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A carbon balance model for the great 
dismal swamp ecosystem
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Abstract 

Background:  Carbon storage potential has become an important consideration for land management and planning 
in the United States. The ability to assess ecosystem carbon balance can help land managers understand the benefits 
and tradeoffs between different management strategies. This paper demonstrates an application of the Land Use and 
Carbon Scenario Simulator (LUCAS) model developed for local-scale land management at the Great Dismal Swamp 
National Wildlife Refuge. We estimate the net ecosystem carbon balance by considering past ecosystem disturbances 
resulting from storm damage, fire, and land management actions including hydrologic inundation, vegetation clear-
ing, and replanting.

Results:  We modeled the annual ecosystem carbon stock and flow rates for the 30-year historic time period of 1985–
2015, using age-structured forest growth curves and known data for disturbance events and management activities. 
The 30-year total net ecosystem production was estimated to be a net sink of 0.97 Tg C. When a hurricane and six 
historic fire events were considered in the simulation, the Great Dismal Swamp became a net source of 0.89 Tg C. The 
cumulative above and below-ground carbon loss estimated from the South One and Lateral West fire events totaled 
1.70 Tg C, while management activities removed an additional 0.01 Tg C. The carbon loss in below-ground biomass 
alone totaled 1.38 Tg C, with the balance (0.31 Tg C) coming from above-ground biomass and detritus.

Conclusions:  Natural disturbances substantially impact net ecosystem carbon balance in the Great Dismal Swamp. 
Through alternative management actions such as re-wetting, below-ground biomass loss may have been avoided, 
resulting in the added carbon storage capacity of 1.38 Tg. Based on two model assumptions used to simulate the peat 
system, (a burn scar totaling 70 cm in depth, and the soil carbon accumulation rate of 0.36 t C/ha−1/year−1 for Atlantic 
white cedar), the total soil carbon loss from the South One and Lateral West fires would take approximately 1740 years 
to re-amass. Due to the impractical time horizon this presents for land managers, this particular loss is considered 
permanent. Going forward, the baseline carbon stock and flow parameters presented here will be used as reference 
conditions to model future scenarios of land management and disturbance.

Keywords:  Net ecosystem carbon balance, Peatland restoration, Carbon sequestration, Great dismal swamp 
ecosystem, Lateral west fire, LUCAS model
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Background
Quantifying the impacts of land use, land manage-
ment, and natural disturbance on terrestrial carbon (C) 
dynamics is increasingly important as new policies are 
developed requiring land managers to incorporate scien-
tific information on C storage and flux into the decision 

making process. Public lands encompass large contigu-
ous regions of forests, rangelands and wetlands in the 
U.S. and are critical components of the U.S. C balance 
[1, 2]. The potential to sequester additional C in above-
ground vegetation and soils requires a comprehensive 
analysis of C stocks, flux, while considering key driv-
ers of land-use and natural disturbance [3]. Federal and 
State policy directives [4–6] have assigned greenhouse 
gas reduction targets influencing the way in which public 
lands are monitored, measured and assessed, in order to 
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quantify the benefits of C storage and sequestration. To 
achieve policy goals, land managers heavily rely on scien-
tific information and models to inform decision-making.

Models can be valuable tools to help simulate and com-
municate the complex interactions between the key con-
trolling processes of a particular ecosystem; however, 
challenges associated with model integration, compu-
tational constraints, and spatial and temporal data con-
tinuity, can compromise model development, validation 
and magnify uncertainty. Despite the need for simulation 
models that link land use, management and disturbance 
with C cycle dynamics, there is a lack of readily available, 
well-documented, modeling platforms relevant at multi-
ple scales [7]. There are a range of process-based, biogeo-
chemical models, such as CENTURY and Biome BGC [8, 
9] that are publicly available, peer-reviewed, incorporate 
empirical data, and have been applied to many land-use 
and ecological frameworks. There are fewer examples 
of land change models that meet the same comprehen-
sive criteria [7] because land change models commonly 
require data to reflect human behavior, land manage-
ment preferences, and socio-economic indicators. These 
data are often unique to local conditions and difficult to 
scale up or apply to larger regions. For example, agent-
based models such as UrbanSim and Swarm [10, 11] use 
“agents” to calculate the behavior of human actors (e.g. 
land managers, farmers, developers). These models are 
designed to answer specific land management questions 
but are often limited in scalability to other geographic 
areas. Cellular automata models such as SLEUTH [12] 
and CLUE-S [13] use transition rules determined by the 
spatial neighborhood of adjacent cells and have been 
used for multiple applications, but lack rule-based suc-
cessional trajectories that may occur after a disturbance.

