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Abstract 

Background:  Peatlands play an important role in the global carbon cycle. They provide important ecosystem ser-
vices including carbon sequestration and storage. Drainage disturbs peatland ecosystem services. Mapping drains is 
difficult and expensive and their spatial extent is, in many cases, unknown. An object based image analysis (OBIA) was 
performed on a very high resolution satellite image (Geoeye-1) to extract information about drain location and extent 
on a blanket peatland in Ireland. Two accuracy assessment methods: Error matrix and the completeness, correctness and 
quality (CCQ) were used to assess the extracted data across the peatland and at several sub sites. The cost of the OBIA 
method was compared with manual digitisation and field survey. The drain maps were also used to assess the costs 
relating to blocking drains vs. a business-as-usual scenario and estimating the impact of each on carbon fluxes at the 
study site.

Results:  The OBIA method performed well at almost all sites. Almost 500 km of drains were detected within the 
peatland. In the error matrix method, overall accuracy (OA) of detecting the drains was 94% and the kappa statistic 
was 0.66. The OA for all sub-areas, except one, was 95–97%. The CCQ was 85%, 85% and 71% respectively. The OBIA 
method was the most cost effective way to map peatland drains and was at least 55% cheaper than either field sur-
vey or manual digitisation, respectively. The extracted drain maps were used constrain the study area CO2 flux which 
was 19% smaller than the prescribed Peatland Code value for drained peatlands.

Conclusions:  The OBIA method used in this study showed that it is possible to accurately extract maps of fine scale 
peatland drains over large areas in a cost effective manner. The development of methods to map the spatial extent of 
drains is important as they play a critical role in peatland carbon dynamics. The objective of this study was to extract 
data on the spatial extent of drains on a blanket bog in the west of Ireland. The results show that information on drain 
extent and location can be extracted from high resolution imagery and mapped with a high degree of accuracy. 
Under Article 3.4 of the Kyoto Protocol Annex 1 parties can account for greenhouse gas emission by sources and 
removals by sinks resulting from “wetlands drainage and rewetting”. The ability to map the spatial extent, density and 
location of peatlands drains means that Annex 1 parties can develop strategies for drain blocking to aid reduction of 
CO2 emissions, DOC runoff and water discoloration. This paper highlights some uncertainty around using one-size-
fits-all emission factors for GHG in drained peatlands and re-wetting scenarios. However, the OBIA method is robust 
and accurate and could be used to assess the extent of drains in peatlands across the globe aiding the refinement of 
peatland carbon dynamics .
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Background
Peatlands represent about 2–3% of the global terrestrial 
environment and store about 25% of global soil organic 
carbon (SOC) stock [1], estimated to be 547 Gt [2]. On 
an a per-area basis, peatlands store more carbon than any 
other terrestrial ecosystem [3], but this carbon stock is 
vulnerable to ecosystem disturbance [4–8]. Disturbance 
can be natural or anthropogenic [9] and includes drainage 
to enable the development of agriculture, forestry, peat 
extraction (for fuel or horticulture) or for road construc-
tion [8, 10, 11]. Drainage is the first step in the anthro-
pogenic modification of peatlands [12–15]. Peatlands in 
both the southern and northern hemispheres have been 
drained [12, 14, 16], and between 1990 and 2008, global 
CO2 emissions from drained peatland increased by 
about 20% from 1058 to 1298  Mton [17]. The drainage 
and conversion of about 308,500 km2 or 52% of Europe’s 
temperate bogs for peat mining and agriculture over the 
last century has turned them from a moderate sink to a 
source of greenhouse gases [18, 19].

Much research has focused on the hydrological and 
physical effects of drainage on peatland ecosystems, 
but in recent years, there has been a concerted effort 
to understand the effects of drainage and subsequent 
drain blocking on ecosystem functions and dissolved 
organic carbon (DOC) dynamics, particulate organic 
carbon (POC) dynamics and net C flux [11, 16, 20–25]. 
Open cut drains increase drainage density and lower the 
water table of peatlands [22]. They can also lead to dry-
ing, shrinkage and subsidence in the surrounding peat. 
In Wales, the cutting of drains into upland blanket bog 
led to the creation of localised dry zones within 2 m of 
the drains, a reduction in surface water and a lowering 
of the water table within 5  m of the drains [25]. Such 
modifications change the balance between aerobic and 
anaerobic conditions in the peatland, exposing anaerobic 
zones to oxygen and increased oxidisation [24]. Peatland 
drains are greenhouse gas hotspots [26, 27], they also 
act as conduits allowing DOC and POC to be released 
into the natural drainage network, discolouring drinking 
water supplies and contributing to C emissions [22, 26, 
28–30]. The SOC stock of peatlands is stable only so long 
as water-logged anaerobic conditions are maintained [31, 
32]. Therefore drainage can lead to mobilisation of car-
bon via CO2, DOC and POC as well as increasing the risk 
of deeper peat drying and becoming more vulnerable to 
fire events [8].

