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Abstract 

Background: Accurate estimation of aboveground forest biomass (AGB) and its dynamics is of paramount impor-
tance in understanding the role of forest in the carbon cycle and the effective implementation of climate change 
mitigation policies. LiDAR is currently the most accurate technology for AGB estimation. LiDAR metrics can be derived 
from the 3D point cloud (echo-based) or from the canopy height model (CHM). Different sensors and survey con-
figurations can affect the metrics derived from the LiDAR data. We evaluate the ability of the metrics derived from the 
echo-based and CHM data models to estimate AGB in three different biomes, as well as the impact of point density 
on the metrics derived from them.

Results: Our results show that differences among metrics derived at different point densities were significantly dif-
ferent from zero, with a larger impact on CHM-based than echo-based metrics, particularly when the point density 
was reduced to 1 point m−2. Both data models-echo-based and CHM-performed similarly well in estimating AGB at 
the three study sites. For the temperate forest in the Sierra Nevada Mountains, California, USA, R2 ranged from 0.79 to 
0.8 and RMSE (relRMSE) from 69.69 (35.59%) to 70.71 (36.12%) Mg ha−1 for the echo-based model and from 0.76 to 
0.78 and 73.84 (37.72%) to 128.20 (65.49%) Mg ha−1 for the CHM-based model. For the moist tropical forest on Barro 
Colorado Island, Panama, the models gave R2 ranging between 0.70 and 0.71 and RMSE between 30.08 (12.36%) and 
30.32 (12.46) Mg ha−1 [between 0.69–0.70 and 30.42 (12.50%) and 61.30 (25.19%) Mg ha−1] for the echo-based [CHM-
based] models. Finally, for the Atlantic forest in the Sierra do Mar, Brazil, R2 was between 0.58–0.69 and RMSE between 
37.73 (8.67%) and 39.77 (9.14%) Mg ha−1 for the echo-based model, whereas for the CHM R2 was between 0.37–0.45 
and RMSE between 45.43 (10.44%) and 67.23 (15.45%) Mg ha−1.

Conclusions: Metrics derived from the CHM show a higher dependence on point density than metrics derived 
from the echo-based data model. Despite the median of the differences between metrics derived at different point 
densities differing significantly from zero, the mean change was close to zero and smaller than the standard deviation 
except for very low point densities (1 point m−2). The application of calibrated models to estimate AGB on metrics 
derived from thinned datasets resulted in less than 5% error when metrics were derived from the echo-based model. 
For CHM-based metrics, the same level of error was obtained for point densities higher than 5 points m−2. The fact 
that reducing point density does not introduce significant errors in AGB estimates is important for biomass monitor-
ing and for an effective implementation of climate change mitigation policies such as REDD + due to its implications 
for the costs of data acquisition. Both data models showed similar capability to estimate AGB when point density was 
greater than or equal to 5 point m−2.
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Background
Forests provide essential ecosystem services at a range 
of scales and represent a major sink of atmospheric car-
bon, yet can turn into a significant carbon source due to 
deforestation and forest degradation. Therefore, identify-
ing the role of forests as carbon sinks or sources is key 
to understanding the carbon cycle [1]. Likewise, develop-
ment of precise forest monitoring systems is essential for 
the effective implementation of climate change mitiga-
tion policies such as REDD +  (reducing emissions from 
deforestation and degradation), which require accurate 
mapping of aboveground biomass (AGB) and its changes.

Numerous studies have proved the ability of LiDAR 
data to provide accurate estimations of field-measured 
AGB across different ecosystems [2–5] given its capa-
bility of providing detailed 3D measurements of forest 
structure. Nevertheless, the accuracy of the LiDAR esti-
mation is subject to the accuracy of the field measure-
ments and allometric equations used to derive AGB, 
which are subsequently used to calibrate LiDAR-based 
models [6].

Sensor characteristics and flight planning parameters 
affect LiDAR measurements of the spatial distribution 
of canopy components and therefore of the vegetation 
structure metrics derived from them. Similarly, digi-
tal elevation models (DEM) and digital surface models 
(DSM) derived from the LiDAR data are also affected by 
acquisition parameters. These effects will be propagated 
to the canopy height model (CHM) obtained by subtract-
ing the DEM from the DSM. The effect of LiDAR survey 
parameters on the derivation of biophysical properties 
from airborne LiDAR data has been investigated in differ-
ent studies. For example [7, 8], concluded that the use of 
different sensors or variation of flying altitude and pulse 
repetition frequency (PRF) between different acquisitions 
result in significant differences of LiDAR metrics sensi-
tive to the vertical distribution of vegetation and canopy 
density. However, Hopkinson [9] found that laser pulse 
peak power concentration was the most important factor 
in the variation of intensity and frequency distribution of 
returns, although with different effects over short and tall 
vegetation. Scan angle has also been shown to affect frac-
tional cover (FC) estimates, yet for small scan angles the 
effect is less evident [7].

