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Abstract 

Background:  Carbon accounting in forests remains a large area of uncertainty in the global carbon cycle. Forest 
aboveground biomass is therefore an attribute of great interest for the forest management community, but the 
accuracy of aboveground biomass maps depends on the accuracy of the underlying field estimates used to calibrate 
models. These field estimates depend on the application of allometric models, which often have unknown and unre-
ported uncertainties outside of the size class or environment in which they were developed.

Results:  Here, we test three popular allometric approaches to field biomass estimation, and explore the implica-
tions of allometric model selection for county-level biomass mapping in Sonoma County, California. We test three 
allometric models: Jenkins et al. (For Sci 49(1): 12–35, 2003), Chojnacky et al. (Forestry 87(1): 129–151, 2014) and the US 
Forest Service’s Component Ratio Method (CRM). We found that Jenkins and Chojnacky models perform comparably, 
but that at both a field plot level and a total county level there was a ~ 20% difference between these estimates and 
the CRM estimates. Further, we show that discrepancies are greater in high biomass areas with high canopy covers 
and relatively moderate heights (25–45 m). The CRM models, although on average ~ 20% lower than Jenkins and 
Chojnacky, produce higher estimates in the tallest forests samples (> 60 m), while Jenkins generally produces higher 
estimates of biomass in forests < 50 m tall. Discrepancies do not continually increase with increasing forest height, 
suggesting that inclusion of height in allometric models is not primarily driving discrepancies. Models developed 
using all three allometric models underestimate high biomass and overestimate low biomass, as expected with 
random forest biomass modeling. However, these deviations were generally larger using the Jenkins and Chojnacky 
allometries, suggesting that the CRM approach may be more appropriate for biomass mapping with lidar.

Conclusions:  These results confirm that allometric model selection considerably impacts biomass maps and 
estimates, and that allometric model errors remain poorly understood. Our findings that allometric model discrep-
ancies are not explained by lidar heights suggests that allometric model form does not drive these discrepancies. A 
better understanding of the sources of allometric model errors, particularly in high biomass systems, is essential for 
improved forest biomass mapping.
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Background
Forest aboveground biomass mapping has emerged 
as a critically important initiative for both constrain-
ing the global carbon cycle [18] and facilitating climate 
mitigation initiatives such as REDD+ [8]. Estimates of 

aboveground biomass are typically generated through 
a combination of field sampling and extrapolation using 
remote sensing data [9]. Lidar remote sensing, in par-
ticular, has emerged as a popular technology for map-
ping aboveground biomass in high biomass systems, 
as there is no apparent saturation of lidar metrics with 
high biomass provided that the lidar pulses penetrate to 
the ground [22]. However, the accuracies of all remote 
sensing-based biomass maps are inherently dependent 
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on underlying accuracies of the field estimates of biomass 
that are used to calibrate remote sensing-based models.

Field estimates of biomass are generally estimated 
through the application of an allometric model relat-
ing some measurable attribute of field biomass, e.g. tree 
stem diameter or height, to aboveground biomass [5, 12]. 
These allometric models are typically developed through 
the destructive sampling of a relatively small number of 
trees, which are directly measured for their biomass. As 
destructive samples are costly to acquire, the sample sizes 
used to construct allometric models tend to be relatively 
small and spatially clustered [7]. As such, the accuracies 
of these allometric models outside their areas of develop-
ment remain largely unknown due to a dearth of avail-
able sampled validation data [3]. Therefore, determining 
which allometric model to select for the estimation of 
field biomass is largely speculative.