With new understandings of peatlands and their 
importance as stores of carbon (C), earlier attempts to 
drain peatlands are now regarded as being a threat to the 
preservation of the ecosystem and its C security [30, 33]. 
Given the potential impact that drains have on peatland 
ecosystem services there is a need to identify drained 

networks for conservation assessment [34]. However, 
determining the extent, location and density of drainage 
systems is often a difficult and expensive task [22]. Peat-
land drains have been surveyed in several upland blanket 
peat catchments in northern Britain [22] and have been 
mapped using ground surveys and aerial photography 
interpretation [20, 35]. Airborne thermal imagery and 
LiDAR have been used to measure near surface hydrol-
ogy but these data underestimated the volume and depth 
of surface drainage networks [33]. Field surveys produce 
accurate datasets however, they involve high labour costs 
[34, 36]. Therefore, the task of determining the extent, 
location and density of drainage systems is often difficult 
and expensive [22].

The extent of peatland drains can clearly be seen on 
high resolution imagery [37], therefore image analy-
sis methods to extract these data could be used to cre-
ate drain maps. Remote sensing can be used to map 
and monitor peatlands over very wide areas [38] using 
both spectral-oriented data [39, 40] and object-oriented 
data [41]. Low and medium resolution multispectral 
imagery have been used to map the extent of peatlands. 
Pflugmacher et  al. [40] examined the potential of using 
the moderate resolution imaging spectroradiometer 
(MODIS) low resolution imagery to map peatlands over 
large areas. Medium resolution satellite imagery has also 
been used to map peatlands on the Isle of Skye in Scot-
land [42]. MODIS (250  m resolution) was also used to 
examine peatland disturbance in the Wicklow Mountains 
[43]. However, while low and medium resolution satel-
lite images are useful for broad scale mapping of peatland 
extent and condition over large areas [44], only high reso-
lution imagery is suitable for mapping sub-metre sized 
linear features such as drains.

Object based image analysis (OBIA) software can be 
trained to extract the spatial extent of specific objects or 
features from medium and high resolution images using 
machine learning techniques with user-defined spec-
tral, spatial, temporal and ancillary information [35, 45]. 
Peatlands in Quebec, Canada, were classified using an 
object-oriented approach with SPOT-4 imagery [46]. An 
object-oriented classification was used with medium res-
olution India Remote Sensing (IRS) imagery to identify 
disturbance on raised bogs in Ireland [44]. A semi-auto-
matic object based approach was used to map the extent 
of peatlands in James Bay, Quebec, Canada very high 
resolution QuickBird imagery [47]. Evrendilek et al. [38] 
used Geoeye-1 imagery to quantify changes in a peatland 
between 1944 and 2009, although they had difficulty sep-
arating water bodies and ditches.

Peatland drains are linear features that are both small 
(i.e. less than 2  m wide) and spatially extensive [48]. 
OBIA is a useful tool for extracting fine scale features 
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from high resolution imagery [44]. Extracted data can be 
used to refine estimates of the impact of anthropogenic 
disturbance on peatlands and their carbon stocks. There 
is a lack of information on the development of techniques 
to extract fine scale drain data from peatlands. However, 
OBIA has been used to extract fine scale linear features 
such as roads, power line tracks and informal walk-
ing trails. Narrow linear disturbance features have been 
detected in forests used both very high resolution (VHR) 
QuickBird and medium resolution SPOT imagery [49] 
and object-based image analysis has been used to extract 
roads from a variety of backgrounds [50].

The objective of this work was to extract informa-
tion on the extent of man-made drains in a peatland 
area using OBIA and high resolution imagery. As drains 
impact on the carbon dynamics and ecosystem function 
of peatlands, this technique could be a cost-effective way 
to identify and map the spatial extent of peatland drains 
over large area to refine land use and management plans.