A new lineage of state-and-transition simulation mod-
els (STSM) were developed (i.e. VDDT, ST-Sim and 
LANDSUM) [14–16], with the underlying purpose of 
understanding the natural disturbance and succession 
regime of an ecological system. The STSM architecture 
uses a non-stationary Markov chain where the probabil-
ity of a state transitioning to another state can differ at 
particular time-steps. As a result, complex relationships 
between landscape behavior and management can be 
parameterized. STSM’s are similar to cellular automata 
and Markov chain models, but have been modified to 
improve simulation rules, spatial patterns, and pro-
vide for robust data integration [15, 17]. For a thorough 
review of STSM models, see Daniel et  al. [18]. We use 
the publicly available ST-Sim software package [19] as 
the underlying platform for the Land Use and Carbon 
Scenario Simulator (LUCAS) model. The ST-Sim soft-
ware platform offers a spatially explicit STSM coupled 
with a C Stock-Flow model to track annual flows of C 

as a function of land use, disturbance and management. 
A combination of stochastic, deterministic and empiri-
cal parameters guides the transition from one state to 
another within a selected time period [18].

This paper demonstrates an application of the LUCAS 
model [20] developed for local-level land management 
at the U.S. Fish and Wildlife Service (USFWS), Great 
Dismal Swamp (GDS) National Wildlife Refuge in Vir-
ginia. The modeling framework is used to estimate the 
effect of land use, land management, and ecosystem dis-
turbance on C balance in four select vegetation types for 
the GDS (Fig. 1). To verify and validate the effectiveness 
of the model application, we characterize annual changes 
in C stocks and fluxes over a 30-year historical period 
(1985–2015). We estimate the net ecosystem C balance 
by considering past ecosystem disturbances resulting 
from storm damage, fire, and land management actions 
including hydrologic inundation, vegetation clearing, and 
replanting. Primarily we focus on two catastrophic fires 
(South One and Lateral West), and model C loss as an 
impact from fire disturbance. The GDS application of the 
LUCAS model has also been developed as a tool to evalu-
ate priority ecosystem services, including C sequestration, 
as a function of future adaptive management strategies.

Study area and disturbance history
The GDS study area comprises about 54,000  ha, strad-
dling the state border between Virginia and North Caro-
lina. Two main administrative units encompass the study 
area—the Great Dismal Swamp National Wildlife Ref-
uge (GDSNWR) and Dismal Swamp State Park in North 
Carolina (Fig.  1). In the late 18th century, the “Dismal 
Swamp” was documented by surveyors to be 400,000 ha 
of undrained wetland; however, after two centuries of 
draining, ditching, and logging for timber, the swamp 
was hydrologically and ecologically transformed. In 1974, 
the GDSNWR was established with the primary purpose 
of preserving, protecting and restoring the pre-distur-
bance, native ecosystem. Currently, the USFWS manages 
the hydrology, forestry, wildlife and fire regimes of the 
GDSNWR. The complex hydrologic regime is managed 
by using water control structures to adjust inundation 
levels within the swamp. Optimal hydrologic conditions 
are essential for restoring and protecting desired vegeta-
tion communities, flood management, and reducing cat-
astrophic fire. Forestry management consists of restoring 
the once dominant Atlantic white cedar by removing 
competing species, replanting, and monitoring water lev-
els. Wildlife monitoring is managed through inventory 
programs of seasonal bird counting. Fire management 
includes suppression as well as prescribed burns.

To understand and model the vegetation and C dynam-
ics in the GDS, one must gain an understanding of the 
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disturbance regime in the past. The GDS experienced a 
series of catastrophic disturbances in the historic period 
from 1985 to 2015. Beginning in 2003, the strong winds 
from Hurricane Isabel uprooted and flattened approxi-
mately 1200 ha of the last pure stands of Atlantic white 
cedar in the GDS. In response to the impact of the hur-
ricane, the USFWS initiated a large restoration effort to 
mechanically remove the downed deadwood and replant 
Atlantic white cedar. With restoration efforts only weeks 

from completion, and a persistent drought underway, 
a mechanical spark ignited the South One fire in 2008, 
lasting 121 days and consuming 2400 ha. Fire consump-
tion included much of the above-ground biomass and 
a portion of the peat soil. Restoration efforts resumed 
after the South One fire, but less than 5 years later, light-
ning ignited the Lateral West fire in 2011. The fire lasted 
111  days, burning an estimated 2500  ha, and triggering 
peat burns up to 1  m deep in some areas. The damage 

VA
NCGreat Dismal Swamp

Na�onal Wildlife Refuge

Dismal Swamp
State Park

Chesapeake Bay

Richmond

Great Dismal
Swamp

Atlantic White Cedar
Cypress-Gum
Maple-Gum
Pond Pine
Upland Pine
Open Water
Disturbed/ Marsh
Utility/ Roads/ Developed

Forest Communities
Lake 

Drummond

Lateral West
Burn Scar

Agriculture
No Management

Fig. 1  The Great Dismal Swamp study area includes the USFWS National Wildlife Refuge and the Dismal Swamp State Park. Classification of the 
natural communities in the Great Dismal Swamp follows ‘The Natural Communities of Virginia’ [21]. The study area comprises 54,000 ha. These 
vegetation communities represent the major forest types included in the carbon balance model and ecosystem services assessment. We model 
transitions for Atlantic white cedar, cypress-gum, maple-gum and pond pine, but do not model any transitions for the upland pine class
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from the second fire caused the forested peat land to 
transition to standing water and marsh. The biophysical 
conditions leading up to these disturbances as well as the 
impacts from the combination of events can be modeled 
and quantified.