In the United States, the two most common sets of 
allometric models are (a) a set of generalized models 
developed through a meta-analysis of the literature [12], 
and (b) the US Forest Service’s Component Ratio Method 
(CRM) [10, 20]. Jenkins et al. [12] combined thousands of 
allometric models that performed destructive sampling 
of trees, and simplified them to just 10 models for gen-
eral applicability. The Jenkins et al. [12] models have been 
widely applied in North America, but, as acknowledged 
by the authors, there are some inherent weaknesses 
in these models. Notably, the mean number of trees 
destructively sampled per species in the available Jenkins 
papers was only 39 [7]. Additionally, the applicability of 
these models outside the environmental conditions or 
size class sampled is unknown. In an updated version of 
these models, Chojnacky et al. [4] included more models 
from the literature, and used taxonomic groupings and 
wood specific densities to regroup the original Jenkins 
divisions, producing 35 generalized models. Although 
these models are theoretically different, they are still 
based on the same original models (with some additions) 
and therefore should produce similar estimates. In con-
trast, the US Forest Service’s Forest Inventory Analysis 
program uses an entirely different approach to estimate 
a tree’s biomass: the CRM, [10, 20]. This method pre-
dicts tree merchantable volumes from models based on 
attributes such as stem diameter, height, and species. 
Tree volume is then used in conjunction with published 
wood specific gravity values to estimate the biomass in 
various components of the tree, namely bole, bark, and 
branches. Tree biomass is then calculated as the sum of 
these components.

Past analyses have demonstrated that the Jenkins mod-
els produce systematically higher estimates of biomass 
when compared to CRM, ranging from an 11% differ-
ence [13] to a 20% difference [4, 21]. Over the whole 

coterminous US, the Jenkins models yielded 16% greater 
biomass than CRM [6]. Although we can only speculate 
as to which set of allometric models produces a more 
accurate estimate of field biomass, it is important to 
characterize the sensitivity of biomass maps to allomet-
ric model selection. However, this is not commonly con-
ducted in biomass mapping initiatives. In this study we 
explicitly test the sensitivity of county-level biomass esti-
mates from lidar to allometric model choice, using the 
Jenkins et  al. [12] models, Chojnacky et  al. [4] models, 
and FIA’s CRM models.

Methods
As part of NASA’s Carbon Monitoring System (CMS), a 
pilot project has been funded to map forest aboveground 
biomass with wall-to-wall airborne lidar over Sonoma 
County, California. Part of this project has been focused 
on developing empirical models relating field estimates 
of forest biomass to lidar metrics, and applying the mod-
els to produce county-level biomass maps. The field and 
lidar data presented in this paper were collected as part 
of this CMS project.

Field data
A total of 179 variable radius plots were collected across 
Sonoma County in 2014. Plot locations were selected 
through a stratified sampling approach aimed at ensur-
ing a uniform distribution of plots from short (<  5  m), 
medium (5–25 m) and tall forests (> 25 m), and primar-
ily comprised of conifers, deciduous trees, non-forest, 
mixed forest, wetlands and an herb and shrub class taken 
from the Calveg database [15]. Variable radius plots were 
established, and the diameter at breast height (DBH) and 
species of all trees in a variable radius plot were recorded, 
as well as the height of the tallest 1–3 trees in the plot. 
The plot centroid locations were recorded along with 
their GPS accuracy. The average centroid GPS location 
error was 3.45 m. Tree species information is available in 
Additional file 1: Table S1.

Field biomass estimation
We used three different sets of allometric models to esti-
mate the field biomass in each plot. The first two sets 
of models, the Jenkins et  al. [12] and Chojnacky et  al. 
[4] models, are based on a meta-analysis of published 
allometric models predicting biomass as a function of 
DBH and species. The third set follows the CRM, which 
for the species in Sonoma County requires tree height 
as a predictor variable [10, 20]. Although we only col-
lected tree heights for a few of the tallest trees in each 
plot, we were able to estimate biomass with the CRM 
approach by predicting tree height as a function of DBH. 
We developed an empirical model predicting tree height 
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as a linear function of DBH from all trees measured in 
the FIA dataset for Sonoma County for the 2001–2010 
period (r2 = 0.8, RMSE = 5.85 m, Fig. 1).