Methods
The study area was located within a low-level Atlan-
tic blanket bog complex in the West of Ireland [51] 
(54°7′41″N, 9°48′44″W) (Fig. 1). The area of this peatland 
is ca. 11,750 ha and it is located close to sea level (from 
sea level to ~70  m asl). The mean (1961–1990) annual 
precipitation at the nearby Belmullet weather station was 
1142 mm [52]. Peat depth is estimated to range from 0.04 
to 0.58 m [53]. Peat depth observations from the nearby 
Glenamoy bog-complex indicated this range is realis-
tic [54]. An area of about 1700  ha [55] was drained in 
the late 1950s (David Fallon, Personal Communication) 
and cutaway to provide fuel for the nearby de-commis-
sioned Bellacorrick peat-fired power station [13]. Much 
of this industrial peatland area was exhausted (referred 
to as cutaway) and taken out of production [56]. Several 
other areas comprising of ~1203  ha of Atlantic blanket 
bog had small surface drains (called ditches) installed. 
The peat at these sites was not extracted but the drains 
were not blocked. Intact blanket bog in the area has been 
designated EU Priority Habitat status under the Habitats 
directive 92/43/EEC [56].

A geo- and ortho- rectified multi-spectral image (Geo-
eye-1) was acquired for the study area on the 26th August 
2010 GMT. The image covered 68 km2. Geoeye-1 has four 
spectral bands: blue (450–510  nm); green (510–580  nm); 
red (655–690  nm); near infra-red (780–920  nm). These 
spectral bands have a spatial resolution of 1.84  m [57]. 
The image also has a higher resolution panchromatic 
band (0.46 m) with a spectral range from 450–800 nm. In 
the image there is 7% cloud cover and the local solar azi-
muth angle was 164.97° and the local solar zenith angle 
was 45.46°. The multispectral image was pan-sharpened to 

0.5 m using the Brovey transform method in ArcGIS to cre-
ate the very high-resolution image [58] which was used to 
aid identification of the extent of peatland drains. Within 
the area of interest the drains were straight and about 1 m 
wide. They are located at intervals of 15 m. However, there 
were some instances where the side walls of drains have 
collapsed or they have infilled with vegetation.

The first step for the OBIA was to delineate the extent 
of peatland in the image (Geoeye-1) using the Derived 
Irish Peat Map Version 2 (DIPMv2) [51]. It was assumed 
that all areas falling inside the DIPMv2 delineated area 
were peat. Urban areas, lakes, agricultural land, clouds 
and shadows were all masked. A training dataset was 
created by digitising selected linear drains in the image. 
Most of the drains that were digitised are intact and 
therefore easy to see in the image. However, some drains 
have collapsed or have are overgrown with vegetation. 
These drains were also digitised. In the digitisation pro-
cess a line was drawn along the centre of each drain. This 
helps to ensure that spectral contamination from edge 
pixels was minimised. Digitised segment lengths ranged 
from 0.34 to 434 m with an average length of 100 m. The 
resulting training dataset consists of 700 digitised lines 
extending to 70,263 m.

These training data were used to train the OBIA soft-
ware [Feature Analyst (FA)] to identify and extract peat-
land drains. In FA, the OBIA algorithms are proprietary 
and the training is implemented in a black box. However, 
FA uses spatial context information, meaning that some 
parameters can be adjusted by the user at the start of the 
extraction process [59]. Here, several FA spatial param-
eters were selected and adjusted including: Feature Selec-
tor—Small Manmade Feature which was set at <5  m; 
Input Representation—the Bull’s Eye 1 option with Pat-
tern Width 11 was selected; Masking included limiting 
the OBIA to the study area (type 1) as well as including 
both a cloud and shadow mask. The output options that 
were selected included output to vector and the aggrega-
tion of a minimum area of 0.25 m2 [59]. The output from 
the FA process is a vector file of linear features depicting 
an extensive network of drainage ditches. Closer exami-
nation revealed many errors in the drains extraction vec-
tor file. Landscape features including small steep slopes, 
shadow and streams were included. A key feature of FA 
is the iterative correction function. This allows for man-
ual inspection of the output features and identification of 
both correct and incorrect features. Once this advanced 
training is complete the software can be re-run, refin-
ing the results. This iterative process removed erroneous 
classifications enabling the development of more accu-
rate maps of the peatlands drains.

The traditional method for assessing the accuracy of 
maps is to use an error matrix (EM) [60]. The EM enables 
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the assessment of four variables: (1) true positives (drains 
in the image and on the ground); (2) true negatives (not 
drains in the image and on the ground); (3) false positives 
(not drains on the ground but drains in the image); and 

(4) false negatives (drains on the ground but not drains in 
the image). These data can then be used to calculate the 
user’s accuracy (UA); producer’s accuracy (PA); overall 
accuracy (OA) [60] and kappa statistic (KS) [61]. Given 

Fig. 1  Location of the study area, Co. Mayo, Ireland
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that the EM method is usually applied to assessing area 
it was decided to use a second assessment method which 
had been designed for assessing linear features such 
as roads i.e. the completeness, correctness and quality 
(CCQ) method [62].

