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High resolution remote sensing 
for reducing uncertainties in urban forest 
carbon offset life cycle assessments
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Abstract 

Background:  Urban forests reduce greenhouse gas emissions by storing and sequestering considerable amounts 
of carbon. However, few studies have considered the local scale of urban forests to effectively evaluate their poten-
tial long-term carbon offset. The lack of precise, consistent and up-to-date forest details is challenging for long-term 
prognoses. Therefore, this review aims to identify uncertainties in urban forest carbon offset assessment and discuss 
the extent to which such uncertainties can be reduced by recent progress in high resolution remote sensing. We do 
this by performing an extensive literature review and a case study combining remote sensing and life cycle assess-
ment of urban forest carbon offset in Berlin, Germany.

Main text:  Recent progress in high resolution remote sensing and methods is adequate for delivering more precise 
details on the urban tree canopy, individual tree metrics, species, and age structures compared to conventional land 
use/cover class approaches. These area-wide consistent details can update life cycle inventories for more precise 
future prognoses. Additional improvements in classification accuracy can be achieved by a higher number of fea-
tures derived from remote sensing data of increasing resolution, but first studies on this subject indicated that a 
smart selection of features already provides sufficient data that avoids redundancies and enables more efficient data 
processing. Our case study from Berlin could use remotely sensed individual tree species as consistent inventory of a 
life cycle assessment. However, a lack of growth, mortality and planting data forced us to make assumptions, therefore 
creating uncertainty in the long-term prognoses. Regarding temporal changes and reliable long-term estimates, more 
attention is required to detect changes of gradual growth, pruning and abrupt changes in tree planting and mortality. 
As such, precise long-term urban ecological monitoring using high resolution remote sensing should be intensified, 
especially due to increasing climate change effects. This is important for calibrating and validating recent prognoses 
of urban forest carbon offset, which have so far scarcely addressed longer timeframes. Additionally, higher resolution 
remote sensing of urban forest carbon estimates can improve upscaling approaches, which should be extended to 
reach a more precise global estimate for the first time.

Conclusions:  Urban forest carbon offset can be made more relevant by making more standardized assessments 
available for science and professional practitioners, and the increasing availability of high resolution remote sensing 
data and the progress in data processing allows for precisely that.
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Background
Studies around the world have confirmed the role urban 
forests play in reducing greenhouse gas emissions by 
storing and sequestering a considerable amount of car-
bon [1–4]. However, urban forest carbon offset is still 
regarded with uncertainty due to the lack of precise 
details on global coverage [5]. Additionally, the urban 
scale has become more relevant due to the steady fail-
ure of global policies to effectively regulate local carbon 
emissions. Recent carbon ratings and initiatives should 
therefore not underestimate the local scale of urban for-
est carbon offset and should be sure to effectively evalu-
ate their potential long-term offset [6].

Urban forests have been discussed as a potential new 
source of carbon credits, such as by raising revenue for 
future green investments. Therefore, knowledge of local 
conditions is essential to better evaluate future oppor-
tunities, such as urban carbon offset markets, which 
have gained considerable interest among local govern-
ments [7–9]. This could also take into account aspects 
of avoided emissions and climate change damage, which 
are commonly referred to as “social costs of CO2 emis-
sions” (SCC) [10]. According to the estimated SCC for 
2010 (USD 80 per ton of carbon), US urban forests have 
stored approximately USD 50 billion in value (2005 level) 
and have sequestered USD 2 billion in value annually 
[11]. This creates awareness of the matter by monetizing 
urban forest carbon offset, but the “real” costs can also be 
underestimated—for instance, SCC calculations do not 
necessarily fully consider how climate change affects eco-
systems, biodiversity loss and limits of resources, which 
cause uncertainty in SCC estimates [10, 12].

Urban forest carbon offset is by no means a static value, 
as its complexity and dynamics need to be considered in 
order to properly assess its long-term net contribution. 
An example of a more holistic consideration is a life cycle 
assessment (LCA) to consider urban forests’ carbon bal-
ance throughout a lifetime (cradle-to-grave approach) 
[13]. This allows for more precisely addressing urban for-
est heterogeneity and dynamics, for instance: its aspects 
of structure, planting, maintenance, growth, mortality 
and more. However, precise information on these fea-
tures is scarce, not up-to-date or does not cover large 
spatial expanses, and therefore more standardized meth-
ods are required for consistent spatially explicit informa-
tion [14]. Traditional sampling approaches using land use 
classes for urban forest carbon estimates are less feasible 
for precisely addressing in-class variability [15]. There is 
also no consistent global urban tree canopy model con-
sidering precise details [5]. Fortunately, this lack of pre-
cise, up-to-date and area-wide urban environmental 
information can be narrowed using recent innovative 
technology, such as high resolution remote sensing [16].

The aim of this review is to identify high uncertainties 
in urban forest carbon offset assessment and discuss 
the extent to which such uncertainties can be reduced 
by recent progress in high resolution remote sensing. 
This would help to improve long-term prognoses of 
urban forest carbon offset, which is essential for better 
evaluating the effectiveness of local projects like urban 
forest carbon offset markets. First, we evaluate state-
of-the-art studies on urban forest carbon storage and 
sequestration. We discuss uncertainties of long-term 
carbon offset including aspects of supply and demand, 
and more holistic approaches using LCAs. Second, we 
identify remote sensing’s potential of high resolution 
imagery to reduce such uncertainties by providing more 
consistent and detailed tree inventories. Therefore, we 
refer to potentials and limitations of classifying urban 
tree canopies, individual trees and urban tree species. 
Additionally, we show examples of carbon estimates 
indicating the benefits of an increasing resolution. In 
the subsequent section, we provide a case study of 
urban forest carbon offset for the city of Berlin, Ger-
many. Our case study results and discussion exemplify 
carbon offset long-term prognoses by combining recent 
progress of remotely sensed individual tree species and 
an LCA of 60 years. Finally, we evaluate further remote 
sensing potentials of increasing temporal resolution to 
reduce uncertainties related to urban forest dynamics. 
This includes aspects of urban tree growth, pruning, 
mortality and replanting.

Main text
Urban forest carbon offset—status quo and remaining 
uncertainties
Quantitative studies on the status quo of urban forest 
carbon offset are still rare compared to studies on for-
estry at the national level, but in the 1990s, the avail-
ability of urban studies began to spread globally with a 
focus on US cities. Urban forest carbon storage estimates 
highly differ between cities with a range from below 10 
tC/ha to above 100 tC/ha per unit of tree cover, most of 
which refers to above-ground carbon storage of a hetero-
geneous age and species structure regarding a set point 
in time [1, 4, 11, 15, 17]. In general, forest carbon stor-
age estimates are typically based on well-established 
allometric biomass equations, with approximately 50% 
of above-ground dry biomass related to carbon (C) [18]. 
However, most biomass equations have not been devel-
oped specifically for urban trees, resulting in variability 
in carbon estimates. Furthermore, few studies on urban 
forests have precisely addressed the heterogeneity and 
area-wide spatially explicit information. This has subse-
quently remained a major source of uncertainty and thus 
requires further assessments [19, 20].
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Research on spatiotemporal changes in urban ecosys-
tem services still faces challenges due to non-uniform 
and multifunctional approaches, different methodolo-
gies, diverging stakeholders’ interests or a lack of relevant 
information [21], among others, information on urban 
forest carbon offset. Especially the lack of information 
refers to the dynamics of urban forests, which are associ-
ated with natural disturbances like differences in growth, 
diseases, stresses and natural hazards, or to other anthro-
pogenic disturbances in particular, such as influences of 
environmental actors, management, political discourses 
and related land use change dynamics [17, 22, 23]. Cli-
mate change effects can also lead to further exacerbations 
and stress for urban forests [24]. Because of all of this, it 
is challenging to account for a thorough consideration for 
future prognoses, such as for urban forest carbon offset 
in the long-term. However, the consideration of urban 
ecosystem service dynamics could serve as advice for 
sustainable future implementation policies [25], or for 
improved climate change resilience of and through urban 
ecosystem services [26].

