduce annual area deforested on private 
land

Deforestation rate (area) 25% reduction/year (1304 to 
978 ha/year)

No net lossc Increase annual area afforested to equal 
deforestation rate on private land

Afforestation rate (area) 3 × increase (432 to 1304 ha/year)

Longer-lived products (LLP) Increase the proportion of harvested wood 
for LLP at the cost of paper products (PP)

HWP components change LLP + 10%, PP − 10%

Bioenergy Increase the proportion of harvested wood 
for bioenergy at the cost of LLP

HWP components change Bioenergy + 10%, LLP − 10%

Hurricane—Hugo salvaged Simulate a hurricane in 2018 with effects  
and salvage rates mimicking Hurricane 
Hugo

Percentage of wood salvaged SW: 0% to 14%
HW: 0% to 1.2% (of mortality)e

Hurricane—Increase salvaged Simulate a hurricane in 2018 with effects 
mimicking Hurricane Hugo, but increase 
salvage rates

Percentage of wood salvaged SW: 0% to 31%
HW: 0% to 5% (of mortality)e

Table 2  Indicators for the five mitigation scenarios for the Northern Wisconsin site

a  The parameter changes are relative to the baseline scenario
b  Residues would otherwise decompose on forest floor

Scenario Description Parameter changeda Parameter valuea

Residues Increase collection of harvest residues for 
bioenergyb

Residue utilization
HWP components change

29% to 70%
Bioenergy + 41%

Harvests for bioenergy Increase harvests by 10% per year, with 100% 
of the  
additional harvested wood used for bioen-
ergy

Harvested area
HWP components change

+ 10%
100% to bioenergy (added 

harvests)

Extend rotation  +   
Longer-lived products (LLP)

Extend the length of harvest rotation and 
increase  
the proportion of LLP at the cost of paper 
products (PP)

Harvested area
Minimum harvest age
HWP components change

− 10%
+10 years
LLP + 5%, PP − 5%

LLP Increase the proportion of harvested wood 
for LLP  
at the cost of PP

HWP components change LLP + 10%, PP − 10%

Bioenergy Increase the proportion of harvested wood  
for bioenergy at the cost of LLP

HWP components change Bioenergy + 10%
LLP − 10%
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emission-intensive materials. The cumulative mitigation 
effect of each scenario was the difference between net 
GHG emissions (CO2, CH4, CO, N2O) of the mitigation 
scenario minus net GHG emissions of the baseline sce-
nario, which isolates the effects of the targeted mitigation 
parameters while factoring out any effect common to the 
scenarios (“additionality”). We assumed stable CO2 lev-
els and climate throughout the simulation period for the 
baseline and all scenarios so that these effects would be 
factored out when estimating the additional changes in 
GHG emissions.

More thorough descriptions of the data inputs, model 
parameters, and mitigation scenarios are available in 
Additional files 1, 2.

Results
Historical and baseline emissions
Within the forest ecosystem, the baseline for the coastal SC 
study site remained a net C sink from 1991 through 2042 
before switching to a source through 2050 (Fig. 4a). The C 
sink is strongly influenced by regrowth and recovery fol-
lowing Hurricane Hugo in 1989, reflected in the younger 
age-class structure in the 1990s (Fig. 3a). A sharp increase 
in timber harvesting on private lands beginning in 2006 
increased C emissions. As more stands reached an older 
growth stage (Fig. 5a), mortality increased while produc-
tivity declined or stabilized causing the C sink to decline 
further through 2042 when the landscape is projected 
to become a source of C emissions (Fig.  4a). To a lesser 
extent, the projected increase in GHG emissions results 
from a decline in forested area due to continued net defor-
estation (Additional file 1: Figure S6) of roughly 0.2%/year 
which occurs mostly on private lands (Additional file  1: 
Table S3). Over the historical period, ecosystem C stocks 
on forested lands increased from roughly 169  tC ha−1 in 
1990 to 175  tC  ha−1 in 2016 with National Forest lands 
experiencing the largest increase. These modeling results 
for the baseline were validated and consistent with an 
inventory-based stock-change model and an independent 
process-based model (Additional file 1: Figure S7).