Within the study area, five sub areas were delineated as 
reference areas i.e. reference area North (RAN); reference 
area North Central (RANC); reference area West (RAW); 
reference area Central (RAC) and reference area South 
(RAS) (Fig.  2). The first step in the EM method is to 
buffer the output map linear features to 1.5 m. This buffer 
gives each line an area which represents the width of the 
drains on the ground. Hawth’s tools [63] (an extension for 
ArcGIS) was used to create and randomly distribute 3000 
data points across all five reference areas. In addition, 500 
independent data points were created and randomly dis-
tributed within each reference area. This dual approach 
allowed the assessment of accuracy across the entire area 
as well as assessment within each reference area. Points 
that fall within the buffered areas were classified as a 
drain; those outside the buffered areas were classified as 
not-drains.

There were some issues with the EM method: the buff-
ered drains cover a very small percentage area of the 
entire area. Most of the random points fell outside these 
buffered areas, in the not-drain areas. The reference data 
was therefore biased towards these areas. While the EM 
results depict a relatively good accuracy, the authors felt 
it was necessary to use an accuracy assessment method 
that specifically examines the linear features themselves.

The CCQ has been used to assess the accuracy of 
extracted data related to roads [62]. However, CCQ 
requires a comprehensive validation dataset. This was 
created by manually digitising all drains within each ref-
erence area resulting in reference dataset extending to 
76,635  m (minimum and maximum segment lengths of 
0.35–435 m). In the CCQ method, the output vector file 
is compared to this high-quality validation dataset. The 
accuracy of how well the extracted dataset relates to the 
reference dataset [62, 64] is examined. Completeness 
refers to the percentage of the reference network that is 
successfully extracted by the detection algorithm, cor-
rectness is the percentage of extracted network matched 
by the reference network and quality is the contribution 
of the matched roads to the entire extracted and refer-
ence network [64]. Higher percentage values indicate 
more accurate results.

The cost effectiveness of using OBIA versus manual 
digitisation and field survey was also examined. The main 
variables included were labour, data, software costs and 
equipment needed for the field survey. The labour costs 
associated with both the manual digitisation (MD) and 

OBIA methods are similar i.e. labour = €17/h (accord-
ing to the Irish University Association (IUA) rates for a 
research assistant); imagery and software coasts (€2000). 
However, some ground truthing is essential for the OBIA 
method and requires a surveyor and field assistant (€44, 
€14/h respectively) as well as factoring in mileage, car 
hire and accommodation costs. The costs associated with 
the field survey include health and safety in the field i.e. 
it is necessary to have two people working together in 
the field thus labour is more expensive i.e. €44/h (Wil-
liam Hamilton, Personal Communication) for an experi-
enced surveyor and €14/h (IUA rates) for a field assistant. 
There are also various field survey equipment and costs 
including high accuracy GPS, travel and accommodation 
(€3520).

The effect of the drains on the carbon dioxide (CO2), 
Methane (CH4) and DOC fluxes at the study site was cal-
culated for six scenarios using different emission factors 
from several studies in the Ireland, the UK and from the 
IPCC (Table 1). The two intact blanket bog scenarios are 
included as controls. The Fluxes for intact blanket bog A 
are calculated using figures from Koehler et al. [65] for a 
blanket bog in south-west Ireland. While intact blanket 
bog B uses IPCC Tier 1 figures for CO2 and CH4 and the 
Koehler et al. figure [65] for DOC. There are two drained 
scenarios: the Drained/BAU (DBAU) scenario uses emis-
sion factors from Reed et  al. [66] and Evans et  al. [26], 
while the Mapped Drains/BAU (MDBAU) scenario uses 
the drain area extracted in this study with figures for CO2 
from Wilson et al. [67, 68] (Table 2). Two re-wetting sce-
narios are included used IPCC [69, 70] and local figures 
[65, 71] for the various fluxes and used to examine the 
different between BAU and re-wetting.