Current information on supply and demand
Information on the supply of urban forest carbon stor-
age and sequestration is not commonly available, and 
information of the demand side is even scarcer. It has 
been suggested that there is a need to address the supply 
and demand of such urban ecosystem services in a more 
spatially explicit manner [27], and environmental qual-
ity and policy goals would need to set a standard for the 
supply and demand [28]. However, it is still arguable just 
what the minimum standard for this is, though it would 
be a certain boundary for assessing and managing urban 
ecosystem services such as urban forest carbon offset. 
Zhao et  al. [29] focused on differences in forest carbon 
offset (supply) and total carbon emissions (demand) 
across the Twin Cities (Minneapolis–Saint Paul) met-
ropolitan area of Minnesota, US: sequestration of 2010 
could compensate a small rate of 1% of local anthropo-
genic carbon emissions, as well as the avoided emissions 
of already stored carbon should not be underestimated. 
Additionally, there have been obvious spatial differences 
that have demonstrated that some counties could com-
pensate more than 10% of local carbon emissions using 
trees, which is slightly higher than what US forests com-
pensate for total US averaged carbon emissions accord-
ing to information from the Environmental Protection 
Agency (EPA). Chen [1] showed for 35 major Chinese 
cities that urban vegetation could offset fossil emission of 
cities from 0.01% in Hohhot to 22.45% in Haikou in 2010. 
The dominance of young trees stand of those Chinese cit-
ies should not be underestimated, as they will experience 
substantial growth in the near future. Therefore, forest 

growth and planting can notably supplement carbon off-
set in the matter of urban carbon footprinting, which has 
so far been underestimated. Additionally, the demand of 
anthropogenic carbon emissions has been dominated by 
fossil energy up until this point. This offers a great deal 
of potential for being reduced and substituted by alterna-
tives, which causes a higher contribution of urban forests’ 
carbon offset. Consequently, this could increase environ-
mental awareness in cities.

More holistic approaches using life cycle assessments
An even more holistic perspective on urban forest car-
bon offset LCA seems to be a promising forward-look-
ing approach for assessing the effects of not just a single 
stage, but the complete life cycle from creation and use 
to end-of-life (cradle-to-grave). Until today, few studies 
have examined urban forest carbon offset using LCA, 
and most of them addressed select stages concerning 
planting, growth, maintenance, mortality, reuse of dead 
biomass or a combination of these qualities. For instance, 
McPherson et al. [30] showed that, for a one million tree 
planting initiative for Los Angeles, US, an adequate life 
cycle management of urban forests can function as a 
carbon sink to support mitigation goals concerning a 
40-year LCA. McHugh et  al. [31] also addressed poten-
tial tree planting on a citywide scale in Leicester, UK, 
which showed an as of yet unutilized city area of 15% 
to increase forest carbon storage concerning a 25-year 
LCA. Of that area, approximately 50% was also suit-
able for short-rotation coppice using willow and poplar 
trees and could therefore act as an additional renewable 
energy source to replace fossil CO2 emissions. Strohbach 
et al. [32] simulated the carbon footprint (sequestration 
minus emissions) of selected park trees planted in the 
city of Leipzig, Germany, with a total net of up to 162 
tC/ha for a 50-year LCA (averaging 3.24 tC/ha/year per 
unit of tree cover) concerning mean tree growth and low 
annual tree mortality. Although high annual tree mortal-
ity (from 0.5 to 4%) could reduce the carbon footprint by 
over 70%, additional differences in growth rates caused 
a range of up to 45%. Compared to a citywide scale and 
simplified tree mortality and decay rates, the urban for-
ests of 28 US cities across 6 states showed a net carbon 
sequestration rate averaging 2.05 tC/ha/year per unit of 
tree cover with a range of 0.81 in Minneapolis to 4.01 tC/
ha/year in Omaha, demonstrating regional differences in 
urban forest structure. However, these results are simpli-
fied assumptions for the next year and do not account 
for a more complex long-term LCA [11]. Strohbach et al. 
[32] showed relatively small emissions—less than 10% of 
total sequestration—related to construction and mainte-
nance over a long life cycle for tree planting initiatives. 
However, uncertainty measures on emissions have barely 
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been stated by experts or literature. Emissions due to 
tree maintenance had been below even 2% concerning 
the total annual energy consumption of an urban park, 
as Solà et  al. [33] showed in a case study at Montjuïc 
Park in Barcelona, Spain. However, McPherson et  al. 
[30] addressed the necessity for more efficiency con-
cerning the potential to further avoid emissions during 
maintenance: irrigation and removal of trees accounted 
for more than 15% of total CO2 emissions, and mulch 
decomposition of dead tree biomass was responsible for 
65.1% during a 40-year LCA of urban trees planted in Los 
Angeles, US. It also remains unclear the extent to which 
an increase in maintenance of a single tree and the result-
ing increase in CO2 emissions can lead to extended tree 
longevity and a positive effect on the net carbon balance 
[34], or if more efficient maintenance can result in both 
lower emissions and higher tree longevity.

Concluding the complexity of urban forest carbon off-
set, LCA seems to be a promising approach for better 
understanding urban forest dynamics. However, studies 
on this differ, and most of them address only parts of a 
complex LCA or consider a small temporal horizon. This 
has left plenty of space for interpretation regarding how 
to entirely fulfill the phases of an LCA concerning its 
suggested formal standard (ISO 14040 and 14044) [13], 
including: (1) goal and scope definition, (2) inventory 
analysis, (3) life cycle assessment and (4) interpretation, 
critical review and reporting. For example, McPherson 
et al. [30] stated that the available studies on the LCA of 
urban forest carbon offset have so far failed to account for 
the full scope of emissions associated at each life stage of 
a tree. The traditional forestry sector shows similar chal-
lenges. Although such studies have been performed since 
the 1990s, and before urban applications, there is still a 
lack of consistent and comprehensive studies. Instead, 
LCA studies differed due to decisive assumptions and 
their subsequent results concerning system boundaries, 
functional units, impact categories, considered pro-
cesses, allocation, LCA methods, available databases, and 
accuracy metrics [35]. It would certainly be worthwhile 
to discuss the LCA of urban forest carbon offset in the 
matter of harmonization or better comparability, such as 
by increasing precision and data consistency. This should 
reduce the high variability of LCA results, and especially 
address differences in tree mortality and growth; for-
est structures concerning size, age, tree species; data on 
private and public areas; related data retrieval; (re)plant-
ing; actual and potential reuse of dead biomass; and other 
aspects. It has been challenging to retrieve such neces-
sary data, especially due to the heterogeneous urban for-
est structure, as well as get access to details across public 
and private space or beyond administrative bounda-
ries that are also consistent and up-to-date [17, 36, 37]. 

Improvements should definitely aim at reducing the 
expensive and time consuming data collection process, as 
it is an important part of LCAs [13].

Reducing uncertainties part 1—recent high resolution 
remote sensing for more consistent urban tree inventories
The development and contributions of high resolution 
remote sensing have been successfully applied to provide 
input for improved modeling of urban ecosystem ser-
vices concerning area-wide details, which are consistent 
and up-to-date. Generally, this can help to increase the 
comparability of different sites [38, 39]. Increasing spa-
tial, spectral and temporal resolutions have successfully 
shown an increase in precision, for example, to moni-
tor the changes at the individual tree level or to identify 
the diversity of urban tree species [40, 41]. Moreover, 
unmanned aerial vehicles (UAVs) have expanded the pos-
sibilities of urban vegetation mapping and field surveys, 
and have thus contributed to the growing data availability 
of remotely sensed imagery [42]. Hence, recent remote 
sensing offers new monitoring options for dynamic urban 
environments, for example as a consistent input for 
urban forest LCAs. High resolution remote sensing has 
been recommended for supplying more adequate data on 
local and regional differences and changes in urban forest 
cover [18], and as a promising standard inventory pro-
cedure for assessing the status quo of urban forests [39, 
43, 44]. The benefits of high resolution remote sensing 
data have already been shown by several studies on urban 
forest carbon offset [11, 45]. However, few studies have 
identified the extent to which an increasing resolution of 
remotely sensed data can reduce uncertainties in map-
ping carbon estimates of urban forests [46, 47]. This also 
refers to precise remotely sensed data retrieval on urban 
tree canopies, individual trees and species, which are of 
utmost importance for an LCA.