In most of these studies, the effect of survey configura-
tion on the LiDAR information was assessed by collect-
ing new data with varying survey parameters. However, 
variation of acquisition settings like flying height or 

PRF results in a simultaneous variation of more than 
one LiDAR parameter like footprint size, point density 
or pulse power. This makes it difficult to generalize the 
effect of changing a single parameter on the resulting 
point cloud. In order to isolate the effect of each sur-
vey characteristic on the resulting point clouds and the 
height estimated from them, Disney et al. [10] simulated 
different point clouds for different scenarios defined by 
modifying a single parameter at a time, using a Monte 
Carlo Ray trace (MCRT) model of canopy scattering. 
Some of these studies have shown a general increase in 
the retrieved vegetation height with an increase flying 
height or reduced PRF [8, 10] whereas the opposite effect 
has also been reported [7, 9] as a result of a reduction of 
the pulse energy per unit area.

LiDAR vegetation measures can be represented using 
two different data models, the echo-based and the CHM 
raster model. The former represents forest structure by 
means of 3D point cloud whereas the latter summarizes 
this information into a raster where each pixel represents 
the maximum height of the points contained within it. 
The CHM approach significantly decreases the volume of 
the data at the expense of loss of information provided. 
Some studies have evaluated the effect of echo- and 
CHM-based models on the retrieval of canopy gaps [11] 
or more recently, on the estimation of AGB [12]. Never-
theless, these studies did not evaluate the impact of vary-
ing acquisition parameters on the metrics derived from 
each data model.

In the context of carbon monitoring, which requires 
repeated acquisitions at a certain interval, it is likely that 
each survey will be carried out using different sensors or 
flight configurations. In addition, in order to maintain 
cost-efficiency of LiDAR data for REDD + MRV (measur-
ing, reporting and verification), optimum survey configu-
rations should be planned. Point density, along with the 
footprint size, determines the spatial resolution of LiDAR 
datasets. It is probably the most important parameter 
when planning a LiDAR acquisition, with a significant 
impact in acquisition costs, as it is common to target a 
minimum point density for the study area in order to 
maximize spatial coverage. Therefore, the evaluation of 
the effect of both point density and the data model used 
on the estimation of AGB becomes an important issue in 
the MRV process.

This study aims at evaluating the potential of the echo-
based and the CHM data models for AGB estimation 
over three forests across different biomes, and how they 
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are affected by the point density. The specific objectives 
were to: (1) evaluate the effect of point density on the 
metrics derived from each data model; (2) evaluate the 
impact of plot size on the metrics; (3) evaluate the poten-
tial of these data models to estimate AGB in different 
forests with very different vegetation types; and (4) evalu-
ate the impact of point density on the derived empirical 
models.

Results
Effect of point density on the metrics
Tables 1, 2 and 3 show the results of the two-sided Wil-
coxon signed rank test for the null hypothesis that there 
were no statistically significant differences in medians 
between the metrics derived from the original and the 
thinned data. In all three sites, the reduction of point 
density resulted, for most of the metrics, in significant 
differences between the metrics derived from the origi-
nal and the thinned datasets. These results were also sup-
ported by a two-sided one-sample t test of the differences 
in means between the original and the thinned datasets 
(results not shown). Point density reduction had larger 
impact on the metrics derived from the CHM than on 
those derived from the echo-based model. The effect of 
point density on the metrics also generally showed simi-
lar behavior for the different plot sizes tested, from 0.09 
to 1 ha. Although similar patterns were observed at the 
three study sites, some differences exist among them, 
reflecting differences in their vegetation structure. For 
instance, the area under the canopy waveform (AUCW) 
obtained from the echo-based model showed significant 
differences in the Sierra Nevada Mountains in California 
(SNM herein after) and on Barro Colorado Island, Pan-
ama (BCI herein after), whereas in the Sierra do Mar in 
Brazil (SdM herein after) differences were not statistically 
significant. Similarly, while differences in fractional cover 
(FC) or the standard deviation of the height (StdH) were 
significantly different from zero for any point density or 
data model in SNM, in BCI and SdM the differences were 
only significant for the lowest point density (1 point m−2).