Hydric soils
The GDS is a forested wetland, consisting of hydric soils 
that formed under repeated conditions of saturation, long 
enough during the growing season to develop anaerobic 
conditions in the upper 40 cm [22]. Saturation or inun-
dation creates an anoxic environment, fueling microbial 
activity by the capture of C into the soil. Certain biogeo-
chemical processes, such as the accumulation of organic 
matter and slow decomposition rates, result in deep peat 
profiles (0.3–3 m) with relatively low bulk densities rang-
ing from (0.09 to 0.24 cm3), and C content ranging from 
(46 to 64%) [23]. These unique conditions support a lim-
ited range of vegetation species, including Atlantic white 
cedar (Chamaecyparis thyoide), bald cypress/tupelo-
gum (Taxodium distichum–Nyssa biflora), red maple/
black gum (Acer rubrum–Nyssa sylvatica), and pond pine 
(Pinus serotina).

Forest communities
Atlantic white cedar has a native geographic range from 
Maine to Florida and west to the Mississippi [24]. Pure 
stands of over 50,000  ha once dominated the GDS, yet 
recent vegetation maps show the species covering about 
1600 ha, only 3% of the GDS (Fig. 1). Favorable conditions 
for Atlantic white cedar are considered stressful for other 
conifer species. These conditions include 4–6  months 
annually of water inundation, a shallow water table aver-
aging 10 cm from the surface during the growing season, 
acidic soils with a pH ranging from 3.2 to 4.4 [24, 25], and 
fire-dependency for natural re-generation. Atlantic white 
cedar show steady height and diameter breast height 
(DBH) growth until 40 or 50 years of age. After 50 years, 
their height reaches its maximum, but DBH growth con-
tinues to increase until 100  years of age [26]. Natural 
mortality averages between 70 and 200  years (Table  1); 
however, mortality is greatly influenced by disturbances 
such as draining, drought, invasion of hardwoods within 
the first 5 years of growth, fire or hurricane winds. Cata-
strophic fire events can lead to the reduction of Atlantic 
white cedar stands if the water table at the time of igni-
tion is below normal or the soil is too dry, causing the 
seed bank to burn. As a result, maple-gum and cypress-
gum trees tend to repopulate these areas [27–29].

Cypress-gum (Taxodium distichum–Nyssa biflora) 
stands in the GDS are dominated by bald cypress and 
tupelo gum, [24]. Cypress-gum stands are characterized 
by frequent, prolonged flooding from January to June, on 

poorly drained soils. They are slow-growing, but long-liv-
ing in comparison to the other forest communities in the 
GDS reaching their maximum height at 200  years [26]. 
Mortality can occur naturally any time after 200  years, 
but disturbance often shortens this life span. Cypress-
gum stands have the highest above-ground C densities in 
the GDS [25, 30–32].

Historical maps and records show large proportions of 
dominant bald cypress stands within the wetter gradi-
ent of the GDS, while the current footprint covers only 
12% of the swamp (Fig. 1). The sampling done in the late 
1970s showed an average age of 86 years, with an average 
basal area growth of 0.94 m2/ha−1/year−1 [25]. Day [27] 
discusses a reduction in the abundance of bald cypress in 
the GDS as a result of drying conditions and logging.

Maple-gum is a forest community found in the GDS 
that includes red maple (Acer rebrum) and black gum 
(Nyssa sylvatica). Red maple, the dominant of the two, 
is a hardwood species that is native to a wide region in 
North America, ranging from Newfoundland in the 
north, to Florida in the south, and as far northwest as 
Illinois and southwest to Texas [33]. With the geographic 
gradient in range comes the ability to withstand the same 
wide variance in climate, soil type and topography. Red 
maple can grow in conditions ranging from dry escarp-
ments to peat bogs. Given this high level of adaptation, 
and a legacy of ecosystem alteration, maple-gum has 
become the dominant forest community in the GDS cov-
ering approximately 61% of the landscape (Fig.  1). The 
life span of maple-gum is shorter than the other forest 
communities, reaching full maturity at 70–80 years, and 
rarely living beyond 150 years. Average mature trees are 
18–27 m in height and 46–76 cm in DBH [34].

Pond pine (Pinus serotina), is a fire-adapted species 
that is predominantly located along the Atlantic Coastal 
Plain from Virginia to South Carolina [29]. Pond pine is 
commonly found in pocosin wetlands, which is why the 
forest type is often referred to as ‘pond pine pocosin’ in 
the GDS. Biophysical characteristics of the species vary 
based on peat depth, soil saturation, and fire history. 
Pond pine stands present in seasonally flooded swamps 
are stunted in growth compared to the same species 
growing in drier soils with good drainage. The height 
of pond pine increases with decreasing peat depth. An 

Table 1  Forest age classes representative by species in the 
Great Dismal Swamp

AWC Atlantic white cedar; CG cypress-gum; MG maple-gum; PP pond pine

Forest age class AWC [29] CG [26] MG [26] PP [29]

Young 0–8 0–15  0–15 0–5

Intermediate 8–70 15–200 15–79 5–40

Mature 70–500 200–1000 80–200 40–400
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open canopy with an intermediate age of 10 years aver-
ages heights of 3 m, while a mature stand with an age of 
50 years averages a height of 14 m and an average DBH 
of 26 cm [35]. More than 15% of the GDS is covered by 
pond pine (Fig. 1) and restoration efforts have been suc-
cessful by removing maple-gum stands and replanting 
pond pine.