We also tested the effects of omitting “cull” by substituting 
measured tree heights for predicted heights on estimates of 
county biomass totals, but found no substantial difference. 
The height prediction model occasionally over-predicted 
tree heights for large DBHs, when DBHs were outside the 
range used to calibrate the height model, and we adjusted 
overestimates by setting the maximum tree height to the 
maximum height found in each 30 m Lidar pixel. These tree 
height estimates, as well as tree species and DBH, served as 
inputs to the CRM estimates of tree biomass.

To estimate plot level biomass, we estimated a biomass 
density at the plot centroid by summing the biomass esti-
mates for each tree, divided by the ‘plot area’ of that tree. 
Therefore each tree contributes to the biomass density 
of the plot centroid as a function of its biomass, and dis-
tance from the plot centroid.

Lidar data
Wall-to-wall lidar data and high-resolution imagery were 
collected over Sonoma County in the summer of 2014. 
The lidar data were acquired at 900  m above ground 
with a field of view of 30°, with a nominal pulse density 
of 10.66 pulses/m2 at 105 kHz. We filtered lidar returns 
to include only returns from vegetated surfaces. To 
accomplish this, a tree canopy mask was generated using 
high-resolution imagery and lidar using an object-based, 
data-fusion approach [17]. We used LAS tools software 
to extract vegetated lidar returns within 15 m of field plot 
centroids, and generate a suite of lidar metrics, includ-
ing height percentiles, bincentiles (percentage of points 

between the height cutoff and the maximum height), 
canopy cover and density, intensities and intensity per-
centiles, and the quadratic mean lidar height of returns. 
A radius of 15  m was selected to approximately match 
the 30 m desired resolution of the county-wide map. We 
also tested using variable lidar radii to match the vari-
able radius plots used in this study, but we found no sta-
tistically significant improvement in model performance 
(Duncanson et al. in prep).

Biomass modeling
Random forest regression [1] was applied to model field 
biomass as a function of lidar metrics (described above) 
and ancillary metrics, including topography and spe-
cies composition. We built three different random for-
est models, one per allometric approach. We used the 
default random forest values of 500 trees, and 7 input 
variables (mtry = 7). We filtered outliers from the analy-
sis that had lidar heights greater than 10  m, but a field 
biomass estimate of zero. We also filtered out four outli-
ers that had small field biomass estimates (< 50 Mg/ha) 
but high lidar heights (> 30 m), assuming that these plot 
locations exhibited geolocation errors. We applied these 
two filters to remove obvious spatial outliers in the data-
set where we think the forest canopy mask did not suffi-
ciently remove vegetated returns from tall, non-vegetated 
surfaces (e.g. buildings). These two filters reduced our 
sample size from 179 to 166 plots.

Biomass mapping
We generated three maps of forest biomass density across 
the county, one for each set of allometric models. We esti-
mated total aboveground biomass for the county and also 
divided pixels into discrete biomass density categories to 
assess the differences between allometric approaches in 
different biomass classes. We estimated the mean for the 
county by adjusting the mean pixel values to compensate 
for estimated deviation resulting from systematic model 
prediction error. We follow the model assisted regression 
estimator approach outlined by [16], to estimate both 
mean county biomass and also the standard error of the 
mean. We used a t test to assess whether county mean 
biomass estimates were statistically significantly different 
when using the different allometric models. A t test was 
selected both for simplicity and because the county-level 
biomass densities in forested areas of Sonoma County are 
approximately normal distributions (Fig. 9).

Results
Field biomass estimation
At a field plot level, the average biomass density estimates 
using the Jenkins et al. [12] method, the Chojnacky et al. 
[4] method, and the FIA’s CRM were 196.1, 195.8, and 

Fig. 1  Linear regression predicting tree height as a function of diam-
eter from FIA data in Sonoma County, California
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164.9  Mg/ha, respectively. Although the average values 
for Jenkins and Chojnacky are statistically indistinguish-
able, there is a 19% difference between those estimates 
and the FIA’s CRM. The difference between Jenkins esti-
mates and CRM estimates is larger in plots with greater 
biomass values (Fig. 2a). Although the mean Jenkins and 
Chojnacky estimates match, the plot-level estimates differ 
appreciably, with Chojnacky estimating greater biomass 
density values in some high biomass plots (Fig. 2b). The 
distributions of field estimates from the three approaches 
show that the shape of the histogram of field plots is cap-
tured by all three approaches, although again CRM pro-
duces systematically smaller estimates (Fig. 3).