Although the statistical test resulted in significant dif-
ferences for the metrics derived at different point densi-
ties, the magnitude of these differences was generally very 
low. In all three sites, canopy height values decreased 
as the point density was reduced. The mean difference 
between the maximum height estimated from the highest 
point density and the thinned data was negligible, except 
for the lowest point density (1 point m−2), for which it 
could be larger than 1 m. In addition, in most cases the 
standard deviation of the differences was larger than the 
mean. Thus, the mean differences (±standard deviation) 
in maximum canopy height ranged between −0.02  m 
(±0.20  m) and 1.16  m (±0.87  m) in SNM, −0.03  m 

(±0.66 m) and 0.84 m (±1.73 m) in BCI and 0 (±0.94 m) 
and 0.97  m (±1.37  m) in SdM. The same trends were 
observed regardless of the data model used, although dif-
ferences from the CHM-derived metrics were larger. The 
same pattern was observed for other metrics related to 
the vertical distribution of vegetation (mean and percen-
tiles of the height) derived from the echo-based model. 
Differences ranged between −0.09  m (±0.10  m) and 
0.06 m (±0.20 m) in SNM, between −0.08 m (±0.37 m) 
and 0.11  m (±0.48  m) in BCI and between −0.52  m 
(±0.56  m) and 0.96  m (±0.66  m) in SdM. Height met-
rics derived from the CHM were more affected by 
point density with differences ranging between 0.29  m 
(±0.23 m) and 5.09 m (±3.49 m) in SNM, 0.25 (±0.50 m) 
and 5.19 m (±1.93 m) in BCI and 0.14 m (±0.12 m) and 
4.82  m (±1.20  m) in SdM. These differences were sta-
tistically significant and unlike for the metrics derived 
from the echo-based model, the standard deviation was 
smaller than the mean. In all cases, the largest differences 
were attained at the lowest point density (1 point m−2). 
In the case of the coefficient of variation of the height, 
differences were generally not significant for all three 
sites when it was derived from the echo-based model but 
became significant when derived from the CHM-based 
model. In the case of the standard deviation of the height, 
different behavior was observed for each study site, with 
significant differences observed in SNM but not in SdM. 
When the metric was derived from the CHM, the differ-
ences were significant at all three sites. Moreover, while 
the differences in the standard deviation of the height 
were less than 15 cm when derived from the echo-based 
model, they were larger than 1 m when derived from the 
CHM in SNM and BCI. Regarding the AUCW, smaller 
values were obtained as the point density was reduced, 
particularly when derived from the CHM. Finally, in the 
case of FC, differences were less than 2% in all three sites 
when derived from the echo-based model, despite being 
statistically significant for the SNM study site. Slightly 
larger differences were obtained when FC was derived 
from the CHM, with values reaching 5% in SNM, 14% in 
BCI and 2% for the SdM.

The boxplots in Fig.  1 show a summary of the varia-
tion of mean canopy height and FC subsequently used to 
model AGB, derived from each data model at each study 
site as a function of point density. These variables were 
used to model AGB from the LiDAR data.

Effect of plot size on the metrics
The effect of structural variability associated with the 
plot size varied among the study sites and the data 
models used. Variables like AUCW, coefficient of varia-
tion and StdH, showed different behavior in each study 
site. The same pattern of the effect of plot size on the 
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metrics was observed for the different point densities 
evaluated (Tables  4, 5 and 6). FC and height related 
metrics, except maximum height and P25H, did not 
show statistically significant differences (p value >0.05). 
Maximum canopy height showed significant differ-
ences at all sites as it could be expected with absolute 
differences ranging between 3.15 m (±3.55 m) and 8.13 
(±4.54  m); 1.67  m (±3.26  m) and 6.64  m (±6.19  m); 
and 2.57 m (±2.08 m) and 7.24 m (±0.44 m) for SNM, 
BCI and SdM, respectively. P25H showed different 
behavior for SNM than for BCI and SdM, which could 
be a result of a more open canopy. Whereas for SNM 
the differences ranged between 0.45  m (±1.78  m) 
and 0.90  m (±0.28  m), for BCI the range was from 
−0.05  m (±1.42  m) to −0.46 (±3.60  m) and for SdM 
they spanned from −0.01  m (±1.60  m) to −0.48  m 
(±1.49 m). A monotonic effect of plot size on the met-
rics was observed at all point densities, i.e. an increase 
or decrease as the plot size varied, regardless of the 
data model used or the study site.  

The CHM-derived metrics generally showed a greater 
dependence on the plot size than the echo—based met-
rics, especially for the SNM. Although for BCI and SdM 
the mean differences of the metrics were similar, with the 
exception of AUCW and P25H, the standard deviation 
for the metrics derived from the CHM was higher for all 
metrics and study sites.

The boxplots in Fig. 2 show a summary of the variation 
of mean canopy height and FC derived from each data 
model at each study site as a function of plot size.