Urban tree canopy classification
The urban tree canopy is most often used as a baseline 
parameter for carbon estimates. Urban forests have been 
classified from remotely sensed data with a threshold of 
vegetation indices like NDVI (normalized difference veg-
etation index), which considers the sensitivity of spec-
tral bands near-infrared and red. Combined thresholds 
of remotely sensed height data have commonly been 
used to classify the urban tree canopy [48]. However, 
the absence of standardized metrics make it difficult to 
compare available urban carbon studies; for instance, the 
combination of data sets with different acquisition times 
causes inconsistency [39]. Uncertainty in urban tree can-
opy classification is often not reported, or is stated with 
a bias [49]. Despite very high resolution data, Raciti et al. 
[47] accounted for 14% of the variability in class accuracy 
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occurring by chance when mapping the urban tree can-
opy using airborne LiDAR height data (1 height point/
m2) and QuickBird satellite data (2.4 m pixel size). Simi-
lar errors were stated in other very high resolution stud-
ies. They occurred with objects that were smaller than 
a remotely sensed pixel (mixed pixel problem), which 
mostly appeared for urban vegetation with high prox-
imity to the edges of buildings [50]. As this situation is 
frequently found in densely built areas, it is likely to bias 
spatially explicit carbon estimates in the end. The quanti-
tative effects of such very high resolution problems have 
rarely been considered as of yet. This can be overcome by 
further increasing the resolution in the centimeter range, 
but at the cost of extensive resource requirements, espe-
cially for processing [51]. Therefore, we suggest a mini-
mum quality of urban tree canopy mapping because it is 
a standard baseline parameter of forest carbon offset and 
will have a significant influence within an LCA.

Individual tree detection
Individual tree information, such as tree growth and 
mortality issues, is highly relevant for urban carbon esti-
mates if we want to address variability within land cover/
use classes. However, the acquisition of urban tree inven-
tory data is resource intensive and still lacks systematic 
monitoring [52]. This has made remotely sensed individ-
ual tree detection (ITD) a great advantage, though it has 
so far only rarely been applied in the urban context [53]. 
The ITD for urban forest carbon estimates has minimal 
scaling effects compared to traditional accurate sampling 
approaches of land use classes, which instead address a 
coarse neighborhood or city level [47, 54]. Therefore, 
uncertainty of carbon estimates is likely to be reduced by 
remotely sensed ITD, which delivers more precise infor-
mation regarding differences within and between land 
cover/use classes. Additionally, remotely sensed ITD is 
independent from administrative boundaries and offers 
possibilities of spatial expansion concerning more precise 
information of the urban–rural gradient.

Early ITD approaches have made use of multispectral 
remote sensing data for classifying overstory tree crowns 
[55]. The feasibility of ITD for estimating tree dimensions 
and biomass has grown alongside the availability of high 
resolution LiDAR data as three-dimensional point clouds 
(echo-based), the very high point densities of which can 
penetrate the tree canopy and subsequently improve 
understory estimates [56]. Alternatives are the frequently 
available processed height products, such as canopy 
height models (CHM), most of which are simplified dis-
crete return LiDAR data reduced to the first return signal 
(upper tree canopy) [53]. Additional adequate height data 
for ITD has been offered by photogrammetry options of 
very high resolution multispectral sensors [57], which 

has gained attention due to the ever decreasing equip-
ment costs of UAVs offering accuracy at cm-level resolu-
tion [58, 59].

Kaartinen et al. [60] provided a comprehensive review 
of tree detection methods based on the international 
benchmarking study “Tree Extraction.” The results of a 
heterogeneous forest test site were highly affected by the 
chosen algorithm (range between 40 and 90% of trees 
correctly detected) rather than a CHM of different point 
density (2–8 points/m2). This showed that local maxima 
finding algorithms provides fast and ready to use results, 
as well as advanced algorithms like minimum curvature-
based tree detection to deliver precise estimates for 
a tree inventory. The tree height reached an RMSE of 
0.5  m. Automated methods also outperformed manual 
tree detection from remotely sensed data, which implies 
that field data can be more relevant as a reference for 
validating and correcting derived estimates. Compared 
to very high point density LiDAR data, Orka et  al. [61] 
showed fairly accurate estimates of tree height (RMSE, 
0.76–0.84  m) and derived stem diameter (RMSE, 3.10 
to 3.17 cm) for a highly heterogeneous non-urban forest 
structure (echo-based LiDAR point clouds, small foot-
print < 21 cm, a mean pulse density of about 5/m2 with 
a total return of 30–100 echoes). The ITD of very small 
and young trees could benefit from a higher point density 
(>  10 points/m2) [60]. Additionally, the results of origi-
nal LiDAR point clouds seemed to output more realis-
tic forest structures than CHM-based ITD [62]. Higher 
variability of CHM-based results could also be due to 
smoothing algorithms, interpolation methods and cho-
sen grid spacing during model production [53].

Unfortunately, the above-mentioned ITD approaches 
have not yet been developed specifically for urban 
forests. The heterogeneous urban forest structure 
is extremely challenging due to a mixture of spatial 
arrangements and a high diversity of tree species, height 
and age structure. Lee et  al. [63] accounted for a mix-
ture of 20 predominant urban tree species using LiDAR 
data (4 returns per pulse in addition to an LiDAR inten-
sity value). The results provided fairly accurate esti-
mates of tree height (RMSE, 1.64 m) and derived stem 
diameter (DBH) (RMSE, 10.32 cm). Lee et al. suggested 
an adequate validation of different tree sizes and group-
ings to correct potential over- or underestimates. Zhang 
et  al. [53] developed a new algorithm for automated 
urban tree detection using original echo-based LiDAR 
point clouds (3.5 points/m2) with promising results 
(R2 above 0.84, RMSE 0.57  m for tree height, RMSE 
1.9  m for crown diameter). They adapted a local max-
ima and constrained tree climbing algorithm to detect 
tree peaks by incorporating a horizontal threshold to 
better address less pointed forms of deciduous tree 
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species. They also felt that a minimum height threshold 
was appropriate in order to exclude shrubs. The outer 
boundaries of individual trees were segmented using an 
inverse tree climbing method referred to as “the donut 
expanding and sliding method.” The results should be 
improved regarding more complex crown shapes, as 
individual trees were assumed to have a circular shape. 
For example, Ardila et  al. [41] successfully used an 
automated region-based active contours approach for 
multispectral data, which allowed for better address-
ing realistic crown shapes and could better handle the 
spectral variability of neighboring pixels, which has 
been a significant challenge for very high spatial reso-
lution imagery. This active contours approach might 
be improved if extended by photogrammetric three-
dimensional data of multispectral imagery. An object-
based segmentation approach could also be used to 
reduce the spectral variability of remotely sensed data 
[64], but this is more labor intensive and sensitive to 
the expert’s classification rules [41]. Additionally, algo-
rithms for tree segmentation would have to consider 
potential over-segmentation of individual tree crowns, 
especially due to very high resolution data [65]. Recent 
progress in low-altitude UAV photogrammetry could 
also provide precise terrain models to reduce the effect 
of heterogeneous vegetation cover [66], as the lack of 
adequate ground points can also lead to significantly 
underestimating urban tree dimensions [67]. Original 
full waveform LiDAR, which samples a returned signal 
at the LiDAR sensor with a very high rate appearing as 
a wave, or synergies combining different sensors using 
higher spatial, spectral and temporal resolution, could 
further increase the precision of urban tree dimensions 
[53, 68–72].

The increasing resolution of remotely sensed imagery 
and the development of methods and carrier systems 
are likely to supplement traditional urban field surveys if 
no up-to-date data is available or there is no data at all. 
However, a comprehensive review published by Zhen 
et al. [72] pointed out that ITD methods and data would 
require more suited applications, such as for urban con-
ditions, and that assessment metrics are inconsistent 
for evaluating and comparing results. More than 200 
studies from 1990 to 2015 were published on ITD, and 
applications in urban settings have increased during 
the last 10 years. In the near future, the use of low-cost 
UAVs is likely to increase as it offers multiple options. 
For instance, Jaakkola et  al. [73] attached a GPS/IMU 
positioning system, two laser scanners, a CCD camera, a 
spectrometer and a thermal camera to UAVs. This setup 
allowed for classifying individual tree heights with a 
standard deviation of 30  cm for a heterogeneous urban 
forest.