The net C balance of the forest ecosystem of the north-
ern WI site shows a steady increase in GHG emissions 
causing a shift from a C sink to a source in 2022 (Fig. 4b). 
Like coastal SC, this projected shift to a C source is 
largely a result of forest aging (Fig. 5b) causing net vol-
ume and biomass accumulation to approach zero (Addi-
tional file  1: Figure S1). This aging effect was coupled 
with a decline in forest area from deforestation of 0.1%/
year. However, over the historical period, forest ecosys-
tem C stocks across all ownerships were relatively sta-
ble, a trend that is consistent with inventory data and the 
process model (Additional file 1: Figure S8). The process 
model found that increasing CO2 has caused significant 

increases in C accumulation over the past few decades 
for both study sites (Additional file 1: Figure S9).

Results of mitigation scenarios
South Carolina
The two scenarios targeting land-use change on private 
lands had the greatest mitigation benefit: the no net loss 
scenario represents the effect of increasing afforesta-
tion and resulted in a cumulative net reduction of 5.2 Tg 
CO2e by 2050. The reduce deforestation scenario had a 
net reduction of 3.1 Tg CO2e by 2050 (Figs. 6a, 7a) and 
ranked first until 2033, but then was surpassed by the 
no net loss scenario as the annual mitigation increment 
increased substantially in the 2030s and 2040s (Table 3). 
The no net loss scenario resulted in a three-fold increase 
in the rate of afforestation to over 1300  ha per year on 
private lands, whereas reducing deforestation on private 
lands by 25% per year still resulted in a net loss in forest 
land annually (Additional file 1: Figure S6).

The two forest management scenarios also had mitiga-
tion benefits, though smaller than the land-use change 
scenarios. The increased use of logging residues for bio-
energy scenario caused a reduction in net emissions of 
0.8 Tg CO2e by 2050 (Figs.  6a, 7a). This was a result of 
reduced emissions from the forest ecosystem because, 
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after timber extraction, woody residues were transferred 
to the HWP sector and burned in a bioenergy facility, 
rather than left on-site to decay over time, plus substitu-
tion benefits from avoided fossil fuel burning. Increasing 
the productivity of loblolly pine plantations had a small 
positive cumulative mitigation benefit on the forest eco-
system of 0.4 Tg CO2e, but no effect on HWP or displace-
ment, because harvest rates remained constant in this 
scenario.

The increase in longer-lived products (LLP) scenario 
ranked third, with a cumulative mitigation of 1.7 Tg CO2e 
due to a reduction in emissions from HWP because of 
longer product half-lives and increased avoided emis-
sions from using more saw and veneer logs relative 
to the baseline (Figs.  6a, 7a). Despite displacing emis-
sions from fossil fuel use, the bioenergy scenario, which 
increased the proportion of bioenergy by 10% at the cost 

of LLP, increased emissions by roughly 1.1 Tg CO2e. This 
increase in emissions was largely a result of greater emis-
sions from the HWP component by shifting LLP to bio-
energy, which causes immediate emissions, and resulted 
in a negative product displacement effect.

The two hurricane scenarios, Hugo salvage and increase 
salvage, which salvaged dead wood at varying rates after 
a hypothetical hurricane in 2018, had positive mitigation 
benefits relative to the no salvage baseline (Fig. 6b, Addi-
tional file 1: Figure S10). Both scenarios resulted in fewer 
forest ecosystem emissions as less dead wood was left on-
site to decay, which were counteracted by a comparable 
increase in HWP emissions due to more wood being pro-
cessed and utilized (Additional file  1: Figure S10). Thus 
the mitigation benefit was mostly due to salvaged wood 
displacing both emission-intensive fuels and building 
materials. The largest average annual mitigation benefit 
of salvage logging occurred in the year of the hurricane, 
and was reduced thereafter (Fig. 6b; Table 3).