Aboveground biomass modeling
Table 7 presents the results of the power models adjusted 
to estimate AGB for each study site and data model. It 
also presents the effect of point density on the model 
derived at the original point density. Both data mod-
els performed similarly in all study sites and no effect of 
point density was observed for the echo-based model. 
This was expected due to the small changes observed in 
mean height and FC when the metrics were derived at 
different point densities. Although differences between 
the AGB estimates from the thinned datasets were sta-
tistically significant (p value <0.05), except for SdM, the 
largest error for SNM was only 4% of the mean AGB 
derived from the model trained with the highest point 
density. For BCI and SdM the largest errors represented 
less than 1 and 5%, respectively. In all three sites, the 
CHM-based model showed a remarkable decrease in 
performance when applied to the lowest point density 
(1 point m−2). This effect was not reflected in terms of 
R2 but in the RMSE. Moreover, the largest error repre-
sented up to 48, 23 and 15% of the mean AGB derived 
from the model trained with the highest point density for 
SNM, BCI and SdM, respectively. The inclusion of FC in 

Fig. 1 Boxplots of mean height and FC for each study site and point density. Left column Sierra Nevada Mountains; central column Barro Colorado 
Island; right column Serra do Mar (SdM). Top row echo-based mean canopy height; second row CHM-based mean canopy height; third row echo-
based FC; bottom row CHM-based FC
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the model slightly improved results in SNM and SdM but 
had no effect in BCI.

Figure  3 shows the scatter plot of the estimated AGB 
from the different models and resolutions compared to 
the field measurements. Points almost overlap when the 
model is calibrated using echo-derived metrics whereas 
higher discrepancies are observed in the CHM-based 
models. This trend is observed in the three study sites.

Discussion
Effect of point density on the metrics
Height metrics derived from the echo-based model were 
less affected by a reduction in point density than those 
derived from the CHM, particularly when the point den-
sity was reduced to 1 point m−2. This is explained by the 
fact that the metrics from the point cloud were computed 
considering all canopy returns (h > 2 m); whereas for the 
CHM the height of each pixel used to compute them rep-
resented the highest return within it. The effect of inter-
polation on the generation of the CHM also contributes 
to the effect of point density on the metrics derived from 
the CHM. We found a decrease in vegetation height esti-
mated from LiDAR with decreasing point density, as a 
result of a lower probability of laser pulses hitting the top 
of the canopy as well as fewer of them penetrating to the 
ground, which affects the DEM generation. This agrees 

with the results obtained by Disney et al. [10]. The reduc-
tion of mean CHM height with point density observed 
in SdM was also reported by Leitold et  al. [13]. for the 
same study area. However, they found greater differences, 
which is probably due to the fact that we applied differ-
ent filtering algorithms to classify ground returns for the 
thinned data.

The coefficient of variation did not show any signifi-
cant differences for the echo-based model but did for 
the CHM. This could also be a result of the different con-
sideration of vegetation data in the computation of the 
metrics for each data model, i.e. returns above 2  m for 
the echo-based model vs all pixels for the CHM-based 
metrics. For the AUCW forest structure seemed to be a 
determinant factor in the variation of the metric. In BCI 
it presented values 2–3 times larger than in the other two 
study sites and the reduction of point density caused a 
larger impact on the obtained values. The CHM model 
was more affected than the echo-based model since it 
only captures the variation of the upper canopy.

Although the statistical tests indicated that the median 
differences of the metrics derived from different point 
densities significantly differed from zero, the mean 
change was very low in most cases except when the point 
density decreased to 1 point m−2. Besides, the standard 
deviation of the change was larger than the mean itself 

Fig. 2 Boxplots of the differences in mean height and FC for each study site and plot size. The reference data for the comparison were the original 
point density and the plot size used for field measurements. Left column Sierra Nevada Mountains; central column Barro Colorado Island; right 
column Serra do Mar. Top row Echo-based mean canopy height; second row CHM-based mean canopy height; third row Echo-based FC; bottom row 
CHM-based FC
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Table 7 Model (echo-based and CHM) evaluation for each study site and power model fitted

Model parameters are presented for each model. For Sierra Nevada Mountains and Barro Colorado Island 70% of the plots were used for calibration and 30% for 
independent validation. For Serra do Mar due to the small size of the sample a jackknife approach was used instead

Standard deviation of the parameters is presented in brackets

Study site Data model Model Parameters Point density 
(points m−2)

R2 RMSE 
(Mg ha−1)

relRMSE(%)