Urban tree species classification
The composition of tree species becomes relevant for a 
heterogeneous forest structure particularly, for instance, 
concerning stress resistance, species and site-specific dif-
ferences in growth and mortality, or differences across 
large areas. Therefore, numerous studies have addressed 
tree species classification using high resolution remote 
sensing.

Recent Worldview 2  multispectral satellite imagery 
from late spring (May, 8 spectral bands, 2  m pixel size) 
could improve the classification of seven urban tree spe-
cies in Tampa, Florida, US using a higher number of 
spectral bands [74]. For example, the overall accuracy 
could be increased by approximately 5% compared to 
IKONOS satellite imagery of early spring with less spec-
tral information (April, 4 spectral bands, 4 m pixel size). 
However, additional spectral information of Worldview 
2 did not exceed an overall accuracy of 63%. Immitzer 
et  al. [75] classified 10 tree species with a good over-
all data accuracy of 82% in a temperate heterogeneous 
structured non-urban forest in Austria using Worldview 
2 satellite imagery of high summer (July, 8 spectral bands, 
2  m pixel size). However, species-specific results highly 
varied and could drop by 40–60%. Whereas a higher tem-
poral resolution of satellite imagery could improve the 
classification of urban tree species, such as seasonal data 
of RapidEye satellite imagery (5 spectral bands, 6.5  m 
pixel size), which correlates to differences in vegetation 
phenology. Such multitemporal data could significantly 
decrease the allocation problem between eight dominant 
tree species in Berlin, Germany, whereas a single image 
did not provide sufficient information for classifying tree 
species. Furthermore, only a few selected spectral infor-
mation from a multitemporal feature space were relevant 
for reaching high classification accuracy [40]. The ben-
efits of multitemporal satellite imagery reflecting sea-
sonal differences were confirmed by Li et  al. [76], who 
applied WorldView 2 and 3 imagery of late summer and 
high autumn to classify urban tree species with satisfy-
ing results at two study sites in Beijing, China (overall 
accuracy > 80 and 90%). More recent studies of very high 
temporal resolution could further improve tree species 
classification based on phenological trajectories: Sheeren 
et al. [77] could classify 13 major tree species in temper-
ate forests in southwest France with a very high degree of 
accuracy (κ values above 0.95) using a Formosat-2 satel-
lite time series (4 spectral bands, 8  m pixel size) on 17 
dates across the year of 2013; Karasiak et  al. [78] could 
perform similar results for the same study site using a 
Sentinel-2 satellite time series (10 spectral bands, 10  m 
pixel size) on 11 dates from winter 2015 to autumn 2016. 
Hyperspectral remote sensing offers a very high number 
of bands with precise spectral information, which showed 
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fairly accurate results for tree species classification [79, 
80]. Structural features derived by high point density 
LiDAR data allowed similar overall accuracies above 75% 
within a heterogeneous non-urban forest [81]. Original 
full waveform LiDAR could further improve the overall 
accuracy compared to approaches using traditional pre-
processed LiDAR data, which is mostly decomposed to 
discrete peak data in particular [82]. The intensity data 
recorded for each laser point in a LiDAR system also 
slightly improved species classification [83]. Further-
more, the combination of sensors can be promising for 
improved classifications. For instance, combining hyper-
spectral and LiDAR in particular increased the accuracy 
for specific tree species from 29% to 71% (tall palm spe-
cies, Washingtonia robusta) [84]. Recent progress in 
three-dimensional hyperspectral remote sensing should 
receive more attention in the future, which Nevalainen 
et  al. [85] applied for ITD (number and location) and 
species classification in boreal forests using a combina-
tion of a low-altitude UAV-based photogrammetric point 
cloud for CHM model production (10  cm raster) and 
hyperspectral imaging (33 spectral bands, 10 cm ground 
sampling distance). Nevalainen et  al. applied a Random 
Forest classifier for tree species and reached an over-
all accuracy of 95%, but varied between 40 and 95% for 
detecting individual trees due to the heterogeneous site 
conditions using a local maxima filter algorithm inte-
grated into Fusion software by McGaughey [86]. In this 
context, we suggest comparing the accuracy and preci-
sion of further available ITD approaches.

Recent available studies clearly indicate a high poten-
tial for classifying tree species under heterogeneous con-
ditions using high resolution remote sensing. Fassnacht 
et al. [87] reviewed currently available tree species clas-
sification studies and identified promising local scale 
approaches with multiple options of available remote 
sensing data. However, recent results still lack adequate 
transferability across large areas. Experts requested 
a better understanding of tree species differentiation 
concerning structural, spectral or phenological indica-
tors rather than solely data-driven statistics, most of 
which are highly locally tailored classification achieve-
ments. To the authors’ knowledge, an approach does not 
yet exist that solely addresses a single tree species. This 
would be highly appropriate concerning the prevalence 
of other native and alien species within urban forests, 
which is still an information gap [88]. More specifically, 
future research will need to discover whether there is a 
unique indicator or a combination for a single tree spe-
cies using remote sensing data, or if we are limited to dis-
tinguishing between species using a more locally tailored 
approach. This should not be taken to underestimate 
recent options for making use of remotely sensed tree 

species classification. However, approaches should be 
adapted to the selected location and at least include the 
area’s most dominant tree species, therefore employing a 
more representative tree population. This would contrib-
ute to better assessing the overall classification accuracy 
of tree species.

Examples concerning the effects of an increasing resolution 
on carbon estimates
Urban forest carbon estimates at different scales exem-
plify the importance of an increasing resolution for spa-
tially explicit information. The local carbon estimates 
(individual tree level) of Boston, US were highly under-
estimated by available national datasets of the same area 
by 30% (NBCD, National Biomass and Carbon Dataset, 
30 m pixel size) to more than 90% (United States Depart-
ment of Agriculture Forest Service Forest Inventory and 
Analysis, USDA FS-FIA, 250  m pixel size) [47]. Less 
uncertainty for increasing resolution has been confirmed 
for urban forest carbon estimates at the neighborhood 
level by up to 11% (LiDAR point density 1.2–5.8 points/
m2) [46]. Singh et  al. [89] addressed the challenges of 
decreasing resolution from a maximum of ca. 14–0.15 
points/m2 for regional carbon estimates of urban forests 
in Charlotte, North Carolina, US because processing very 
high point density LiDAR data is resource intensive and 
is likely to hold redundant information. Just 40% of the 
available LiDAR points were sufficient without compro-
mising the accuracy of biomass estimates. This was also 
confirmed by Garcia et al. [56] for national forest carbon 
estimates, who found that a reduction of LiDAR point 
density could be sufficient (10–5 points/m2) except for 
very low point density. It remains unclear for urban for-
est carbon estimates if metrics derived from processed 
discrete returns of a crown height model show a higher 
dependence on point density than metrics derived from 
the original echo-based LiDAR data as they did for for-
ests in the study by Garcia et al. [56].