In the mapped drain scenario, the peatland was divided 
into zones based on the Wilson et  al. [11] observations 
that drains lead to localised dry zones within 2  m of 
drains, and a reduction in surface water and a lower-
ing of the water table within 5 m of the drains [25]. This 
information was used to segregate the peatland into sev-
eral zones. The drain polygons extracted in the OBIA 
method are about 1.4  m wide. The area of these drain 
polygons was calculated using the OBIA extracted drains 
(see Table 2). They were buffered using tools in ArcGIS 
10.2, to represent the dryer zones identified by Wilson 
et al. [11]. These zones included: (1) localised dry zones 
(the drain area was buffered to 2 m in ArcGIS); (2) lower 
water table zones (the localised dry zone areas were buff-
ered to 3 m) and (3) the remaining peat located outside 
these buffered zones was, in most cases, about 3 m wide. 
Each zone was assigned an emission value (Table 2) and 
it was assumed zone 3 had a similar value to zone 2 as the 
high drainage density prohibited wetter areas there.
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Fig. 2  The reference areas within the study site
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Estimated costs and potential savings were calculated 
for the scenarios using the EU Emissions Trading Scheme 
(ETS) rates for CO2 [72]. The costs for both the intact 
and drained/BAU scenarios were based on the total study 
area flux multiplied by the EU-ETS rate on 21st Novem-
ber, 2016. The re-wetting scenarios included the cost of 
OBIA and drain blocking. Bord na Móna calculated that 
the average cost of blocking drains on a raised bog was 
€400/ha [73], although others in the UK have found that 
figure to be higher [74]. All values were calculated for a 
thirty-year period [66].

Results
Within the peatland complex 496,630  m of drains were 
identified (Fig. 3). The first iteration identified many non-
man made features such as rivers, streams and shadows 
in forestry plantations. The second iteration of the OBIA 
process removed these features and on further analysis 
resulted in the most accurate drain maps. An initial visual 
analysis of the results indicated that the feature extrac-
tion process had performed well in extracting the extent 
of drains. This was supported by quantitative analysis 
(Table 3). The EM method reported the overall accuracy 
for the extracted drains across the entire reference area 
to be 94%, the user’s accuracy was 83% and the produc-
er’s accuracy was 60%. These results indicate that from a 
map user’s point of view the method worked well. This 
was supported by a kappa statistic of 0.66 which shows 
substantial agreement [61, 75] between the extracted 
data and the reference data. The CCQ also depicts a high 
accuracy of the OBIA method for detecting the drains 
in this area. Across the entire study area, the complete-
ness = 85%, correctness = 85% and quality = 71%. This 
indicates that 85% of the reference dataset was identi-
fied by the extracted drain data, that 85% of the extracted 
drains were matched by the reference data and 71% of the 
matched drains contributed to the entire extraction and 
reference drain network.

Table 1  Emission Factors for six scenarios (t CO2 eq. ha−1 year−1) and study area fluxes (t CO2 eq.) with estimated costs 
of re-wetting vs business as usual

a  Drained/business as usual
b  Mapped drains/ business as usual
c  CO2, CH4 and DOC derived from Koehler et al. [65]
d  CO2 derived from Bonn et al. [69] and CH4 IPCC Tier 1 [70] and DOC from Koehler et al. [65]
e  CO2 and CH4 derived from Reed et al. [66] and DOC from Evans et al. [26]
f  CO2 derived in this study using figures from Wilson et al. [67, 68], CH4 Reed et al. [66] and DOC Evans et al. [26]
g  CO2 and CH4 from Bonn et al. [69] and IPCC Tier 1. [70] and DOC from Koehler [65]
h  CO2 and CH4 from Wilson et al. [71] and DOC from Koehler et al. [65]
i  €5.48 per tonne CO2 (21/11/2016—https://carbon-pulse.com/category/eu-ets/)
j  Includes the cost of OBIA (€4852) and cost of blocking drains (€481,247) at €400/ha*1203 ha
k  The minus value indicates the amount that is saved by not draining peatlands
l  The total costs equals the initial year 1 cost plus the annual emission cost multiplied by 29

Intact Blanket bogAc Intact Blanket bogBd DBAUa, e MDBAUb, f Re-wetAg Re-wetBh

CO2 −0.48 −2.12 1.40 1.14 0.04 −1.04

CH4 0.04 1.73 2.00 2.00 1.73 0.09

DOC 0.14 0.14 1.00 1.00 0.14 0.14

Emission factor −0.30 −0.25 4.40 4.14 1.91 −0.81

Study area (t CO2 eq.) −357 −301 5294 4984 2298 −975

EU ETS rate: €5.48i

Drain blockingj €0 €0 €0 €0 €486,100 €486,100

Annual emission costs −€1,958k −€1648 €29,010 €27,312 €12,593 −€5340

Initial cost (€) year 1 −€1958 −€1648 €29,010 €27,312 €498,693 €480,759

Total costs (year 30)l −€58,744 −€49,448 €870,288 €819,356 €863,884 €325,888

Table 2  Using drain extent extracted here to estimate CO2 
emissions in the drains and adjacent zones

a  Wilson et al. [67]
b  Wilson et al. [68]

Area (ha) t CO2 eq. 
ha−1 year−1

Study site 
t CO2 eq.