Sierra Nevada Moun-
tains

Echo ŷ = αXβ α = 2.75; β = 1.52 20 0.70 85.15 43.50

10 0.70 85.00 43.42

5 0.71 84.13 42.98

1 0.70 85.10 43.47

CHM α = 11.72; β = 1.07 20 0.70 84.87 43.36

10 0.70 87.72 44.81

5 0.71 93.90 47.97

1 0.74 120.77 61.69

Echo
  ŷ = αx

β
1
x
γ
2

α = 11.50; β = 1.20; γ = 0.88 20 0.79 70.67 36.10

10 0.79 70.71 36.12

5 0.80 69.66 35.59

1 0.79 70.15 35.83

CHM α = 4.22; β = 1.39; γ = −0.62 20 0.76 73.84 37.72

10 0.77 76.98 39.33

5 0.78 85.43 43.64

1 0.78 128.20 65.49

Barro Colorado Island Echo ŷ = αXβ α = 1.80; β = 1.61 10 0.71 30.08 12.36

5 0.71 30.12 12.38

1 0.70 30.32 12.46

CHM α = 2.07; β = 1.49 10 0.70 30.42 12.50

5 0.70 31.78 13.06

1 0.69 61.30 25.19

Echo ŷ = αx
β
1
x
γ
2

α = 9.24; β = 1.12; γ = 0.11 10 0.71 30.22 12.42

5 0.71 30.25 12.43

1 0.70 30.37 12.48

CHM α = 12.32; β = 0.97; γ = 0.13 10 0.69 31.00 12.74

5 0.70 31.75 13.04

1 0.70 55.93 22.98

Serra do Mar Echo ŷ = αXβ α = 2.69 (3.08); β = 1.88 (0.26) 20 0.44 45.71 10.50

10 0.40 48.02 11.03

5 0.44 46.02 10.57

1 0.58 44.42 10.21

CHM α = 1.68 (2.47); β = 2.00 (0.33) 20 0.45 45.47 10.45

10 0.40 50.63 11.63

5 0.40 63.36 14.56

1 0.46 136.39 31.34

Echo ŷ = αx
β
1
x
γ
2

α = 0.68 (1.43); β = 2.55 (0.42); 
γ = −3.3 (1.08)

20 0.62 37.73 8.67

10 0.58 39.77 9.14

5 0.59 39.26 9.02

1 0.69 38.93 8.94

CHM α = 2.70 (6.60); β = 2.14 (0.48); 
γ = −16.79 (16.34)

20 0.45 45.43 10.44

10 0.38 48.90 11.24

5 0.40 49.53 11.38

1 0.37 67.23 15.45
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Fig. 3 Scatterplots of LiDAR vs field AGB estimates. a Sierra Nevada Mountains; b Barro Colorado Island; c Sierra do Mar. (1) Echo-basedmodel; (2) 
CHM-based model. Models were calibrated using the highest point density available at each study site. The effect of point density of the estimate 
was evaluated by applying the calibrated model to the thinned data. The solid line represents the 1:1 line
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and therefore, the variation in point density did not result 
in a significant trend of variation in the metrics.

Several authors [7, 8, 10] have pointed out the difficulty 
in comparing results from different study sites, sensor 
characteristics and survey configurations. However, our 
results using different sensors and flight specifications 
over remarkably different forest types, showed similar 
results, giving confidence in the robustness of our results.

It should be borne in mind that we simply reduced the 
point density by randomly removing LiDAR returns. In 
this way, we only changed the number of returns avail-
able to compute height and vegetation density metrics 
but other effects associated to the variation of flying 
parameters like footprint size or pulse penetration were 
not altered. However, in an operational scenario, point 
density is reduced by changing either PRF or flight eleva-
tion, which makes other parameters like footprint size 
co vary with point density. The different effects of flight 
and sensor configurations on different echo categories [7, 
9, 14] could also influence some of the metrics derived 
to account for the vertical distribution of vegetation. 
Despite the limitations of the method applied for point 
density reduction, our results agree with other studies 
collecting different datasets under varying data acquisi-
tion configurations.

Effect of plot size on the metrics
Variation of plot size showed different effects for each 
study site for most of the metrics. Disney et  al. [10] 
showed the impact of vertical distribution of vegeta-
tion on the distribution of returns. Varying the plot size 
changed the scale at which the structural patterns were 
measured. Our results showed that metrics describing the 
canopy height (Hmax) and the vertical distribution of can-
opy material through the whole canopy such as AUCW, 
P25H, CV of the height or StdH were more affected than 
metrics representing mean height or other height-related 
percentiles. This effect also depended on both the data 
model and the study site. A significant impact of different 
canopy structures, stratified by age classes and vegetation 
type, on canopy height was also described in other studies 
[9, 10, 15]. As expected, maximum canopy height showed 
significant differences since this metric represents a sin-
gle measurement for a given plot. The fact that metrics 
like mean height or height percentiles were not affected 
by the plot size indicates certain homogeneity in the 
structure of our study sites at different scales. In general 
terms, the differences in height percentiles or mean height 
were below 1 m and smaller than the standard deviation 
of the change when derived from the echo-based model, 
whereas slightly higher differences were observed when 
derived from the CHM. The same was observed in FC, 
with changes smaller than 2%.