Regarding a national scale of urban forest carbon off-
set, Nowak et al. [18] set a standardized urban forest car-
bon value from selected cities and upscaled it across the 
US using national tree canopy data retrieved from 1991 
remote sensing imagery of advanced very high resolution 
radiometer (AVHRR). Due to its coarse spatial resolution 
of 1 km pixel size, higher resolution Landsat TM satellite 
imagery of 28.5 m pixel size was used for defined regions 
to determine their proportion of tree canopy within a 
coarse AVHRR pixel, which correlates to the magnitude 
of the spectral response. Such an unmixing approach 
could then be used to determine the tree canopy’s den-
sity within other AVHHR pixels [90]. Nowak et  al. [11] 
updated this approach in 2002 due to an increased avail-
ability of better tree cover estimates derived from high 
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resolution remote sensing imagery, which led to a cor-
rection of the national average of urban forest carbon 
density (2002: 92.5 tC/ha per unit of tree cover; corrected 
2013: 76.9 tC/ha per unit of tree cover). Pasher et al. [91] 
assessed Canada’s urban forests at the national scale, with 
carbon storage and sequestration data adapted from US 
urban forests by Nowak et al. [11]: they selected admin-
istrative boundaries (reconciliation units) of dominant 
urban land use. These selected areas were divided by a 
1 km grid. A random selection of grid cells was used for 
each reconciliation unit to classify the urban tree canopy 
using a point sampling approach. Samples were manu-
ally classified using very high resolution remote sens-
ing orthophotos (10–25  cm pixel size) and upscaled for 
the total urbanized area of each associated reconcilia-
tion unit, which resulted in a final carbon estimate. This 
improved assessment of the urban tree canopy showed a 
sequestration rate of 937,000 tC/year for urban forests in 
Canada, which is 20 times higher than the current offi-
cial report by Environment Canada (46,000 tC/year), 
and could be explained by its assumed very conservative 
urban tree density of 10 trees/ha [91]. Due to the exten-
sive requirements of resources and manual workload, 
Pasher et  al. suggested (semi) automated processing of 
remote sensing imagery to advance their approach for 
assessing the urban tree canopy or to provide general 
rapid re-assessments. They referred to medium reso-
lution satellite imagery (20–30  m pixel size), which is 
widely available at the national scale and can improve the 
upscaling process of regional estimates.

Both Nowak et  al. [11] and Pasher et  al. [91] were 
able to update national urban forest carbon storage and 
sequestration estimates, especially concerning higher 
resolution remote sensing data for a precise urban tree 
canopy. Their applied methodologies of estimated urban 
forest carbon removals of Canada and the US are consist-
ent with IPCC [92] standards and can therefore be used 
for annual inventory reporting to the United Nations 
Framework Convention for Climate Change (UNFCCC). 
As such, this could be a first step towards a consistent 
global approach for urban forest carbon offset and related 
dynamics. Unfortunately, the individual tree level is too 
resource intensive to be applied globally as of yet, though 
a global urban tree density map would highly advance 
carbon estimates for an LCA equivalent to a recent 
available global tree density map of 1 km2 resolution by 
Crowther et al. [93]. In this context, continuous evalua-
tion of recent satellite missions of extensive area cover-
age could further improve global urban forest estimates, 
such as RapidEye (6.5 m pixel size, 5 spectral bands, daily 
revisit), TerraSAR X Tandem (e.g. global digital surface 
model, 12 m pixel spacing) or Sentinel-2 (down to 10 m 
pixel size, 13 spectral bands) [94–96].

The Berlin case of urban forest carbon offset—an example 
of combining remote sensing and LCA
To relate our findings of this review to a more concrete 
situation, we conducted a simplified LCA of urban for-
est carbon offset for Berlin, the capital of Germany. The 
aim of this case study is to assist scientists and profes-
sional practitioners to provide basic long-term progno-
ses for environmental awareness and to utilize the recent 
progress made in remote sensing, such as providing a 
more consistent tree inventory. We pointed out the chal-
lenges of assumed tree growth, mortality and planting to 
achieve the sensitization for the role of urban forest car-
bon offset.

Case input data—LCA inventory of remotely sensed 
individual tree species
The city of Berlin (52°31′N, 13°24′E) has a moderate cli-
mate and is characterized by a mostly flat topography. 
Its administrative area is approximately 890  km2, 40% 
of which is covered by vegetation such as urban forests, 
parks, street trees and urban agriculture [97]. More than 
290  km2 of Berlin is taken up by urban forests, which 
constitutes the largest urban forest in Germany; Ber-
lin’s public parks cover approximately 55 km2. Because a 
consistent and up-to-date tree database covering private 
and public areas does not exist, we updated our LCA 
tree inventory using a high resolution remote sensing 
approach using the final results of individual tree species 
information, previously published by Tigges et  al. [15, 
40]: the final tree database contained consistent informa-
tion concerning location, height, crown width and DBH 
for each individual tree as well as its species and species 
fraction of the total tree population. The tree species 
(Fig. 1) had been derived by applying advanced machine 
learning on a time series of RapidEye satellite imagery 
reflecting phenological differences between tree spe-
cies (5 images during the growth season of 2009; pixel 
size of 6.5 m). Individual tree metrics were derived from 
a LiDAR-based tree crown model (winter 2007/2008; 
regular grid of 4 height points/m2), a local maxima filter 
algorithm that is integrated into Fusion software [86] and 
laser scanning calculations for DBH estimates from Zhao 
et al. [98]. Remotely sensed data covered an overlapping 
area of approximately 700 km2 of the city of Berlin, which 
resulted in a classified urban tree canopy of 213  km2 
(Fig. 1).

Case approach—LCA concerning 60 years of growth, 
mortality and replanting
Our tree inventory data was entered for an LCA of urban 
forest carbon offset. The carbon accounting referred to 
alive and dead above-ground tree biomass and followed 
a time period of 60 years. We then discussed the role of 
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alive and dead biomass. The initial year of our LCA was 
set to 2008, according to the date of the LiDAR data. 
Results were presented at regular 10-year intervals. We 
accomplished the LCA stages of growth, mortality and 
planting as follows:

Growth: we used allometric biomass equations and 
DBH-growth functions (cm/year) for each tree class 
listed in Table 1 to receive future estimates on tree size 
and biomass: most dominant individual tree species in 
the study area are listed as classes 1–10; classes 1–8 are 

classified using RapidEye satellite data with its fraction 
of the total tree canopy (CHM); Class “mix” includes all 
other species of the total tree canopy, mostly comprising 
classes 9 and 10. Strohbach et al. [32] applied growth data 
from a street-tree database of Leipzig, Germany, which 
was utilized for this case study, as non-linear regres-
sion functions better reflect a more natural pattern con-
cerning a smaller annual DBH-growth for mature trees 
(Table 1). We used those functions to convert DBH esti-
mates from our remotely sensed data from 2008 to age 

Fig. 1  LCA inventory of remotely sensed trees in Berlin, Germany. Spatial distribution of a dominant tree species and b tree density per unit of land 
cover [15]. Class “mix” refers to difficult-to-classify tree species in the tree canopy. Approximately 1.4 million trees were classified with a mean tree 
height of 15 m and a mean DBH of 36 cm. No data was available for the outer black areas, which are mostly covered by forests

Table 1  Most dominant tree species for biomass and growth calculations

Class Genera
Tree species

CHM (%) Biomass estimates
Allometric equation

Growth function (DBH); residual error

1 Acer campestre, Acer platanoides, Acer sp. 12.9 Equation 2, Acer saccharum [99] 202.9173 ∗ (1− e(age ∗− 0.0019))0.7992; 5.48

2 Aesculus hypocastanum 13.4 Table 1, Aesculus indica [100] 175.5828 ∗ (1− e(age ∗− 0.0042))0.8958; 6.57

3 Fagus sylvatica 10.4 Appendix A, Equation 89, Fagus sylvatica 
[101]

202.9173 ∗ (1− e(age ∗− 0.0019))0.7992; 6.15

4 Pinus sylvestris 11.3 Table 3, Pinus sylvestris [102] 135.4549 ∗ e
(

− 3.1143 ∗ e(age ∗− 0.0152)
)

; 4.74

5 Platanus hispanica 1.9 Volume of Platanus acerifolia, gravity of 
Platanus [103, 104]

170.5888 ∗ (1− e(age ∗− 0.0047))0.913; 4.95

6 Populus nigra, Populus alba 1.8 Populus tremula [101] 93.5402 ∗ (1− e(age ∗− 0.0152))1.1518; 10.77

7 Quercus robur, Quercus rubra, Quercus sp. 8.6 Table 3, Quercus sp. [102] 70.2797 ∗ e
(

− 2.8528 ∗ e(age ∗− 0.0289)
)