Draina 68 0.53 36.16

Drain +2 mb (zone 1) 199 1.76 350.67

Drain 2 m +3 mb (zone 2) 239 1.14 272.36

Drain 5 m +1.5 mb (zone 3) 697 1.14 794.28

Average site emissions 1.14

Total 1203 1453.47

https://carbon-pulse.com/category/eu-ets/
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Within the five reference areas, the EM method 
showed that there was little variation in overall accu-
racy and producer’s accuracy for not-drain, but some 
variation in the producer’s accuracy, user’s accuracy and 
Kappa Statistics for the drains. This variation was also 
reflected in the CCQ data (Table  4). The greater val-
ues for producer’s accuracy and user’s accuracy for not 
drained pixels indicate little misclassification but this 

seemed to be less reliable for the drain pixels. Of particu-
lar note is the producer’s accuracy for the RAW which 
was <50% indicating some misclassification. This low 
value is also seen in the CCQ assessment. The extrac-
tion method works well for detecting drainage in this 
peatland area located in the West of Ireland. It works 
particularly well for detecting drains that were clearly 
visible by eye in the high-resolution imagery. However, 
it was also reliable for detecting drains that have expe-
rience some level of change i.e. have collapsed or are 
overgrown.

In terms of cost effectiveness, the OBIA method was 
estimated to be the least expensive way of mapping peat-
land drains. It was considerably cheaper than manual 
digitisation and field survey, both of which are relatively 
labour intensive (Table 5) or require high additional costs 
(Equipment, travel, accommodation). The estimated 
cost for mapping the drains at this study site was €4852 
(OBIA); €10,690 (field survey) and €11,459 (manual dig-
itisation). The flux scenarios for this site ranged from 
−357 t CO2 eq. to 5294 t CO2 eq. for the intact bog A and 
DBAU scenarios, respectively. The costs for each scenario 
can be seen in Table 1.

Fig. 3  Spatial extent of extracted drains within the study area

Table 3  The error matrix for  accuracy assessment of  the 
reference areas within the study area

Extracted peatland drains

Linear validation 
dataset

Drain No drain Total Producer 
accuracy

Drain 193 131 324 0.60

No drain 39 2637 2676 0.99

2830

Total 232 2768 3000

User accuracy 0.83 0.95

Kappa statistic 0.66 OA 0.94
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Discussion
According to both the EM and CCQ methods, the OBIA 
performs well detecting ~500  km of drains across the 
study area. It was also the most cost effect way of map-
ping peatland drains in this intensively drained peatland 
area. In 2010, the condition of the drains ranged from 
intact to collapsed or overgrown. Intact drains were 
clearly visible while the collapsed/overgrown drains were 
not. Each sub-area was analysed individually to exam-
ine the effect of drain condition on accuracy. In the ref-
erence areas where the drains were in good condition 
(RAC, RAN, RAS and RANC) the OBIA method per-
formed well (Table 4). The accurate extraction of drains 
was likely due to the high spectral contrast between dark 
peaty water in the drains and lighter vegetation on the 
surrounding peatland. However, as the drain condition 
deteriorates e.g. in the RAW area, vegetation invades the 
drains and the spectral contrast diminishes. This affects 
the ability of the OBIA method to detect these drains. 
The result of this could be seen in both the EM and CCQ 
accuracy assessment methods for RAW (Table 4). How-
ever, despite the reduced accuracy the method does 
extract the general structure and pattern of drains in the 
RAW area.

Map outputs need to be assessed for accuracy. Tradi-
tionally, when assessing the accuracy of a spatial area, 
an error matrix was used to assess user, producer and 
overall accuracy [60]. However there may be bias in its 
use in relation to the assessment of linear features [76]. 
Drains are usually represented as lines on a map. Linear 
features can be extensive over a spatial area, as in this 
case, they do not however have an area. The discretely 
sampled points used to populate an error matrix may 
be biased towards one land use because of the way it is 
represented on a map i.e. a drain (linear feature). In this 
case, the examination of accuracy involved a binary deci-
sion, either it is a drain or it is not a drain. Since the non-
drain polygons cover much larger areas of land compared 
to the area covered by linear drain features, there was a 
strong bias towards non-drain polygons in the random 