Several scenarios could be assessed together since they 
involve different parts of the land base and therefore do 
not interact. For example, the combined effects of reduc-
ing deforestation while increasing afforestation (no net 
loss), use of logging residues, productivity, and LLP had a 
combined cumulative mitigation benefit of 11.3 Tg CO2e 
through 2050.

Northern Wisconsin
The extend rotation + LLP scenario ranked first, reducing 
cumulative net emissions by 17.7 Tg CO2e by 2050, due 
to its strong mitigation benefit in both the forest ecosys-
tem and HWP components (Figs. 6c, 7b). Reducing har-
vesting by 10% caused more live biomass to remain in the 
forest to sequester CO2 and reduced HWP emissions. By 
shifting an additional 5% of the products from pulp and 
paper to LLP, the scenario had a small product displace-
ment benefit; however, less harvested wood also meant 
less bioenergy and therefore less substitution benefits 
from avoiding fossil fuel burning. Increasing the propor-
tion of LLP without extending the rotation length ranked 
second, reducing net emissions by 8.5 Tg CO2e by 2050 
(Figs. 6c, 7b). Although this scenario had no effect on the 
forest, it reduced HWP emissions by increasing product 
lifespans thereby delaying C release relative to the base-
line, and avoiding emissions intensive materials (Fig. 7b).

The three bioenergy-related scenarios ranked lowest 
and two of them increased emissions relative to the base-
line (Figs. 6c, 7b). As in SC, increasing use of logging resi-
dues for bioenergy had a mitigation benefit (2.1 Tg CO2e 
by 2050) by reducing ecosystem emissions and increasing 
substitution for fossil fuels, which outweighed the nega-
tive effect on HWP given higher emissions from addi-
tional bioenergy. Also like the SC site, shifting utilization 
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from LLP to bioenergy had a negative effect on HWP as 
it resulted in more immediate emissions, which were not 
completely compensated by a reduction in fossil fuel use. 
The increase harvest for bioenergy scenario ranked last, 
causing a cumulative increase in net emissions of 12.5 Tg 

CO2e relative to the baseline by 2050. Despite having a 
strong energy displacement effect, increasing harvests for 
bioenergy was not able to offset increased emissions and 
lost productivity from more trees being harvested and 
increased instantaneous oxidation from biomass burning 
(Fig. 7b).

As in the SC site, some scenarios in the WI site could 
be implemented together. For instance, using additional 
logging residues for bioenergy while also shifting com-
modities to use more LLP had a combined net mitigation 
benefit of 10.6 Tg CO2e through 2050.

Discussion
Forest trends and mitigation
Results from these two landscapes suggest that the net C 
sink in managed forests of the Eastern U.S. is projected 
to decline under BAU scenarios. Forests in the Northern 
WI site may soon become a C source (Fig. 4), but those 
in the coastal SC site will remain a C sink for several dec-
ades, even with increased harvest, because the forest is 
still young and productive as it recovers from the 1989 
hurricane. Over much of the 20th century and continu-
ing today, forests in the Eastern U.S. have been net C 
sinks due to recovery after heavy logging and clearing 
for agriculture from the mid-1800s to early-1900s [4]. 
The recent increase in forest ecosystem C emissions and 
reduced sink is largely due to forests aging (Fig.  5) and 
becoming less productive [e.g. 3, 16] as depicted by the 
sigmoidal growth-and-yield curves that drive biomass C 
accumulation in the model (Additional file 1: Figure S1); 
[27]. This trend has been documented across many U.S. 
national forests [6] and is projected to continue through 
the 21st century, potentially resulting in a national-scale 
shift from a C sink to a C source [4, 58]. Although yield 
curves indicate that biomass C stocks may be approach-
ing maximum levels, ecosystem C stocks can continue 
to increase for many decades as dead organic matter and 
soil C stocks continue to accumulate. Several mitigation 
scenarios modeled here could reduce net C emissions 
while others could increase emissions.