Aboveground biomass modeling
The two data models used performed almost equally in 
estimating AGB, which agrees with the results obtained 
by Chirici et al. [12] who found that the data model had 
no significant impact on the results. Table 7 shows that 
R2 and RMSE were almost identical regardless of the data 
model used. BCI and SNM showed similar R2 values but 
the RMSE for SNM was much higher. This is related to 
the smaller plot size of 0.09 ha for SNM compared to 1 ha 
for BCI. Mascaro et al. [16] showed a decrease of 38% in 
the uncertainty of LiDAR based carbon estimates in trop-
ical areas when field plots were scaled from 0.36 to 1 ha. 
Similarly, Frazer et al. [15] reported an increase in model 
accuracy as plots increased from 10 to 25 m radius. An 
increase in plot size reduces the effect of co-registration 
errors between field and LiDAR data, reduces the perim-
eter-to-area ratio, i.e. the edge effect, and reduces sample 
variance [15], thus increasing model accuracy. Neverthe-
less, forest structure plays a significant role in the impact 
of plot size on model accuracy, with different optimum 
sizes found for tropical and temperate coniferous forests 
[15, 16]. As for SdM, the plot size was also 1 ha yet the 
R2 values obtained were generally low, around 0.4–0.5. 
By including the fractional cover into the echo-based 
model, we improved its performance from R2  =  0.44 
and RMSE of 45.71 Mg ha−1 to an R2 = 0.6 and RMSE of 
37.73 Mg ha−1. However, for the CHM-based model the 
inclusion of FC did not improve results in terms of R2 but 
reduced the RMSE; especially at 1 point m−2 for which 
the RMSE was reduced to half of the value obtained using 
only the mean height. Similarly, for the SNM study site, 
the inclusion of FC into the model also resulted in an 
improvement of the model by nearly 10% in R2 and 8% in 
RMSE. Several studies have shown that FC can improve 
AGB estimation from LiDAR data, particularly for het-
erogeneous forests [2, 17, 18].

For SdM, we obtained better performance when the 
model was applied to the lowest point density. However, 
the small sample size (n = 9) prevented us from drawing 
conclusions and further research is needed. Our results 
based on the mean canopy height are similar to those 
obtained by Leitold et  al. [13] for the same study area, 
who obtained an R2 =  0.43. In that study, they pointed 
out a significant impact of point density on mean canopy 
height which translated to errors in AGB estimations. For 
the same study area and datasets, we only found signifi-
cant differences in the estimates for the lowest point den-
sity. Nevertheless, this agrees with Leitold et al.’s results, 
who found that the error in the estimated biomass from 
the thinned datasets only were greater than the model 
error when the point density was lower than 4 points m−2.

Although the AGB estimates obtained by applying the 
calibrated model to the metrics derived from the thinned 
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data significantly differed from those obtained from the 
original data, the errors represented less than 5% in all 
three sites. Therefore, the model can be applied to lower 
density data without a significant loss in accuracy. Larger 
discrepancies were found when the metrics were derived 
from the CHM. In this case, the errors were bounded by 
5% when the point density was reduced to 5 point m−2 in 
BCI and SdM, whereas in SNM this error was obtained 
only at 10 points m−2.

The application of the CHM-based model calibrated 
at the original point density to metrics derived at the 
lowest point density showed a notable decrease in per-
formance, for all study sites, as result of the impact of 
point density on the mean canopy height derived from 
the CHM. Nevertheless, almost identical accuracy was 
obtained when specific models were trained at the low-
est resolution (SNM: R2  =  0.79, RMSE  =  69.57, rel-
RMSE(%)  =  35.54; BCI: R2  =  0.69, RMSE  =  30.82, 
relRMSE(%) =  12.66; SdM:R2 =  0.62, RMSE =  37.60, 
relRMSE(%) = 8.64).

Conclusions
This study has analyzed the effects of point density and 
LiDAR data model on AGB estimates. Both data models, 
echo-based and CHM, showed an almost identical per-
formance across different ecosystems.

Metrics derived from different point densities were 
significantly different; however, the magnitude of the 
mean differences were very small, with values of a few 
centimeters when the point density was higher than 
or equal to 5 points m−2. A larger impact of point 
density was observed in metrics derived from the 
CHM. Despite the significant differences among met-
rics derived from different point densities, the fact 
that their effect on AGB estimates was less than 5% is 
important for biomass monitoring and for an effec-
tive implementation of climate change mitigation poli-
cies such as REDD+. Usually, LiDAR acquisitions are 
configured to achieve a given point density, which has 
important economic implications. For instance, we 
showed that using echo-based metrics point densities 
as low as 1 point m−2 are as effective as very high den-
sity datasets. Nevertheless, when CHM-based metrics 
were used we found that the accuracy of the AGB mod-
els was significantly reduced for point densities below 
5 point m−2. The ability of low point density datasets 
to estimate AGB represents a cost reduction for AGB 
mapping that would allow covering larger areas to bet-
ter capture ABG spatial variability at the landscape 
level.

Although our point thinning approach did not recre-
ate realistic distributions of returns and did not consider 
the covarying effect of return parameters when survey 

parameters are changed, our results on metrics variation 
patterns agree with other studies that actually varied the 
surveying parameters. Also, the consistency of results 
over varying biomes and sensor characteristics reinforce 
our conclusions.