Methods
Model purpose and design
The LUCAS model was initially developed to bridge the 
gap between spatial allocation models capable of charac-
terizing land-use and management actions, and process-
based models for biological C cycle dynamics. To do this, 
the model uses a STSM model coupled with a C Stock-
Flow model. This paper describes the LUCAS model 
development for the GDS, which annually tracks changes 
in four vegetation communities (Atlantic white cedar, 
cypress-gum, maple-gum and pond pine) and their cor-
responding C stocks. Below we present the parameteri-
zation of the LUCAS model to estimate C balance of the 
GDS ecosystem for the historic period 1985–2015.

State variables and scales
The spatial extent of the GDS model corresponds to the 
current managed lands within the GDSNWR and the 
Dismal Swamp State Park covering about 54,000 ha. The 
landscape was partitioned into a spatial grid of 100 m by 
100  m (1-ha) simulation cells. Simulations were run for 
30 years on an annual time-step spanning the historical 
period 1985–2015.

Each simulation cell is defined by a unique set of state 
variables that characterize the landscape conditions [18]. 
For this model, the first state variable consists of six land-
cover/vegetation types (state classes) intersected by two 
moisture zones (strata). The state classes coincide with 
the desired and undesired vegetation types central to 
land management: Atlantic white cedar (desired), pond 
pine (desired), cypress-gum (desired), maple-gum (unde-
sired), Marsh (undesired) and Open Water. Delineation 
of the moisture zones (Wet and Dry) was based on inter-
active mapping done by local land managers, stakehold-
ers and scientists. The second state variable is the age of 
each cell. All cells with state variables that are associated 
with forest vegetation are assigned an age (i.e. how old 
the tree is), which is tracked in annual time-steps for the 
duration of the model simulation.

Transitions are used in the model to signify conver-
sions from one state class to another within an annual 
time-step. Transition pathways are defined to represent 
all possible conversions simulated within the model 
including changes associated with alternative succession, 
wildfire, large storms, restoration, management, and 

changes in the size and spatial distribution of moisture 
strata (Fig. 2). The order in which the transition pathways 
are conducted is random for each time-step. Transition 
probabilities are assigned to each pathway and can be 
specified as stationary or varying. This flexibility allows 
one to measure the sensitivity of individual variables dur-
ing calibration. Figure  2 illustrates a pathway diagram 
with all possible transitions between states using a box 
and arrow design. The boxes represent the state types 
and the arrows represent the possible transitions with 
colors and dashes representing different transition types.

Transition probabilities
With the LUCAS model, transitions can be defined 
as probabilistic transitions or as discrete area targets. 
For this model we used transition targets to represent 
known events that occurred over the historical model 
period, including wildfires, storm damage, and manage-
ment activities. The Monitoring Trends in Burn Severity 
(MTBS) database provided the spatial distribution, sever-
ity, and frequency of fires (i.e. patch size, location and 
date) for the years 1984–2014 [36]. Within the Dry strata, 
if two fires occurred on the same patch, within 5 years of 
each other, the second fire was classified as “repeat cata-
strophic fire”. For high severity and repeat catastrophic 
fires, the age of the cell was reset to zero while medium 
and low severity fires did not result in a reset of age. We 
simulated six fire events over the 30-year simulation, 
including the South One (in 2008) and Lateral West (in 
2011; repeat catastrophic). In years with an identified 
fire, the transition probability for each cell within the 
burn perimeter was set to 1.0 and all other cells were set 
to zero. Fire severity within a burned area was simulated 
randomly based on proportions derived from the MTBS 
dataset (Table 2).

To represent storm damage over the historical period 
we assumed within the South One/Lateral West perim-
eter, 625  ha of Atlantic white cedar was destroyed as a 
result of Hurricane Isabel in 2003 [37]. As a result, the 
age of each impacted forest cell was reset to zero. Resto-
ration efforts in these storm-impacted areas initiated the 
mechanical removal of dead trees followed by replant-
ing Atlantic white cedar seedlings. Within the model, 
we estimated 316  ha were treated over a 4-year period 
between 2004 and 2007 [37].

Alternative successional pathways (i.e. conversion 
from Atlantic white cedar and pond pine to maple-gum) 
represent the conversion from one state class type to 
another as a result of natural disturbance. Probabilities 
were derived from LANDFIRE’s biophysical settings 
models [29] and specified for the Atlantic white cedar 
and pond pine forest communities. Conversion to the 
maple-gum state class was made possible for state class 
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types where the age of the cell was less than or equal to 
5  years old. The rationale behind this transition param-
eter is that alternative succession has the highest prob-
ability of occurring if the forest stand was recently 
cleared. If an Atlantic white cedar stand regenerates and 
grows for 5 years, the stand is considered established and 
the probability of alternative succession to maple-gum 
greatly declines. Within the Dry zone, the probabilities 
for Atlantic white cedar and pond pine were 0.80 and 
0.50, respectively. Within the Wet zone, the probabilities 
were 0.04 for Atlantic white cedar and 0.01 for pond pine. 
Additionally, adjacency rules were established to drive 
the spatial placement of transitions into cells immediately 
adjacent to existing cells classified in the “to” category. 
For example, transitions into maple-gum due to alterna-
tive succession can only occur in cells directly adjacent 
to existing maple-gum cells. The adjacency rule uses a 
“moving window” approach to evaluate the eight neigh-
boring cells around it. The result gives the cell with the 
highest proportion of matching neighbors, the highest 

likelihood of transitioning. The process for calculating 
adjacency probabilities was updated every 5 years for all 
transitions.