; 4.03

8 Tilia cordata, Tilia × vulgaris, Tilia platyphyl-
los

13.2 Appendix A, Equation 607, Tilia cordata 
[52, 101]

56.4678 ∗ (1− e(age ∗− 0.0182))1.053; 5.71

9 Betula pendula / Appendix A, Equation 31, Betula pendula 
[101]

199.1001 ∗ (1− e(age ∗− 0.0029))0.8865; 4.48

10 Robinia pseudoacacia / Table 2, Equation 6, Robinia pseudoacacia 
[105]

116.6451 ∗ e
(

− 3.1542 ∗ e(age ∗− 0.0198)
)

; 5.40

Mix Mix of dominant species above 26.5 Average of equations listed above Average of equations listed above
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estimates of each individual tree. We then simulated a 
60-year life cycle for annual estimates of DBH using our 
adapted growth functions. The results of each year were 
used as input for allometric equations of above-ground 
biomass approximations (Table  1). We multiplied our 
biomass estimates by 0.5 to convert above-ground dry 
biomass into units of carbon (C) [18]. Because allomet-
ric equations demonstrate high under- and overesti-
mates, recent studies require them to be adapted for use 
in specific urban applications [19]. However, we did not 
have any specific information for Berlin. Therefore, we 
carefully selected the species that best matched our case 
study (Table 1) and did not apply any correction factor for 
urban biomass estimates as Nowak et al. [18] had done. 
If no species-specific equations were available, we fol-
lowed the approach taken by Hutyra et al. [37] by select-
ing equations of the same genus. If we could not classify 
a tree species (Class mix, Table 1), we used the average 
estimate of dominant tree species in our case study area. 
Our results summarized the total alive biomass for each 
land use class at 10-year intervals.

Mortality: estimates of urban tree mortality are affected 
by high uncertainty due to differences in tree physiology, 
biophysical and environmental conditions, planting strat-
egies, social-ecological behavior, future climate change 
and more [30, 106–108]. Due to high uncertainty and 
simplification we assumed annual static mortality rates. 
We also did not have specific information on young tree 
or long-term tree mortality for our case study. However, 
we considered differences between the urban heterogene-
ous environment and management conditions according 
to land use classes of parks, streets and mixed residential 
or commercial use. We consequently assigned our classi-
fied individual tree species to these classes, the bounda-
ries of which we took from digital OpenStreetMap data. 
We also applied a buffer zone of 10  m for streets to 
account for trees with high proximity. The highest annual 
mortality rate of 3.5% was assigned to street trees due to 
multiple stress factors, such as pollution, sealed surface, 
traffic safety issues and other growth-limiting conditions. 
Recent studies showed similar mortality rates between 
3.5 and 5.1% for urban street trees [109]. A tree mortality 
of 1% was set for parks, which we assumed to have fewer 
stress factors than street trees. We assigned a tree mor-
tality of 2% to mixed areas because the space was likely to 
be limited for large tree growth. Although our mortality 
rates were based on the assumption of high uncertainty, 
results could be used to generally reflect a sensitivity 
concerning a mortality range of 1–3.5%. We achieved 
the mortality rates of our land use class by applying an 
annual stratified random selection of individual trees 
in our tree database. We did not exclude very old trees 
using a threshold of a maximum age, but we indicated 

high uncertainty when the average age of the tree popula-
tion exceeded 80 years, which is unlikely for the major-
ity of urban trees [110]. Our results summarized the dead 
biomass for each land use class, which was accumulated 
at 10-year intervals.

Planting: we applied a separate calculation of a poten-
tial tree planting initiative of 100,000 trees with a growth 
period of 70 years. Tree growth and alive biomass were 
calculated using a mixture of dominant tree species 
(Class mix, Table  1). We indicated the tree population 
half-life in our results—the years until 50% of the tree 
population is dead—for an annual static mortality rate of 
3.5% (20 years), 2% (35 years) and 1% (69 years), and dis-
cussed how far an extensive replanting could compensate 
for alive biomass loss concerning our LCA of 60 years.

Miscellaneous: due to limitations of this study our cal-
culations did not account for emissions of maintenance, 
tree production, planting, irrigation, processing of dead 
biomass, tree removal and residual biomass from regular 
pruning. We added the consequences of these limitations 
to our discussion.

Case results and discussion—urban forest carbon offset 
for streets, mixed and park areas
Our LCA of 60 years on urban forest carbon offset clearly 
indicates the dominant impact of an increasing annual 
tree morality between our land use classes of parks (low, 
1%), mixed areas (moderate, 2%) and streets (high, 3.5%) 
(Fig. 2). Street trees show a continuous decline in abso-
lute alive biomass. After 20 years the amount of accumu-
lated dead biomass is already higher than alive biomass. 
Trees of mixed areas reveal a slight increase in alive 
biomass, which levels off after 30  years and then con-
tinuously declines. Accumulated dead biomass of mixed 
areas exceeds alive biomass after 40  years. Park trees 
show a dominant effect of growth with an increase in 
alive biomass for 50 years and with a marginal decrease 
for the last 10 years of our assumed 60-year LCA.

The assumed low mortality for park trees leads to con-
sistently larger quantities of alive than accumulated dead 
biomass. The average age of our total tree population was 
approximately 52  years. There were no extreme differ-
ences in the age structure between our land use classes. 
However, older trees are more likely to be found in parks, 
which have an average age of 56 years. Street trees have 
the youngest average age of 49 years and trees of mixed 
areas; 52  years. Our land use classes have a similar age 
standard deviation (streets: 15  years; mixed: 17  years; 
parks: 15  years). In this context, the average age struc-
ture for parks (high), mixed areas (moderate) and streets 
(low) corresponds to our assumed mortality differences 
between land use classes: low for parks, moderate for 
mixed areas and high for streets. Our land use classes 
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exceed the average age of 80 years after 30 years of our 
LCA.

The carbon estimates per unit of land cover are con-
solidated for all land use classes at 10-year intervals in 
Table  2. We found that the carbon density of alive bio-
mass in Berlin increases by almost 25% for the first 
30 years of our LCA (2008–2038); thereafter, it continu-
ously decreases. Our study concludes that the carbon 
density of alive biomass is always higher than the initial 
year of 2008 (7.3  tC/ha) if the average age of the total 
tree population is allowed to exceed 80 years. The initial 
sequestration rate decreases rapidly for the first 30 years. 
After this time period, the growth of the remaining tree 
population cannot compensate for its previous losses and 
the total alive biomass declines. The carbon density of 
accumulated dead biomass exceeds alive biomass density 
at 40 years of our LCA. At the end of our LCA (2068), the 

carbon density of dead biomass (16.2 tC/ha) is more than 
100% higher than alive biomass (8.0 tC/ha).

Results of our potential tree planting of 100,000 trees of 
mixed dominant tree species (Table 1) show an increase 
of alive biomass with a total of approximately 68 ktC for 
70 years of growth (Fig. 3). The planted tree population 
decreases to 50% (population half-life), resulting from 
a high annual mortality (3.5%) with an alive biomass of 
approximately 3.5 ktC after 20 years of growth. A moder-
ate mortality (2%) leads to an alive biomass of approxi-
mately 10 ktC after 35 years of growth and approximately 
35 ktC after 69 years of growth for a low mortality (1%). 
Street trees continuously lose alive biomass (Fig.  2): 
15.2 ktC in the first 20 years of our LCA. Our assumed 
extensive tree planting of 100,000 trees (+ ca. 3.5 ktC at 
population half-life of 20  years) needs to be more than 
four times larger to compensate for this short-term loss 

Fig. 2  LCA of 60 years on urban forest carbon offset in Berlin. The carbon weight for alive and accumulated dead biomass is presented in kilotons 
(ktC) for our land use classes (streets, mixed, parks). The absolute tree population, the assumed mortality rate of each land use class and its average 
age is indicated for the LCA start in 2008. A red border marks a tree population of an unlikely very high average age (> 80 years)

Table 2  Temporal development of urban forest carbon estimates in Berlin

Carbon estimates LCA

 Land cover of 700 km2 Start 10 20 30 40 50 60

Alive biomass

 Density average (tC/ha) 7.3 8.3 8.9 9.1 9.0 8.7 8.0

Dead biomass (accumulated)

 Density average (tC/ha) 1.8 4.2 7.0 10.0 13.3 16.2
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of alive biomass. Concerning estimates of mixed areas, it 
takes 40 years till carbon sequestration cannot compen-
sate our assumed tree loss of 2% p.a. any longer. The rel-
evant decrease of alive biomass is less than 1 ktC (Fig. 2). 
Therefore, planting 100,000 trees in mixed areas (+  10 
ktC at population half-life of 35  years) is likely to com-
pensate for the loss of alive biomass. We assumed a low 
mortality rate of 1% p.a. for park trees, which leads to 
an extended time span of 60 years till carbon sequestra-
tion cannot compensate tree loss any longer. The relevant 
decrease of alive biomass is 14.1 ktC (Fig.  2). Conse-
quently, a planting initiative of 100,000 park trees (+ 35 
ktC at population half-life of 69 years) is likely to extend 
the amount of alive biomass for long-term purposes.