The expected decrease in the net C sink of the SC site 
is also driven by a decline in forested area as a result of 
continuing deforestation, notably around rapidly growing 
metropolitan areas like Charleston, SC. If current rates of 
forest loss continue, the coastal SC site may lose nearly 
7% of its forest area by 2050. In the SC site, the no net loss 
and reduce deforestation scenarios that targeted private 
lands, have significantly higher mitigation potential than 
all other scenarios evaluated (Fig.  7a). While the no net 
loss scenario resulted in the greatest reduction in C emis-
sions by 2050, reducing deforestation by 25% per year 
would significantly reduce emissions, have a more imme-
diate mitigation benefit, and be relatively cheaper than a 
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threefold increase in reforestation (Additional file 1: Fig-
ure S6) [7]. Activities that maintain or expand forests are 
often the most effective biophysical mitigation strategies 
involving forests, and have considerable ecological co-
benefits [13, 25, 49, 50].

Other effective scenarios include those that maintain 
growing stock and shift the commodity mix to longer 
product lifetimes. In WI, the extend rotation + LLP sce-
nario which combines both forest management and 
HWP actions had the largest C benefit. Extending rota-
tions results in more growing stock left in forests to 
sequester C and a decrease in emissions from product 
use and post-consumer treatment. However this scenario 
has tradeoffs in that it reduces substitution benefits due 
to less timber supply [2, 35, 47]. Likewise, maintaining 
baseline harvest levels but shifting commodities from 
shorter-lived to longer-lived products were effective 
scenarios in both sites. Results here agree with those in 
Canada [54, 58] and Europe [14, 36, 76] which found that 
HWP scenarios that increase product retention time out-
perform those that increase bioenergy.

Enhancing bioenergy production generally led to 
increases in C emissions over this timeframe except for 

scenarios that collected additional logging residues for 
bioenergy. The residues scenarios had modest mitigation 
benefits consistent with results of other studies [10, 11, 
58, 76]. If considering increasing the use of logging resi-
dues, sustainable management guidelines suggest leaving 
at least 30% of residues on-site [10, 11, 54] since com-
plete removal of residues could have tradeoffs including 
a decline in soil nutrients and long-term site productivity 
[1, 58, 76]. None of our results supported the notion that 
using wood for bioenergy is “carbon neutral.” Rather, our 
study shows that over this 32 years period increasing har-
vests or allocating more harvested wood for bioenergy 
does not result in a sufficient substitution benefit to com-
pensate for the increase in emissions from the immediate 
combustion of biomass or the reduction in ecosystem C 
stocks and uptake, as described elsewhere [21, 40, 54, 54].

Climate change may cause more frequent and intense 
hurricanes, which can reduce long-term C storage in for-
ests [42]. Results for SC suggest that if another Hurricane 
Hugo were to hit the coastal U.S., increasing salvage rates 
above those implemented after the 1989 hurricane would 
cause a substantial reduction in CO2e emissions because 
the salvaged wood displaces emissions from non-woody 
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building materials and fossil fuels, rather than decompos-
ing in the forest.

Limitations
We did not analyze potential spatial or temporal leak-
age—the risk that emissions may be displaced outside 
of the project boundaries resulting in a diminished 
mitigation benefit. For example, if harvest rotations are 
extended, demand for wood may shift elsewhere, which 
could be significant locally or regionally though insig-
nificant at national or global scales given the size of our 
study landscapes. When evaluating mitigation scenar-
ios it is important to address macro-economic factors 
driving supply and demand for products, and broader 
impacts on land use, both of which may have significant 
effects on the results and feasibility [e.g. 31, 46, 76].

Another limitation is the relatively short timeframe 
of our analysis. Other studies have shown that mitiga-
tion benefits may vary considerably over longer periods 
of time since the effect of CO2 removal by forest eco-
systems and transfer to wood products pools including 
displacement continues to accumulate compared with 
a baseline that eventually ceases to accumulate C in the 
forest ecosystem [44, 54]. For example, our results appear 
unfavorable for increasing harvest for bioenergy over 
several decades, but if the analysis were extended to 50 or 
more years, mitigation benefits are likely to be achieved 

as forests would have had time to recover. However, 
long-term analyses introduce other uncertainties result-
ing from the unknown impacts of climate change, natu-
ral disturbances, and socioeconomic factors, such as the 
reduction in fossil fuel energy displaced. Furthermore, 
evaluation of short-term mitigation potential is needed 
considering it will be necessary to achieve net zero global 
emissions by roughly 2060 if the goal is to limit warming 
to 1.5–2 °C by the end of the century [24].