Biomass density modeling
We produced three models of biomass density, one per 
allometric approach. We found comparable model per-
formance between the three allometric approaches, with 
the FIA’s CRM producing slightly higher correlations 
with lidar metrics than either the Jenkins or Chojnacky 
models (Fig.  4). The RMSE is also slightly lower for the 
FIA’s CRM, but the %RMSE is similar because of the 19% 
lower estimates. The %RMSE for Jenkins, Chojnacky, and 
FIA’s CRM are 46, 50, and 46%, respectively.

Of the 40 predictor variables, the percentile height met-
rics were the most strongly correlated with above ground 
biomass. In particular, the lower relative height metrics 
were more sensitive to biomass (p10, p30, p40) than the 
higher height metrics. Additionally, the quadratic mean 
was a good predictor of forest biomass, followed by the 

higher height percentiles. Indeed, all of the height per-
centiles were more important predictors than any other 
variable, apart from the quadratic mean.

The relationship between Lidar and allometric variability
Lidar-derived maximum height, mean height and % 
canopy cover were compared to discrepancies between 
the CRM and Jenkins estimates (Fig.  5). Addition-
ally, residuals from the random forests models using 
the CRM and Jenkins biomass estimates were com-
pared to both biomass and maximum forest height 
in an attempt to understand the drivers of allometric 
variability as well as the associated implications for 
biomass mapping (Fig.  6). There are clear patterns of 
overestimating low biomass densities and underes-
timating high biomass densities exhibited in all three 
random forest models, although these patterns are 
relatively smaller using the CRM allometric estimates 
(Table  1). The largest deviations between allomet-
ric estimates occurred in height ranges between 25 
and 45  m, and the four tallest plots in the study area 
(height > 60 m) all had higher biomass estimates using 
the CRM approach. The largest discrepancies are not 
in the tallest forests, but in the 25–45  m forests with 
dense (> 80% cover) canopies and high estimated bio-
mass density (Fig. 5). We focused on the discrepancies 
between CRM and Jenkins as these are the most popu-
lar techniques applied, and there was no statistically 
significant difference between county-level estimates 
using Jenkins or Chojnacky models.

Fig. 2  Field plot estimates of aboveground biomass between Jenkins and the FIA’s CRM (a) and Jenkins and Chojnacky (b) show that FIA’s CRM 
estimates are generally smaller, with greater differences in high biomass plots, while Jenkins and Chojnacky are comparable although Chojnacky 
produces greater estimates in large biomass plots. The dotted line represents the 1:1 line
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Biomass density mapping
Each of the three fixed radius biomass models was 
applied to the full suite of lidar and ancillary metrics for 
the county at a 30 m resolution. As with the models, the 
maps show the greatest discrepancies in areas of high 
biomass (Fig.  7) with Chojnacky predicting the larg-
est high biomass values and the FIA’s CRM predicting 
the smallest. However, a relatively small fraction of the 

landscape exists as high biomass (< 4% by area > 400 Mg/
ha, Fig.  8), while the majority of Sonoma County’s land 
area falls either in low biomass (37% in < 50 Mg/ha) or 
mid-range biomass categories (39% in 100–300 Mg/ha).