In this case study, we could make use of recent progress 
in high resolution remote sensing to increase consistency 
of an LCA inventory on urban forest carbon offset. We 
did this by providing area-wide details of remotely sensed 
individual tree species. To the best of our knowledge, this 
is the first urban study combining individual tree metrics 
with spatially explicit species information for an LCA 
of urban forest carbon offset. Our results point out the 
challenges of assumed tree growth and mortality of street 
trees, mixed areas and parks, which greatly affect the 
future role of urban forest carbon offset. Furthermore, 
our findings call attention to the potential of tree planting 
to compensate for losses of alive biomass.

Our results show that urban forest carbon offset is 
dominated by our assumed tree mortality. The significant 
impact of an increasing mortality rate on urban forest 
carbon offset was also confirmed by Strohbach et al. [32]. 
Only park trees have a positive balance of alive biomass 
minus accumulated dead biomass for a 60-year LCA. In 
particular, the high loss of street and mixed trees reduced 
the overall growth potential of the remaining tree popu-
lation. The increasing average age structure is also likely 
to augment the risk of tree loss. Therefore, our results 
certainly underline the necessity of adequate forest man-
agement applications across the city. It remains unclear, 
in how far the high amount of dead biomass contributes 
to net carbon offset, which grew twice as much as alive 
biomass after 60 years (Table 2). Other LCA approaches 
utilized advanced processing of dead biomass, such as 
composting or wood chip production for energy con-
sumption [30, 32]. Consequently, the decomposition of 
dead biomass means a release of carbon emissions, and 
urban forests of our case study would be a net carbon 
source. However, our case study can become a net carbon 
sink if dead biomass is used for energetic purposes and 
substitutes fossil energy.

Our results show the possibilities of extensive tree 
planting. Replanting 100,000 trees has the capability to 
compensate for losses in alive biomass. However, this 
potential requires rapid replanting, low mortality rates 
(<  2% p.a.) as well as extended tree longevity exceeding 
80 years. The lack of relevant data on future tree replant-
ing rates, mortality, growth and longevity make it diffi-
cult to provide long-term prognoses for our case study. 
Increasing disturbances in growth, mortality and replant-
ing rates would affect the spatial expanse and quantity 
of alive biomass. Today’s financial constraints of cities 
might limit investments into green infrastructure, such as 
an extensive tree replanting program [111]. In particular, 
the lack of young tree mortality data causes high uncer-
tainty concerning the true quantitative requirements to 
compensate for tree loss [112]. As such, further discus-
sion is needed on urban forest management plans and 
political decision-making concerning urban dwellers’ 
desires and climate change adaptation in particular [113]. 
In this context, our city-wide average of carbon density 
in Berlin most likely falls in the lower range of urban for-
est studies obtained from globally selected cities of tem-
perate climate zones (11–38  tC/ha) [17]. The temporal 
development of our carbon density shows that estimates 
will remain in the lower range if management plans do 
not consider extensive replanting and densification.

It should be made clear that, in reality, our assumed 
values for tree growth, mortality and planting would be 
an exception rather than the rule. These values can vary 
widely and be extremely site- and species-specific [107, 

Fig. 3  Potential tree planting initiative of 100,000 trees. Calculations 
of alive biomass were based on a mixture of dominant tree species 
in Berlin (Class mix, Table 1) with a 70-year growth period. The carbon 
weight is presented in kilotons (ktC). Tree population half-life is 
shown for high, moderate and low annual mortality. High uncer-
tainty (red border) is generally assumed due to lack of knowledge 
concerning factors such as young tree mortality and other natural 
and anthropogenic disturbances
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114]. Climate change especially could increase stresses on 
urban forests and change their value, which would then 
require adapted management strategies [113, 115]. Our 
assumed constant mortality rates did not describe the 
complexity of natural and anthropogenic disturbances 
adequately [110]. However, the lack of mortality relevant 
statistics and in situ data from Berlin did not allow us to 
further calibrate or validate our case study. Moreover, 
the high uncertainty of our case study results refers to 
the high average age of the tree population, which had 
already reached an average of 80  years after 30  years of 
our LCA. Therefore, our results should be taken care-
fully and one should consider the possibility of an exten-
sive underestimation of dead biomass for the period 
from 2038 till 2068. In this regard, only few studies exist 
on urban tree growth and longevity and require further 
improvements in quantitative assessments [116]. Due 
to limitations we did not consider pruning trees, which 
would increase the amount of dead biomass for our esti-
mates. Pruning of 10% above-ground biomass at 10-year 
intervals could be considered a common practice accord-
ing to recent studies [30, 32]. Our simplified case study 
also excluded emissions related to tree planting, such as 
maintenance, tree production, transportation, planting, 
irrigation, processing of dead biomass and tree removal. 
These might be considered less relevant for the net car-
bon offset of our case study because recent studies on 
LCA of urban tree planting showed a relative small share 
on emissions of 1–5% of the total tree biomass (alive plus 
dead) [30, 32]. However, an accounting for decomposi-
tion of dead biomass, dead roots and irrigation can sig-
nificantly increase the share of carbon emissions.

In general, our LCA inventory data of remotely sensed 
individual tree species contributed consistent details 
across large areas, and therefore avoided current dis-
advantages of general field data-based methods or 
requirements of widely used approaches of the i-Tree 
ECO model. Zhao et  al. [29] confirmed the advantages 
of LiDAR data and individual tree detection to retrieve 
consistent and area-wide LCA inventory data, which our 
case study could increase in precision by providing addi-
tional tree species information. However, Zhao’s and our 
LiDAR-based remote sensing approach did not include 
understory and very small trees (< 3 m) [15], which can 
grow to a considerable quantity in the long term. Fur-
ther differentiation for our tree species (Table  1) is also 
a suggestion for improvement because our mixed class 
covered a considerable fraction (> 25%) of the total tree 
population. This can be of utmost importance when con-
sidering the role of invasive species. For instance, Horn 
et  al. [117] pointed out the role of invasive species on 
urban forest carbon offset, which was approximately 5% 
for a subtropical urban forest. Even more relevant were 

temporal changes of the urban species structure. Nowak 
et  al. [118] showed slight changes in tree canopy size 
from 1999 to 2009, in Syracuse, New York; however, the 
number of trees increased by more than 20% with inva-
sive species as the main cause. This indicates the impor-
tance of the individual tree level and changes in forest 
composition. Therefore, high resolution remote sensing 
has great potential to monitor necessary environmental 
details and should considerably improve tree species clas-
sification and individual tree detection in urban settings.

We can conclude that our simplified LCA of urban 
forest carbon offset offers new insights into how high 
resolution remote sensing can be used as a consistent 
baseline of individual tree species. Future progress in 
remote sensing will show if we can extend the classifica-
tion of tree species and the detection of individual trees 
with increasing precision. This might change the way we 
assess major knowledge gaps regarding the role of inva-
sive tree species and private properties in particular. 
Time series of remotely sensed data can offer the poten-
tial to validate and calibrate predictive models due to 
changes in tree size, species structure, age structure and 
replanting. This is particularly true for the current lack of 
urban tree mortality data, where remote sensing can help 
to detect potential risks and stresses and reveal irregular 
or chaotic spatiotemporal patterns of disturbances. All of 
this can help cities and other stakeholders to consider the 
role of urban forest carbon offset more adequately; for 
instance, to complement current carbon balances.