Carbon stock‑flow model
In addition to state-and-transition modeling functions 
to simulate ecosystem behavior and management, the 
ST-Sim software offers a stock and flow module/add-
on that tracks changes in C stocks and flows (i.e. fluxes) 
over time. To evaluate C budgets as a function of land 
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Fig. 2  Pathway diagram for the Great Dismal Swamp state-and-transition simulation model. The boxes represent the state types and the lines with 
arrows represent the possible transitions. The different colored lines signify the different transition types. The blue arrows indicate a strata change 
from Dry to Wet due to restoration (hydrologic re-wetting). The brown arrows indicate a strata change from Wet to Dry due to managed draining or 
prolonged drought. The Dry strata represent a vulnerable system at risk of catastrophic fire and hurricane events

Table 2  The proportion of  all fires that  fall within  high, 
medium, or low burn severity

These values are derived from the MTBS dataset [36]

Transition type Proportion Age reset

FIRE: high severity 0.163 Yes

FIRE: med severity 0.409 No

FIRE: low severity 0.428 No
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management, the GDS project objective devises the use 
of all ongoing in situ field work to characterize biomass 
stocks and flow rates. Since this field collection is not 
complete to date, the baseline C budget has been devel-
oped using literature values. Table  3 shows the specific 
stocks and flows that are modeled as part of the base-
line C budget for the GDS, as well as the data source 
and method by which they were derived. The stock and 
flow model tracks C stocks (i.e. pools or reservoirs) as a 
biomass measurement for each simulation cell using a 
gain-loss method consistent with “good-practice” rec-
ommendations from the Intergovernmental Panel on 
Climate Change (IPCC) [38]. Within each time-step (e.g. 

year), C can flow from one stock to another at specified 
rates, capturing annual gains and losses. The equation 
below shows an explanation of how the IPCC-recom-
mended, gain-loss method is calculated.

where, A area of land, ha; Cg annual rate of gain (flow) of 
carbon, metric tons C per ha per year; Cl annual rate of 
loss (flow) of carbon, metric tons C per ha per year.

The stock and flow values used to initialize the 
model were derived from a body of work (see Table 3 
for references) from the 1970s and 1980s, consisting of 

�C =

∑

[

A ∗

(

Cg − Cl

)]

Table 3  Field collection methods for each stock and flow type

Stock and flow types listed here correspond to the types used for the LUCAS baseline C budget

AWC Atlantic white cedar; CG cypress-gum; MG maple-gum; PP pond pine; NPP Net Primary Productivity
a  Core samples collected by U.S. Geological Survey in 1999 and 2013 and sent to Natural Resources Conservation Service Soil Survey Laboratory, Lincoln, NE

Stock and flow types Method Species dependent Reference

Carbon stocks

Live leaf Diameter mass regressions AWC, cypress-gum, maple-gum, mixed 
hardwood

[39]

Livewood Diameter mass regressions AWC, cypress-gum, maple-gum, mixed 
hardwood

[39]

Leaf litter Forest floor harvest AWC, cypress-gum, maple-gum, mixed 
hardwood

[40]

Deadwood Forest floor harvest AWC, cypress-gum, maple-gum, mixed 
hardwood

[40]

Live root Pit harvest Maple-gum [32]

Live/dead root Ratios Monthly core sampling (1 year) Maple-gum [41]

Root necromass (Dead) 50% of live root–average live/dead root ratio Maple-gum [41]

Soil-upper peat (0–40 cm) Bulk density, C content, organic matter 
content a

AWC, cypress-gum, maple-gum, mixed 
hardwood

This study

Soil-deep peat (41–100 cm) Bulk density, C content, organic matter 
content a

AWC, cypress-gum, maple-gum, pond pine This study

Annual carbon flows

Above-ground NPP Diameter increments and regressions AWC, cypress-gum, maple-gum, mixed 
hardwood

[25, 31]

Below-ground NPP Monthly core sampling Maple-gum [41]

Leaf litterfall Litter Baskets AWC, cypress-gum, maple-gum, mixed 
hardwood

[42]

Tree mortality 1.5% of total Live Wood (3% on AWC) AWC, cypress-gum, maple-gum, mixed 
hardwood

[43, 44]

Root mortality Monthly core sampling Maple-gum [41]

Leaf litter decay Mass loss from litter bags Maple-gum [27]

Deadwood decay Mass loss from pre-weighted bole and 
branches

Maple-gum [27]