The total biomass estimated for Sonoma County for 
the Jenkins, Chojnacky and CRM approaches was 62.17, 
61.72, and 51.62 million Mg, respectively (Table 2). This 
represents less than 1% difference between the Jenkins 

Fig. 3  The distribution of field estimates of biomass based on the three allometric approaches. The CRM produced lower estimates of biomass, vis-
ualized here as greater numbers of field plots with AGBM < 200 Mg/ha, and fewer large biomass plots, while the Jenkins and Chojnacky approaches 
produced approximately the same number of estimates per biomass density category. In general, we sampled a larger number of low and medium 
biomass plots than high biomass plots in this study based on our stratified field sampling approach

Fig. 4  Random forest modeling results predicting field estimates from (a) Jenkins, (b) Chojnacky and (c) FIA’s CRM. All three models performed 
comparably with slightly better performance by FIA’s CRM method and slightly poorer performance using the Chojnacky estimates
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and Chojnacky approaches, but a difference of 20.4% 
between the Jenkins and CRM methods, equating to a 
difference in 10.55  million tons of carbon. This differ-
ence is caused primarily by lower predictions in the high 
biomass categories (Fig. 9). T tests of the model assisted 
estimates of the county means, using the model assisted 
estimators of county variances [16], revealed that the Jen-
kins and Chojnacky estimates of mean county biomass 
are not statistically significantly different. Conversely, the 
CRM estimate of county mean is statistically significantly 
different (at 95% confidence) from both the Jenkins and 
Chojnacky estimates.

Discussion
Field estimates of aboveground biomass are often 
referred to as ‘ground truth’ data in remote sensing stud-
ies, but without destructively sampling biomass in the 
field we do not know how accurate field estimates are. 
In this study, we demonstrate that allometric model 

selection yields on average a 19% difference in field plot 
estimates of aboveground biomass, and a 20% difference 
in the resulting county-level biomass map for Sonoma 
County.

Sonoma County is a particularly interesting area to 
conduct this study, as it hosts forests with some of the 
highest biomass densities in the United States. We see 
that the majority of discrepancies between allometric 
predictions occur in these high biomass areas, which 
is expected because more trees with smaller stems are 
destructively sampled for allometric model fitting, and 
indeed published allometries are often caveated by 
unknown uncertainties above a certain stem girth [12]. 
For example, 91 of the trees in our field plots were larger 
than the largest tree destructively sampled in a respective 
species class, as reported by Jenkins, thus potentially con-
tributing to greater errors for these 91 trees. Although 
these trees only represent 8% of those sampled across the 
county, they represent 18% of the total estimated biomass 

Fig. 5  The largest deviations between the FIA and CRM occur in high biomass forests (a), with maximum heights between 25 and 45 m (b), mean 
heights between 15 and 30 m (c) and canopy cover > 80% (d)
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in our field plots. However, given a lack of other available 
models, generalized allometric models such as applied in 
this paper are typically applied regardless of tree size.

The Jenkins and Chojnacky models were expected to 
perform similarly, as they are largely based on the same 
datasets of destructively sampled trees. The two stud-
ies combined the meta-analysis differently, partition-
ing allometric models from the literature into different 
combinations based on generalized species classes [12] 
or theoretical taxonomic groupings and wood specific 
gravity [4]. On average, these models produce similar 
biomass estimates and total county-level predictions, but 
discrepancies exist on a plot-to-plot basis depending on 
the species composition of a given plot. Most notably, the 
Chojnacky models produce greater estimates in high bio-
mass plots, potentially because the models used by Cho-
jnacky are more species-specific than the Jenkins models.

As with previous studies [4, 21], we found that the 
CRM field plot estimates were ~ 20% less than the Jen-
kins predictions. In a similar analysis in Maryland, CRM 
estimates in FIA plots were only ~ 11% less than the Jen-
kins estimates at the state level [11, 13]. The discrepancy 
between the differences seen in Maryland and Sonoma 
County could be due to the prevalence of conifer growth 
forms and larger trees found in Sonoma County, where 
we saw that estimates varied more in high biomass than 
low biomass areas.