Reducing uncertainties part 2—remotely sensed long‑term 
monitoring for considering urban forest dynamics
Remotely sensed high resolution monitoring would cer-
tainly contribute to improving an LCA of urban forest 
carbon offset by providing additional data for calibration 
and validation. Researchers and professional practition-
ers have requested long-term ecological studies to extend 
the knowledge of urban forest dynamics. However, few 
studies on urban tree growth and related changes exist, 
and they all rely on regional networks or research related 
projects, such as the International Tree Failure Database 
(ITFD), for instance. Experts are aware of remote sens-
ing’s opportunities for developing a more consistent 
urban forest database, but it is still far from being real-
ized as a common international standard [116].

Tree growth and pruning
Diameter at breast height (DBH) has commonly been 
used for tree growth analysis [119, 120]. Nonlinear and 
linear regression models have successfully shown accu-
rate estimates of DBH using crown width or a combi-
nation with tree height [54, 121]. Performing ITD with 
high resolution remote sensed data is appropriate for 
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predicting crown width and tree height, but the vari-
ability of the resulting estimates can be high. For exam-
ple, additional age to DBH-growth functions allow for 
estimating the urban forest age structure, but available 
studies rarely address the various urban tree species, tree 
dimensions and site conditions. Additionally, increas-
ing climate change effects can cause water and heat 
stress, substantially reducing tree growth [114, 122–124]. 
Therefore, the variability of remotely sensed tree dimen-
sions, as mentioned earlier in this review, does not allow 
for deriving the specific age of a single tree. We rather 
suggest providing a certain range of the tree age, which 
can be used as a baseline for additional processing or 
modeling.

Future studies and applications should place greater 
focus on urban forest dynamics using high resolution 
remote sensing. Detailed characterizations and monitor-
ing highly benefit from increasing temporal resolution 
in particular. This allows for potential change detection 
of urban tree growth and pruning and for monitoring 
abrupt changes like replanting or tree loss. However, 
precise estimates would come at a high price, as change 
detection errors are likely to significantly increase as 
a function of heterogeneity, quality and resolution of 
imagery, or misregistration errors of remotely sensed 
time series [125]. This makes it difficult to reliably esti-
mate changes over time for an individual tree. Regard-
ing precise estimates of urban forests, little is known 
on monitoring the changes of individual trees using 
very high resolution remote sensing, such as Ardila 
et  al. [41] successfully used a region-based active con-
tours approach for a time series of multispectral data to 
detect abrupt and gradual changes of individual trees. For 
example, remotely sensed tree dimensions would allow 
for improved monitoring of residual biomass, large quan-
tities of which can be obtained from urban forests for 
energy purposes [126]. Additionally, Sajdak et  al. [127] 
applied predictive modeling approaches and showed cor-
relations between residual biomass and the parameters 
of crown diameter or stem DBH, which could be derived 
from remotely sensed individual trees. Due to the vari-
ability of remotely sensed tree dimensions, we suggest 
stretching the intervals for monitoring urban forests in 
order to retrieve notable physical changes of tree growth 
and derived parameters. For this very reason, further 
research is necessary to confirm the precision of gradual 
changes, like tree growth (height and crown) and prun-
ing, using high temporal resolution remote sensing.

Mortality and replanting
Temporal increases and decreases of the urban forest 
canopy is crucial information for an LCA of urban for-
est carbon offset. Until now, few studies have addressed 

urban forest dynamics across large areas, and most of 
them use moderate resolution (30 m pixel size) and adapt 
ground-based carbon measures to vegetation indices 
using spectral bands of Landsat satellite data [128, 129]. 
Moderate resolution of Landsat satellite imagery is likely 
to underestimate urban forest cover. However, Landsat 
satellite time series was sufficient for indicating a long-
term trend of urban forest increase (growth +  replant-
ing) and decrease (mortality), which was likely to be 
balanced for urban forests in Syracuse, US from 1985 to 
1999 [128], or to have highly increased for urban forests 
and shrubs in Xi’an, China from 2004 to 2010 [129]. The 
importance of temporal changes has also made remote 
sensing a source for validating reported facts. Nowak 
et  al. [130] chose higher resolution time series to bet-
ter address the trend of urban tree cover across the US. 
They manually digitized high resolution paired aerial 
photographs and Google Earth imagery (selection of 
2001–2009 for 20 US cities and 1000 randomly selected 
urbanized areas). The results of this sampling approach 
indicated a decline of forest cover for most US cities at 
a rate of approximately 7900  ha/year, or 4 million trees 
per year. Other work of Merry et al. [131] indicated only 
slightly changes in tree canopy size for longer periods 
of time for selected US cities (1951–2010, Detroit and 
Atlanta). However, they suggested advanced remote sens-
ing techniques to consider variations in spatial distribu-
tion more adequately. For example, the tree canopy cover 
report of Boston, US showed significant overestimation 
due to misclassification of grass and shrubs as tree can-
opy compared to an assessment performed with high res-
olution QuickBird satellite and LiDAR data [47].

Due to the increasing availability of high resolution 
three-dimensional remote sensing data, the individual 
tree level is the most promising level for future applica-
tions of urban forest dynamics [72]. Multiple reasons of 
mortality and replanting have remained unresolved as 
of yet, but a time series of individual trees across large 
areas would provide spatially explicit information, which 
is rarely available. This would at least contribute to bet-
ter understanding urban forest dynamics, such as hot 
spots of mortality, species and site-specific differences, 
for example. Multitemporal LiDAR is of growing interest 
for better understanding and monitoring spatiotempo-
ral dynamics of forest carbon [132–135]. To the authors’ 
knowledge, multitemporal LiDAR has not yet been 
applied to changes of urban forest carbon. However, due 
to a lack of resources a precise timing of acquiring a sin-
gle image at the growing season (leaf development) might 
be considered advantageous for detecting dead trees (no 
leaf development). Additionally, tree health issues, which, 
for instance, correlate to multispectral information of 
remote sensing data, should be used to indicate areas of 
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potential risk [136]. This can advance an LCA to better 
consider the effects of temporal urban forests’ stresses.

Conclusions
Recent progress in high resolution remote sensing and 
methods is adequate for delivering more precise details 
on the urban tree canopy, individual tree metrics, spe-
cies and age structures compared to conventional land 
use/cover class approaches. These area-wide consistent 
details can update life cycle inventories for more precise 
future prognoses.

Additional improvements in classification accuracy can 
be achieved by a higher number of features derived from 
remote sensing data of increasing resolution, but first 
studies on this subject indicated that a smart selection 
of features already provides sufficient data that avoids 
redundancies and enables more efficient data process-
ing. Automated and efficient processing of very high 
resolution data should be employed if possible due to the 
increasing workload, variability of data and user inter-
action, which can cause unresolved uncertainties. More 
consistent reporting of uncertainties and a better under-
standing of today’s locally tailored approaches would 
allow for more generic and transferable approaches. 
However, this will not neglect today’s advantages of high 
resolution remote sensing, which already extend the pos-
sibilities of traditional field-based retrieval of heteroge-
neous urban forest structures across large and private 
areas and should be applied more frequently.

In the matter of temporal changes and reliable esti-
mates, more attention is required to detect the changes of 
gradual growth, pruning and abrupt changes to the plant-
ing and mortality of individual trees. Therefore, precise 
long-term ecological monitoring of urban forest dynam-
ics should be intensified, especially due to increasing cli-
mate change effects. The results would be beneficial for 
calibrating and validating recent studies of urban forest 
carbon offset, which have so far focused on the status 
quo and net sequestration for the following year but have 
scarcely addressed a longer timeframe. Furthermore, pre-
cise change detection is highly relevant for the supply 
and demand of urban forest carbon offset.

A precise global estimate of urban forest carbon off-
set is still missing. However, upscaling approaches have 
improved national estimates in the US and Canada using 
higher resolution remote sensing data, which should be 
continued to reach an initial global coverage. The future 
role of urban forest carbon offset can be made more rele-
vant if more standardized assessments are made available 
for science and professional practitioners, and the ever 
increasing availability of high resolution remote sensing 
data and the progress in data processing allows for pre-
cisely that.
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