Table 4  Error matrices and CCQ results for overall and five sub reference areas

D drain, ND not drain, OA overall assessment, PA producer’s accuracy, UA user’s accuracy, KS kappa statistic, AOI area of interest i.e. total study site

Name OA (%) PA UA KS (%) Completeness (%) Correctness (%) Quality (%)

D (%) ND (%) D (%) ND (%)

RAN 95 61 99 88 96 70 81 93 75

RANC 95 67 99 88 96 73 87 84 74

RAW 93 43 100 92 93 92 74 81 59

RAC 97 82 98 87 98 83 92 92 85

RAS 95 74 97 77 97 73 86 83 73

AOI 94 60 99 83 95 66 85 85 71

Table 5  Comparison cost of  each drain assessment 
method

a   €17/h is calculated from the Irish Universities Association research pay scale 
for a research assistant on point 10 of the salary scale working
b, c  Software cost per day (assuming a 3 year depreciation and the number 
of workdays as a ratio of 3 years of workdays as the proportion to cost to 
the calculation e.g. if used for 15 days, then [15 / (260 × 3)]*2000] = cost of 
software)
d, e  Car hire for 2 and 16 days, respectively

Methods Amount Rate (€) Total cost (€)

Manual digitisa-
tion

Labour (hours) 583 17a 9951

Imagery 1 1256 1256

Software cost 
(per day)

97 2.6b 252

Total 11,459

OBIA Image analysis 
labour (hours)

120 17a 2047

Imagery 1 1265 1265

Software cost 
(per day)

20 4.1c 82

Surveyor labour 
(hours)

16 44 700

Field assistant 
labour (hours)

16 14 224

Equipment (per 
job)

– – 19

Lodgings and 
subsistence

1 125 125

Mileage (km) 576 0.59 340

Car hire 1 50d 50

Total 4852

Field survey Labour surveyor 
(hours)

124.2 44 5432

Labour field 
assistant 
(hours)

124.2 14 1738

Equipment (per 
job)

– – 144

Lodgings and 
subsistence

16 125 2000

Mileage (km) 1060 0.59 626

Car hire 1 750e 750

Total 10,690
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point data. This can be seen in Table 4, where a very large 
number of random sample points (3000) were needed to 
ensure that the drains were adequately represented in 
the sample (324 or ~10%). This issue was somewhat alle-
viated by buffering the drains to give them an area (this 
area represents the drain on the ground more accurately 
than a line can). Despite the extraction method perform-
ing well in the EM method, it was felt that there was 
an optimistic bias in the data because about 90% of the 
sample points were restricted to homogenous non-drain 
areas [77]. Lathrop et al. [76] found that the EM accuracy 
assessment method, using discrete sample points, did 
not work well with linear object features because points 
are examined as coincident pixels rather than the objects 
[78]. Therefore, another method was needed to assess the 
accuracy of the OBIA method more reliably. The CCQ 
method overcame this optimistic bias. It measures how 
well the extracted data overlaps with a reference dataset. 
Overall, the CCQ method delivered a better assessment 
of the accuracy of the extracted data as it was assessed 
solely in relation to the high-quality reference dataset and 
there was no bias towards large homogenous areas i.e. 
non-drain.

This OBIA approach enabled a relatively rapid assess-
ment of drain density at this site. Both MD and field sur-
vey are possible, however, MD was estimated to take over 
six times longer and was almost three time more expen-
sive (Table 5). A field survey would take a similar amount 
of time to OBIA but was more than twice as expensive 
due to the safety requirement of having two people work-
ing in the field. While the OBIA method was not fully is 
automated, it did enable drain density to be accurately 
and cost effectively mapped over large areas. This OBIA 
method created accurate maps that record the spatial 
extent and drainage density of peatland drains. The con-
dition of drains can also be inferred i.e. where the accu-
racy is lower and a drainage pattern is extracted it may 
indicate drains that are overgrown.

The method is robust and relatively easy to implement 
and could aid in the estimation of the impact of Land 
use, land use change and forestry in a cost-effective way. 
Emissions from Land Use Land Use Change and Forestry 
(LULUCF) are currently not accounted for in internal EU 
targets, they will, however be included in the EU’s 2nd 
commitment period target in the Kyoto Protocol [79]. 
Since 2013, the Kyoto Protocol has allowed Annex 1 par-
ties to account for greenhouse gas emission by sources 
and removals by sinks resulting from Wetlands Drain-
age and Rewetting (WDR) under Article 3.4. [80]. In 
the light of the Paris Agreement; EU targets for the 2nd 
commitment period and the Mapping and Assessment of 
Ecosystem Services (MAES) initiative [81] it is necessary 

to begin to refine spatial data related landscape carbon 
dynamics.