Methods
Study sites
We used three study sites: The first site was the SNM 
in California. The area was affected by a megafire in 17 
August 2013. Our LiDAR data covered the burned area 
(section datasets) plus a 2 km buffer of unburned vegeta-
tion. We restricted our analyses to the unburned buffer. 
The area presents a rough topography with elevations 
ranging from 60 to 2400  m, and mean slopes of 17.5%. 
Vegetation of this area is characterized by chaparral 
and foothill-oak woodland habitat, conifer forests in the 
lower montane zone and mixed conifer forests in higher 
elevation areas. A more detailed description of the study 
site can be found in Casas et al. [19].

The BCI study site is located in Panama and it is cov-
ered by an old-growth moist tropical forest part of the 
Barro Colorado Nature Monument, which is a protected 
national reserve. The island receives approximately 
2636  mm of annual precipitation and has a four-month 
dry season between January and April when 10% of the 
canopy species lose their leaves [20]. Here, we focus on 
a 50 ha forest inventory plot managed by the Center for 
Tropical Forest Science (CTFS) that contains some of the 
largest trees on the Island (up to 54 m).Although most of 
the study site is located in the main plateau of BCI (<10° 
in slope), its south-eastern edge shows slopes that exceed 
30–40° [21]. Additional detail scan be found in Condit 
et al. [20].

The third study site is the Sao Paulo State Park of “Serra 
do Mar” (SdM) in southeast Brazil (23°34′S and 45°02′W; 
23°17′S and 45°11′W). The area is covered by the dense 
vegetation of the Atlantic Forest, under a complex terrain 
with a large elevation gradient 0–1200 m. The predomi-
nant vegetation type is tropical moist evergreen forest 
[22] or lowland to lower montane rainforest [23]. The 
average annual rainfall is approximately 3000  mm (with 
the lowest precipitation in June: 87  mm) and the yearly 
average temperature is 22  °C [24]. More detailed infor-
mation of this site can be found in Leitold et al. [13] and 
Vieira et al. [24].

Datasets
LiDAR data
For the SNM the LiDAR data were collected on Novem-
ber 2013 by the National Center for Airborne Laser Map-
ping (NCALM) using an Optech Gemini Airborne Laser 
Terrain Mapper (ALTM) instrument that recorded up 
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to four returns per pulse. The average point density was 
approximately 20 points m−2. A 1  m digital elevation 
model (DEM) was also provided along with the point 
cloud, which was used to normalize the height of each 
return. Further information can be found in Garcia et al. 
[25].

For BCI the LiDAR data were acquired during the wet 
season of the year of 2009 in 11 separate flights between 
August 15 and September 10, using an Opetch ALTM 
3010 sensor, and were collected by the Blom Corporation 
and Northrop–Grumman, as a part of an NSF project 
[26]. The average point density over the 50 ha plot is 10.8 
point m−2.

For SdM the LiDAR data were collected in April 2012 
by the GEOID Ltda. (Belo Horizonte, MG) as part of the 
Sustainable Landscapes Brazil joint project of the Brazil-
ian Corporation of Agricultural Research (EMBRAPA) 
and the United States Forest Service (USFS). The study 
site was overflown with an Optech ALTM 3100 laser 
scanner instrument and an average point density of 
20  m−2. More detailed information of the LiDAR data 
acquisition and flight parameters can be found in Leitold 
et al. [13].

Field measurements
For the SNM we collected 65 circular 0.09  ha 
(radius =  16.9  m) field plots using a stratified random 
sampling scheme using a Landsat-based pre-fire vegeta-
tion map provided by the U.S. Forest Service as reference. 
The strata were defined by vegetation type (softwood, 
hardwood, and mixed forests) and diameter classes 
(12.7–25.2; 25.2–50.6; 50.6–76 and  >76  cm). For each 
tree with diameter at breast height (DBH) greater than 
10 cm, the species was recorded and the DBH was tallied. 
The center of each plot was positioned using a differen-
tial GPS, with a horizontal accuracy after post-processing 
better than 0.5 m.

AGB was estimated using the National Biomass Esti-
mator Library (NBEL), developed by the Forest Manage-
ment Service Center (FMSC). Further information can be 
found in Garcia et al. [25].

The field measurements over BCI are confined to a 
50 ha (1000 m × 50 m) plot managed by the CTFS. The 
field inventory data have been collected since 1982 [27] 
every 5  years. Here, we use the 2010 census data that 
includes all trees with a DBH greater than 10  cm, with 
measurements made higher on the bole for individuals 
with buttresses or trunk irregularities. The location of 
trees and its species was recorded allowing calculating 
the wood density (kg m−3) for every species. We included 
additional measurements on both DBH and individual 
tree height (TH) for 1604 individuals collected within 
the 50 ha plot during the dry season of 1993 and 1997 for 

allometric model development purposes [28]. It allows 
establishing a DBH-TH relationship to estimate TH 
in order to calculate the AGB for individual trees using 
Chave et al. [29] equations.