There are several explanations for the differences 
between the Jenkins/Chojnacky and the CRM estimates 
seen both in this study and consistently observed in 
regional and national scale studies [5, 6, 14, 19]. First, the 
sample sizes used to construct the two sets of allometric 
models are different which could lead to systematic differ-
ences. Duncanson et al. [3, 7] demonstrated that allometric 

Fig. 6  Random forest models relating lidar predicted biomass to field estimates using both Jenkins equations (a) and CRM equations (c) show that 
both random forest models yield underestimates of high biomass plots and over estimates of low biomass plots. The residuals from these models 
(b, d) show that although residuals increase after ~ 10 m of height there is no marked relationship between height and residuals, suggesting that 
the models do not increase in error with increasing height. In general, the CRM model has slightly lower total bias
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parameters are very sensitive to sample size, and that small 
sample sizes likely lead to an overestimate in biomass for 
a given DBH. The Jenkins and Chojnacky datasets are, on 
average, developed with smaller sample sizes than the FIA 
analysis [7]. These smaller sample sizes yield model devia-
tions because of probable differences in the destructively 
harvested size distribution, with the inclusion likelihood of 
large individuals in a sample decreasing with sample size. 
Similarly, CRM volume models applied to certain species 
in Sonoma County were developed with destructively har-
vested trees outside of the region, which may yield errors 
if trees in Sonoma County are growing in different climate 
conditions or have different resource limitations than 
those included in the sample [19].

Finally, others have suggested that the differences 
between Jenkins and CRM results are due to the inclu-
sion of tree height in the CRM approach, which may bet-
ter estimate stem volume. However, we do not see strong 
evidence of this here, as neither maximum nor mean 
lidar height were highly correlated to differences between 
CRM and Jenkins field estimates in the tallest forests in 
our study area. Indeed, the plots with maximum heights 
between  ~  25 and 45  m had the largest discrepancies, 
while the tallest trees sampled approached 70 m in height. 
This may suggest that Jenkins DBH-based estimates may 
be over estimating biomass in areas of moderate height 
(~ 25 m) and potentially underestimating biomass in tall 
forests (>  50  m), while CRM estimates constrain high 
predictions for a given DBH in relatively short forests and 
increase estimates for a given DBH in very tall forests. 
Notably, all of the plots with the highest discrepancies 
had > 80% canopy cover. As canopy cover is highly cor-
related to biomass, it is unclear whether the variability in 
estimates is because of high canopy covers or high bio-
mass densities. Certainly the limited destructive sample 
for large tree sizes would explain the high biomass den-
sity discrepancies, but it is conceivable that destructively 
harvested trees were also preferentially extracted from 
open, easily accessible areas with lower canopy covers. 
This may have caused deviations in allometries in com-
parison to trees growing in closed canopy systems with 
relatively taller, smaller crowned individuals.

Our assessment of the drivers of variability between 
allometric model selection remains speculative. We see 
that discrepancies are largest in high biomass plots with 
high canopies covers and moderate heights. Whether 
these discrepancies are due to inadequate sampling 
across gradients of biomass, canopy cover or height 
in either CRM, Jenkins/Chojnacky, or all datasets 
remains uncertain. Only testing the different allometric 
approaches against an independent destructively sampled 

Table 1  Average residuals per  height and  biomass class 
using the CRM and  Jenkins approaches show that  while 
both  approaches overestimate low biomass and  under-
estimate high biomass the Jenkins model has a slightly 
higher overall deviation as  well as  markedly higher over-
estimates in low-moderate biomass plots. This trend is not 
apparent with respect to height class