Root necromass Decay Mass loss from litter bags AWC, cypress-gum, maple-gum, mixed 
hardwood

[41]

Humification to soil Mass balance AWC, cypress-gum, maple-gum, mixed 
hardwood

[43]

Soil/peat respiration—upper peat (0–40 cm) Steady-state assumption (gain = loss) AWC, cypress-gum, maple-gum, pond pine This study

Soil/peat accumulation-deep peat 
(41–100 cm)

Long term average accumulation 
rate = 0.2 t C/ha−1year−1

AWC, cypress-gum, maple-gum, pond pine [45, 46]
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on-site field collection for the GDS forest communities 
of interest. The C stock types that have been identified 
and modeled for this application include: live wood, 
live leaf, live root, deadwood, leaf litter, dead root, and 
soil (peat). The C stock densities for each state class 
(forest type) that were used to initialize the model 
are shown in Table  4. These values represent mature 
stands or forest age to growth relationships that are in 
equilibrium. There were a few limitations related to the 
literature values that needed to be addressed for model 
development. Megonigal and Day [43] modeled four 
forest communities in the GDS (Atlantic white cedar, 
cypress-gum, maple-gum and mixed-hardwood). Car-
bon values for pond pine are not included in the lit-
erature we have chosen to use for this model. Although 
there are many individual biomass variables for pond 
pine from other sources [47, 48], none provide the 
level of thematic detail across above and below-ground 
categories consistent with our approach. Therefore, 
the stock values for pond pine shown in Table  4 are 
an average of Atlantic white cedar, cypress-gum and 
maple-gum.

Live organic matter (live wood, live leaf, live roots)
Live organic matter consists of living vegetation above 
and below the soil. The literature values in Table 4 show 
an average live biomass value of 130.97 t C/ha−1, across 
all forest sites. When looking at the minimum and maxi-
mum by forest type, cypress-gum has the highest density 

at 176.98 t C/ha−1 and maple-gum has the lowest value at 
101.21 t C/ha−1. Maple-gum reaches age to growth matu-
rity around 80 years, whereas a healthy cypress-gum does 
not reach maturity until 200 years (Table 1), accumulat-
ing larger stocks. The lateral root standing stock (coarse 
and fine roots) values were derived from pit harvesting 
methods in the GDS with a mean estimate of 4.5 t C/ha−1 
[32].

Dead organic matter (deadwood, leaf litter, dead roots)
Dead organic matter in a forested ecosystem refers to 
non-living biomass including deadwood, litter, and root 
necromass (dead roots). For the LUCAS model, the 
deadwood stock accounts for both standing and downed 
deadwood. Atlantic white cedar had the highest biomass 
density in the literature at 25.07  t  C/ha−1 compared to 
maple-gum with a value of 13.37 t C/ha−1. Storm blow-
downs and higher mortality rates, coupled with very 
slow decomposition, account for the large accumulations 
of coarse woody debris in Atlantic white cedar stands. 
For the LUCAS model, leaf litter has an average den-
sity of 4.55 t C/ha−1. Dead roots are an important stock 
to account for in productive below-ground ecosystems. 
Based on core sampling at 1-month intervals in 1983–
84 [41], dead roots are given a mean biomass density of 
2.11 t C/ha−1.

Soil organic matter (peat)
Soils in the GDS are a critical component of total ecosys-
tem C due to the high percentage of organic matter and C 
content in peat, relatively low bulk density, and the sub-
stantial depths of mucky peat. The soil organic C value 
used to initialize the model was calculated based on bulk 
density and C content. Soil bulk density and carbon con-
tent were measured for 23 samples in 2013 and 3 samples 
in 1999 by the Natural Resources Conservation Service 
(NRCS) Soil Survey Laboratory in Lincoln, NE, USA [23]. 
Bulk density ranged from 0.09 to 0.24  g/cm3 and had a 
mean of 0.16 g/cm3 (160 cm3). Carbon content measured 
between 46 and 64% of total soil matter, with a mean of 
59%. Organic matter averaged 95% among all samples. 
The U.S. Geological Survey (USGS) GDS project team 
is developing a spatial peat depth map, where each cell 
will have a unique depth; however, these data are not cur-
rently available, and so the LUCAS model used a stand-
ardized 100-cm (1-m) depth across the GDS (Fig. 3).

Carbon flows
Carbon flows are the measured transfer of C from one 
stock to another, and are often expressed as an annual 
rate. The current USGS fieldwork for the GDS includes 
obtaining in  situ flow measurements from greenhouse-
gas flux towers; however, these records are a multi-year 

Table 4  Initial carbon stock types and carbon density val-
ues by forest type

Values for ‘Upper Peat’ and ‘Deep Peat’ are calculated with a standardized depth 
and soil chemistry characteristics (bulk density, organic matter and carbon 
content) that were measured on site. The model uses an initial peat depth of 
100 cm for the entire swamp. Values are in tons carbon per hectare

AWC Atlantic white cedar; CG cypress-gum; MG maple-gum; PP pond pine
a  Pond pine (PP) values are an average of Atlantic white cedar (AWC), cypress-
gum (CG), and maple-gum (MG)
b  NPP (net primary productivity) represented as an annual gain (t C/ha−1/
year−1)
c  Deep Peat was added as a passive carbon pool to allow the model to store 
carbon with long term carbon accumulation rates