For the SdM, DBH of live individuals of tree and palm 
was measured in nine 1  ha permanent forest inventory 
plots established along an altitudinal transect in the 
area [23]. One plot is located in the lowland forest at an 
elevation of 100 m, four plots in the submontane forest 
between 180 and 370 m, and four plots in the montane 
forest at about 1000 m a.s.l [13]. A pantropical allometric 
model developed by Chave et  al. [29] for tropical moist 
forests was applied to estimate the AGB for live trees 
(DBH > 4.8 cm, and for palms (DBH ≥ 4.8 cm), AGB was 
computed using the equation developed by Hughes [30].

LiDAR processing
For each dataset the height of the returns was normal-
ized using a digital elevation model (DEM) provided 
along with the datasets. After normalizing the datasets 
we derived 10 metrics that describe the vertical and hori-
zontal distribution of vegetation and that are commonly 
used to estimate AGB from LiDAR data. These metrics 
included the mean height, percentiles of the height (25, 
50, 75 and 90), the maximum height, the standard devia-
tion, the coefficient of variation of the height distribu-
tions and the fractional cover. Finally we estimated the 
area under the canopy waveform as described in Garcia 
et  al. [25]. These metrics were estimated by consider-
ing only canopy returns (h ≥ 2 m). For BCI, however, a 
threshold of 27 m was applied to compute FC after ana-
lyzing the relationship between crown area and biomass 
for that study area (Meyer, personal communication).

In addition, we derive the referred metrics using 
1 m × 1 m canopy height models (CHM) for comparison 
purposes. The CHM is calculated by selecting the high-
est LiDAR point within each cell. However, due to the 
irregular spatial distribution of airborne LiDAR measure-
ments the products might contain a significant number 
of empty cells, particularly those CHM calculated using 
low-density point clouds (e.g. 1 point m−2). Height infor-
mation for empty cells is commonly derived using infor-
mation from neighboring cells. Accordingly, we applied 
an interpolation method to generate the final CHM prod-
uct. To do this, we first calculated a Delaunay triangula-
tion using the LiDAR points that had been selected to 
compute the original CHM, i.e. the highest point within 
each cell. Then, we interpolated empty cells using the tri-
angulation and a natural neighbor interpolation method.

In order to estimate the effect of point density on the 
metrics we thinned the original datasets to 10 points m−2 
(SNM and SdM), 5 and 1 point m−2. The reduction of the 
point density was implemented by randomly removing 
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points until the desired point density was achieved. 
Although this approach do not recreate the effects of 
changing survey configuration parameters (e.g. decrease 
of PRF or increase of flying height) on the return attrib-
utes and point cloud distribution that would occur under 
operational circumstances, it is a common approach to 
analyze the effect of point density on LiDAR metrics [11, 
13, 31]. The same LiDAR metrics as for the original data-
sets were derived from the thinned datasets.

Statistical analyses
To test the statistical significance of the differences for 
each of the metrics derived, we performed a two-sided 
Wilcoxon signed rank test. This non-parametric test was 
applied since the metrics tested showed a non-normal 
distribution (Kolmogorov–Smirnov test, p value <0.001). 
The two-sided Wilcoxon signed rank test examines the 
null hypothesis that the median difference between two 
samples is zero, against the alternative hypothesis that it 
is not. When evaluating the effect of point density, the 
metrics derived from the thinned datasets were evalu-
ated against the metrics obtained from the original data. 
When evaluating the impact of plot size in the metrics, 
the reference data corresponded to the plot size used in 
the field measurements (0.09  ha for SNM and 1  ha for 
BCI and SdM). When the sample distribution for the dif-
ference between the corresponding metrics was not dras-
tically different from normal, we also applied a two-sided 
one-sample t-test of the hull hypothesis that the mean 
value of the pair-wise difference between the metrics is 
zero. These t-tests yielded the same decisions as the cor-
responding Wilcoxon signed rank tests.

After analyzing the effect of point density and plot size 
on the metrics derived we fitted two exponential models 
to estimate AGB for each study site. The first exponential 
model used only the mean canopy height as explanatory 
variable. The second exponential model also included the 
fraction cover as it has been proved to improve results 
over different environments [2]. We selected mean can-
opy height and FC as explanatory variables because these 
are variables commonly used to model AGB. It should be 
borne in mind that our objectives were to evaluate the 
impact of data model selection—echo-based vs. CHM—
and the point density on the metrics derived from LiDAR 
data. Therefore we did not attempt to find more compli-
cated models or techniques (non-parametric approaches) 
that could help to improve our results.
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