CRM Jenkins n

0–10 m 4.26 8.25 35

10–25 m 3.24 6.58 66

25–40 m 6.09 − 5.01 43

40–55 m − 11.81 − 0.27 18

> 55 m − 56.19 7.5 4

Total 1.2 2.98 166

0–100 Mg/ha 22.7 33.7 71

100–200 Mg/ha 40.44 52.1 36

200–300 Mg/ha − 6.89 12.03 25

300–400 Mg/ha − 59.35 − 75.95 21

> 400 Mg/ha − 111.55 − 88.37 13

Total 1.2 2.98 166

Fig. 7  Maps of biomass density predictions for (a) the Jenkins approach, (b) the Chojnacky approach and (c) the CRM approach. The Chojnacky 
approach produces the greatest estimates in large biomass areas, while the FIA’s CRM approach produces systematically smaller estimates for 
biomass > 300 Mg/ha
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tree dataset can determine the underlying drivers, and 
such a dataset is currently unavailable for use in this 
study. However, these results highlight the importance 
of improving allometric models for biomass mapping. 
Fortunately, progress is being made in this field, both 
through the collection of larger destructively harvested 
tree datasets that can be used to fit improved models (e.g. 
[5] or through the derivation of new, non-destructively 
derived allometries based on terrestrial laser scanning 
(TLS)(e.g. [2]).

Conclusions
All empirically derived aboveground biomass estimates 
are fundamentally based on the application of allomet-
ric models in the field, and thus have an error that is 
often unknown and unreported. The allometric models 

used in this study showed an approximately 20% dif-
ference in both mean plot-level and county-level totals 
of estimated aboveground biomass. This 20% differ-
ence is not a 20% error, as we do not have direct field 
measurements of biomass. Indeed, the error in field 
biomass estimation is likely to be greater than 20%, 
particularly in high biomass forests such as exhibited 
in some areas of Sonoma County. We found the larg-
est discrepancies between allometric field estimates in 
high biomass plots with heights between 25 and 45 m, 
with > 80% canopy cover. Lidar heights were not highly 
correlated to discrepancies amongst popular allomet-
ric approaches, suggesting that an incorporation of 
height into models is unlikely to fully resolve observed 
discrepancies.

Fig. 8  Biomass density distributions by area. Sonoma County is dominated by small biomass areas, with < 4% of the area predicted to have bio-
mass densities > 400 Mg/ha

Table 2  Plot and  county based statistics describing differences between  the three different allometric approaches 
for  plot-level biomass estimation. Total and  Mean county estimates are based on  map pixels alone, while  the model 
assisted (MA) estimates have been adjusted to compensate for estimated deviation resulting from systematic model pre-
diction (map) error

Total county (mil-
lion Mg)

Mean county (Mg/
ha)

Mean county (MA, 
Mg/ha)

SE of mean (MA, 
Mg/ha)

Mean plot (Mg/ha) SE residuals (Mg/ha)

Jenkins 62.17 147.8 145.2 7.13 199.2 78.54

Chojnacky 61.72 146.8 143.7 7.73 199.02 85.4

FIA’s CRM 51.62 122.7 121.4 6.09 166.32 68.05
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We anticipate many of existing problems related to 
forest biomass allometry will be addressed by the grow-
ing popularity of TLS, which enables field measurement 
to expand past stem diameters and heights to include 
full tree volumes. Taken in combination with traditional 
mensuration, this technology can either directly replace 
field estimates of biomass through direct estimation 
of individual tree volumes at the plot level, or improve 
existing allometric models through the inclusion of 
much greater numbers of non-destructively sampled 
individuals.

The findings in this not only underscore the impor-
tance of allometry in forest biomass mapping, but high-
light that errors in existing allometric models are poorly 
understood. Further research into the effects of sample 
size, geographic representativeness, functional form, and 
the utility of TLS to address these questions is required 
to properly characterize errors in field estimates of bio-
mass, and propagate these errors through to maps. This 
is particularly timely considering several upcoming active 
remote sensing datasets that will be used to map forest 
biomass at a global scale (e.g. NASA’s GEDI, NISAR, 
ESA’s BIOMASS). As in this study, the quality of these 
global maps will depend on the quality of field data used 
to calibrate the associated empirical biomass models, 
which will necessarily depend on the accuracy of the 

underlying allometric models. Thus, forest allometry is 
not only important at the local–regional scale studies in 
this paper, but for carbon accounting at a global scale.
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