Stock type AWC CG MG PPa Average

NPPb 11.35 10.78 9.29 10.47 10.47

Live leaf 5.42 3.00 2.91 3.77 3.77

Live wood 103.87 169.52 94.62 122.67 122.67

Live root 5.46 4.46 3.68 4.53 4.53

Leaf litter 5.03 4.46 4.15 4.55 4.55

Dead wood 25.07 22.70 13.38 20.38 20.38

Dead root 2.54 2.07 1.71 2.11 2.11

Upper peat (0–40 cm) 358.40 358.40 358.40 358.40 358.40

Deep peat (41–100 cm)c 537.60 537.60 537.60 537.60 537.60
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collection process and are not yet available for use as 
input parameters. As an alternative, C flow types and 
amounts reported in the literature (Tables 5, 6) have been 
parameterized within LUCAS to complete the baseline 
C budget analysis. Figure  4 shows a conceptual path-
way diagram where the green rectangles represent the C 
stocks and the blue ovals represent the C flows. To visu-
ally demonstrate the C stock and flow amounts and how 
they move through an Atlantic white cedar forest, the 
diagram in Fig. 5 shows the annual C budget used to ini-
tialize the LUCAS model.

Net primary productivity
Net primary production (NPP) is defined as the rate of 
live organic matter accumulation over a set time interval 
(e.g. annual), and is calculated as the difference between 
photosynthesis and autotrophic respiration within 
the given year. NPP operates as the primary input flow 
parameter for the LUCAS model. Global NPP is esti-
mated at 60 Gt C year−1, which is about half of the esti-
mated gross primary production at 120 Gt C year−1 [49].

In the GDS literature, above-ground NPP on periodi-
cally flooded sites ranged from 5.3–5.9  t C/ha−1  year−1, 
which is substantially greater than the above-ground 
NPP on the rarely flooded site, which had a value of 
4.2  t  C/ha−1  year−1 [25, 31]. In a more recent study of 
Atlantic white cedar in the GDS, Atkinson [50] sampled 
60 mature and intermediate plots at the GDS between 
1998 and 1999, obtaining values of live biomass, litter-
fall, and woody debris. Above-ground NPP was reported 
to be 5.0 t C/ha−1 year−1 on mature stands and 4.0 t C/
ha−1  year−1 on intermediate stands. Below-ground NPP 

can have a substantial contribution to total NPP. The 
below-ground NPP used in the LUCAS model was 8.3, 
6.9 and 3.6 t C/ha−1 year−1 for maple-gum, Atlantic white 
cedar and cypress-gum, respectively [41]. When a site 
is flooded, the anoxic environment slows or stunts the 
below-ground productivity, yet accelerates the growth 
and accumulation of above-ground biomass. In more 
recent field studies in the GDS, Atkinson [50] reports 
below-ground NPP on age-classed Atlantic white cedar 
sites using a microvideo camera with minirhizotrons 
at 45-day intervals to a depth of 64  cm. Mature sites 
reported the highest productivity at 3.93 t C/ha−1 year−1. 
The mature sites also reported the highest root mortality.

Litterfall, mortality, and humification
Litterfall represents the annual flow between living bio-
mass (live wood, live leaf, live roots) and dead biomass 
(leaf litter, deadwood, and dead roots). The GDS LUCAS 
model uses an annual leaf litter production ranging from 
2.3  t  C/ha−1  year−1 at a mixed hardwood study site to 
2.7 t C/ha−1 year−1at a maple-gum site based on Gomez 
and Day [42]. Atkinson [50] observed a total annual lit-
terfall in 1999 of 3.7 t C/ha−1 year−1 at the GDS-Mature 
site and 3.4 t C/ha−1 year−1 at the GDS-Intermediate site. 
In another study, leaf litter was collected at the GDS over 
372  days; mature trees totaled 3.0  t  C/ha−1  year−1 and 
intermediate trees totaled 2.4 t C/ha−1 year−1 of leaf lit-
ter. A 2014 paper [51] reported that leafy litter consists of 
78–86% of the total above-ground litter production, and 
woody litter (branches) consists of 11–19%.

The rate at which trees and branches fall and transi-
tion from live biomass to dead biomass, also known as 

0

200

400

600

800

1000

Live Tree
(Wood +

Leaf)

Roots (Live
+ Dead)

Litter Deadwood
(Downed +

Snags)

Soil (Peat
0-100 cm)

tC
/h
a-

1

Average Carbon Storage in Various Pools

358

538

896

0

200

400

600

800

1000

Peat Profile

Upper Peat 0-40 cm

Deep Peat 41-100 cm

Total 0 - 100 cm

Fig. 3  Average carbon storage by stock type. Carbon density values for both of the peat profile types used in the LUCAS model. One value is given 
for the Upper Peat stock, which represents 0–40 cm depth. One value is given to the Deep Peat which represents 41–100 cm depth. Carbon density 
values are calculated based on 100 cm depth using a bulk density of 160 cm3, an organic matter percentage of 95% and a C content of 59%. Values 
are in tons carbon per hectare



Page 10 of 20Sleeter et al. Carbon Balance Manage  (2017) 12:2 

the mortality rate, has been estimated and converted 
into an annual rate for the four forest communities. The 
method that was used to estimate woody litter inputs 
comes from Waring and Schlesinger [44] and assumes 
the annual mortality to 1.5% of the live wood biomass 
stock. Atlantic white cedar has relatively high mortality 
in comparison, so an annual rate of 3% of the live wood 
biomass stock was used to calculate this flow in the 
LUCAS model.