Uncertainties also exist in modeling assumptions, 
parameters, and datasets. For instance, we utilized aver-
age displacement factors developed at the national-scale 
in Canada [54]. Bioenergy displacement factors are 
dependent on region-specific variables including popu-
lation, road networks and accessibility to forests, con-
sumption patterns, and energy demand. However, the 
relatively high bioenergy displacement factor applied 
(0.89  tC/tC) allowed us to evaluate a high potential 
energy displacement for which a mix of coal, fuel oil and 
natural gas are assumed to be avoided. Also, the produc-
tion displacement factors developed for general wood use 
in Canada may under-represent the avoided emissions 
from using wood products in place of steel, concrete and 
plastic, given the higher displacement factors reported in 
the meta-analysis by Sathre and O’Connor [54]. However, 
as other studies have noted, the average value from the 
meta-analysis included a variety of system boundaries, 
which produced a large range of displacement factors [5, 
54, 58]. Further research on bioenergy and product dis-
placement factors in the U.S. is warranted, and additional 
consideration given on how to best direct incremental 
harvest products to avoid emissions-intensive products 
and fossil fuels.

Using a land-cover change product to approximate 
land-use change may have resulted in an overestimation 
of the area of land-use change, thus impacting the base-
line scenario [38]. However, this potential overestimation 
would not have significantly impacted the evaluation of 
mitigation scenarios because land-use change and distur-
bance rates were applied equally in both the baseline and 
mitigation scenarios, which isolates the impacts of miti-
gation actions (additionality). Even for mitigation sce-
narios targeting land-use change or harvest, we generally 
evaluated percentage increases or decreases in parame-
ters (Table 2), thus baseline areas of land-use change and 
disturbance would have little impact on the evaluation of 
these mitigation scenarios. Nationally-consistent remote 
sensing products that attribute land-cover changes to 
land-use conversions, disturbances, and management 
activities on an annual basis would greatly improve the 
ability to estimate ecosystem carbon balances [54] and 
are currently under development [54].

Table 3  Average annual mitigation (in Tg CO2e year-
1) for  each decadal range for  the  mitigation scenarios 
in the two study regions

a  Negative values indicate a reduction in CO2e emissions
b  Evaluated against a hurricane baseline scenario which assumes no salvage 
logging

Scenario 2021 
to 2030a

2031 
to 2040a

2041 to 2050a

Coastal South Carolina

 Residues − 0.022 − 0.026 − 0.028

 Productivity − 0.017 − 0.006 − 0.018

 No net loss − 0.072 − 0.179 − 0.280

 Reduce deforestation − 0.079 − 0.112 − 0.118

 LLP − 0.043 − 0.057 − 0.064

 Bioenergy 0.036 0.032 0.026

 Hugo salvageb − 0.023 − 0.007 − 0.002

 Increase salvageb − 0.053 − 0.016 − 0.005

Northern Wisconsin

 Residues − 0.047 − 0.077 − 0.090

 Extend rotation + LLP − 0.409 − 0.656 − 0.670

 Harvest bioenergy 0.301 0.436 0.473

 LLP − 0.210 − 0.278 − 0.314

 Bioenergy 0.176 0.156 0.130



Page 11 of 14Dugan et al. Carbon Balance Manage  (2018) 13:13 

We also did not evaluate the potential effects of climate 
change or biophysical factors in the scenarios since the 
model assumed a constant climate for each site, and both 
the baseline and the selected scenarios would be affected 
about equally. But considering only the historical base-
line, the process model results based on a previous study 
[6] suggest that increasing atmospheric CO2, climate, and 
N deposition have had relatively significant effects on for-
est C in our study areas (Additional file 1: Figure S9). The 
impacts of different climate change scenarios may also 
influence the effectiveness and feasibility of mitigation 
activities.