Wilson et  al. [71] suggest that the one-size fits all 
approach may not be appropriate for different sites, par-
ticularly in relation to drain extent and its impact on the 
study area emissions. The main difference between the 
DBAU and MDBAU is related to the how the CO2 figure 
is calculated. The DBAU scenario is estimated on a tonnes 
of CO2 per hectare value derived from the Peatland Code 
[82]. While in MDBAU scenario, the area of drains and 
zones adjacent to drains is extracted using the OBIA 
method using flux measurements for each zone (Table 2). 
The emission factor for CO2 in the MDBAU scenario is 
about 19% lower that then the Peatland Code value. This 
difference equals to a €50,000 reduction in costs over the 
30-year period for this site of 1203 ha. When comparing 
both BAU scenarios with the re-wet scenarios, it is clear 
that the uncertainty between the IPCC Tier 1 and local 
emission factors have large implications with regard to 
the costs reduction. Analysis of these issues is beyond the 
scope of this paper, and it is difficult to come to a decisive 
conclusion without further clarification and refinement.

In this study, the OBIA method is successful in extract-
ing maps of drainage extent and density from the Geo-
eye-1 high-resolution satellite image. Peatlands provide a 
number of ecosystem services including water purifica-
tion and carbon storage [10, 83]. Drains impact on these 
services enhancing both emissions of CO2 and removal 
of DOC [30, 84]. This method could be used in tropical 
areas, though its use may be limited in areas where trees 
have overgrown and blocked the drain spectral signal. 
In several areas of the study site and particularly in the 
RAW area, the drains are overgrown and infilled; despite 
this the general structure of the drains was identified. The 
method could be applied in temperate and boreal zones 
where peatlands have been drained. The identification 
and mapping of drains over large areas is a cost-effective 
aid for the management of drain blocking campaigns. 
With the issues related to the impact of drains on peat-
lands, peatland ecosystems services and Article 3.4, it is 
essential that accurate maps of artificial peatland drain 
systems can be produced to identify: 1. hotspots for CO2 
emissions and DOC production and 2. suitable areas for 
drain blocking and rewetting.

Satellite remote sensing is a good tool for mapping peat-
land disturbance. While coarse spatial resolution imagery 
can be useful for mapping broad scale disturbance [43, 
85], high resolution imagery is essential for mapping 
peatland drains [44, 68]. The Copernicus satellites includ-
ing Sentinal-1 and Sentinel-2 provide free images at high 
spatial (10 m) and temporal resolutions [86]. However, to 
detect small linear features, such as the industrial scale 
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drainage featured in this study or drains create for domes-
tic peat extraction, it is necessary to acquire very high spa-
tial resolution images such as GeoEye-1 satellite data or 
images from aerial or UAV platforms [18, 44]. The semi-
automatic assessment methods used in this study can be 
used to extract valuable information useful to land man-
agers and policy makers. OBIA offers a cost effective and 
accurate approach for extracting information on drain-
age extent and density from very high resolution satellite 
imagery. This semi-automatic method could be used to 
delineate and map drains and CO2 hotspots in large agri-
cultural, peatland and wetland areas across the globe.

Conclusions
The OBIA method used in this study shows that it is 
possible to accurately extract fine scale features such as 
peatland drains over large areas, producing cost-effective 
maps. Globally, peatlands have been drained to support 
production of crops, fuel, livestock and timber [26]. Peat-
land drainage is extensive and increases aerobic decom-
position and DOC export leading to a loss of ecosystem 
services such as sequestration and storage of C and the 
potential development of greenhouse gas hotspots [8, 26, 
27]. Despite the impact that drainage has on peatland car-
bon dynamics, there is a lack of methods for assessing the 
spatial extent and condition of peatland drains. Histori-
cally, this may be due to the difficulty and expense of sur-
veying or mapping these small-scale features. However, 
as high resolution satellite data becomes increasingly 
available and software is developed to semi-automatically 
and automatically extract fine scale features, new insights 
into the carbon dynamics of natural ecosystems can be 
expected. The OBIA method explored here performed 
well for extracting data on the spatial extent and condi-
tion of peatland drains. The mapping of peatland drains 
is important in assessing how these extensive fine scale 
features may contribute to carbon dynamics in these sen-
sitive ecosystems. This information is important for man-
agement, regulation and policy. The approach taken in 
this paper is robust and accurate. It could be applied to 
map the extent of drains aiding the monitoring of carbon 
dynamics in peatlands and wetlands across the globe.
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