Policy implications
While various policies mandate the assessment of C 
stocks on public lands like national forests, currently 
no national regulations require emissions reductions 
on public or private lands. Financial incentives like car-
bon credits, direct subsidies, or tax incentives may be 
necessary to engage private landowners who may man-
age forests for profits [41, 50] or to motivate builders 
and consumers to select wood-based materials [e.g. 37]. 
Currently, forest landowners can receive carbon credits 
for avoided conversions, afforestation and reforestation 
activities, and improved forest management, all of which 
we found to be effective emissions reductions strate-
gies in the forest ecosystem alone. However, to account 
for the net effects of mitigation activities, it is important 
that carbon credit systems account for emissions outside 
of the forest ecosystem as well as activities that explicitly 
target emissions associated with HWP pools along with 
product and energy substitution [8, 33].

The declaration of carbon neutrality for biomass burn-
ing is a policy assumption that does not reflect the actual 
impacts and timing of bioenergy emissions on the atmos-
phere [54, 58, 54]; [27]. It is often made to encourage the 
replacement of fossil fuels with bioenergy. Here we evalu-
ate the net impacts on the atmosphere as well as the tim-
ing of both emissions and removals, which indicate that 
in the relatively short-term (up to 32 years in this study), 
bioenergy use may result in increased carbon emissions.

Conclusions
This research highlights the importance of taking a 
systems approach that assesses net emissions from 
the forest ecosystem, land-use change, HWP, and 
avoided emissions when evaluating forest sector cli-
mate change mitigation scenarios across large, multi-
ownership landscapes. The value of applying systems 
perspectives are increasingly being recognized since 
emissions reductions in one component (e.g. forest 

ecosystem) could be offset by an increase in emissions 
in another component (e.g. product substitution). 
While some scenarios had considerable mitigation 
benefits by offsetting emissions from fossil fuel burn-
ing or substituting products, these benefits may be 
negated or outweighed by the increase in C emissions 
from the products sector or forest ecosystem. Results 
suggest that implementation of mitigation activities in 
the forest sector could help reduce the weakening C 
sink in these study sites.

Based on the scenarios we examined in this 32-year 
timeframe, maintaining or increasing forestland, 
extending rotations, and shifting commodities to 
longer-lived products had the highest mitigation poten-
tial. Creating portfolios of multiple land management 
and HWP scenarios may have considerable mitigation 
benefits and more realistically reflect the suite of man-
agement activities that are often applied across land-
scapes. We evaluated several bioenergy scenarios and 
found that bioenergy use may only have a mitigation 
benefit under longer timeframes and for certain feed-
stocks such as logging residues which would otherwise 
go unutilized, but not green roundwood which could 
instead be used for longer-lived products or remain 
in the forest to accumulate carbon. Timeframe is also 
important to consider because the most effective sce-
nario may change over time and some scenarios may 
require longer timeframes than this analysis period to 
yield mitigation benefits. Consideration of the displace-
ment of emission-intensive building materials and fossil 
fuels is critical in ranking mitigation scenarios. How-
ever, there is still significant uncertainty in the product 
and energy displacement, which is likely highly variable 
between sites and warrants additional research.

Every scenario we examined has tradeoffs, risks, and 
uncertainties. Designing mitigation scenarios must 
be locally relevant to the main factors driving C emis-
sions and land management approaches and policies 
already in place for individual ownerships. The results 
and conclusions from these two case studies in the 
U.S. are not universally applicable, but rather are spe-
cific to the assumptions and parameters of each miti-
gation scenario, and to the two regions and timeframe 
for which they were applied. Carbon management adds 
another complex dimension to existing forest man-
agement objectives. The most effective forest sector 
mitigation scenarios are likely to be those that achieve 
atmospheric benefits while also enhancing or retaining 
co-benefits and ecosystem services such as biodiversity, 
water quality, and the economy.
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