According to Megonigal and Day [43], over 50% of the 
total organic matter that is transferred to the soil layer, 
comes from roots, therefore it is important to use direct 
measurements whenever possible. The root mortality 
rates used in the model make the assumption that root 
mortality equals that of root production (below-ground 
NPP); therefore, the values in Table 6 are slightly higher 
than the original sample of 3.5  t  C/ha−1 year−1. An 
important assessment to make between the annual leaf 

Table 5  Stock-flow pathways given as a proportional multiplier

In the Stock-Flow model, annual flows are expressed as a proportional multiplier of the “From Stock”. For example, when calculating Leaf Litter to Peat (Humification), 
the model would multiply the Leaf Litter “From Stock” value by the multiplier value (0.23)

AWC Atlantic white cedar; CG cypress-gum; MG maple-gum; PP pond pine; NPP net primary productivity

From stock To stock Flow type AWC CG MG PP

Atmosphere Living leaf Growth:NPP 0.268 0.278 0.314 0.285

Atmosphere Living wood Growth:NPP 0.194 0.258 0.242 0.230

Atmosphere Living root Growth:NPP 0.538 0.464 0.444 0.485

Living leaf Leaf litter Litterfall 0.340 0.470 0.500 0.420

Living wood Deadwood Mortality 0.021 0.016 0.023 0.018

Living root Dead root Litterfall 0.528 0.528 0.528 0.528

Leaf litter Peat Humification 0.230 0.250 0.230 0.240

Deadwood Peat Humification 0.035 0.050 0.025 0.040

Dead root Peat Humification 0.627 0.585 0.595 0.605

Leaf litter Atmosphere Emission 0.180 0.176 0.229 0.185

Deadwood Atmosphere Emission 0.050 0.060 0.085 0.067

Dead root Atmosphere Emission 0.213 0.294 0.275 0.258

Upper peat Atmosphere Emission 0.022 0.019 0.015 0.019

Upper peat Deep peat Peat accumulation 0.0012 0.0015 0.0010 0.0010

Table 6  Stock-flow pathways given as a carbon stock density in annual tons of carbon per hectare

The ± columns signify the difference between the actual value and the value after model calibration

Annual flows are given as an annual carbon density (t C/ha−1yr−1)

AWC Atlantic white cedar; CG cypress−gum; MG maple-gum; PP pond pine; NPP net primary productivity

From stock To stock Flow type AWC ± CG ± MG ± PP ±

Atmosphere Living leaf Growth:NPP 3.040 0.002 2.995 0.002 2.915 0.002 2.983 0.001

Atmosphere Living wood Growth:NPP 2.250 −0.048 2.785 −0.004 2.250 −0.002 2.413 −0.005

Atmosphere Living root Growth:NPP 6.105 0.001 4.995 0.007 4.120 0.005 5.073 0.005

Living leaf Leaf litter Litterfall 2.535 −0.692 2.640 −1.230 2.680 −1.225 2.618 −1.035

Living wood Deadwood Mortality 3.090 −0.909 2.600 0.112 1.420 0.756 2.370 −0.162

Living root Dead root Litterfall 6.105 −3.222 4.995 −2.640 4.120 −2.177 5.073 −2.681

Leaf litter Peat Humification 1.625 −0.468 1.685 −0.570 1.445 −0.491 1.585 −0.493

Deadwood Peat Humification 1.280 −0.403 1.150 −0.015 0.280 0.055 0.903 −0.088

Dead root Peat Humification 5.420 −3.827 4.135 −2.924 3.470 −2.453 4.342 −3.065

Leaf litter Atmosphere Emission 0.091 0.814 0.955 −0.170 1.235 −0.285 1.033 −0.191

Deadwood Atmosphere Emission 1.810 −0.557 1.450 −0.088 1.140 −0.003 1.467 −0.102

Dead root Atmosphere Emission 0.685 −0.144 0.860 −0.251 0.650 −0.180 0.732 −0.188

Upper peat Atmosphere Emission 7.940 −0.290 7.510 −0.810 6.260 −0.526 7.240 −0.392

Upper peat Deep peat Peat accum. 0.360 0.007 0.120 0.009 0.140 0.011 0.170 0.010
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litterfall rate (2.5 t C/ha−1yr−1) and the root litterfall rate, 
is the fact that root turnover contributes more mass to 
the detritus pool than leaf litterfall. These findings under-
line the importance of below-ground productivity in the 
GDS ecosystem and the potential C transfers to the soil/
peat pool. The humification process converts leaf litter, 
deadwood, and root necromass into soil organic matter 
by means of microbial decomposition. See Table  5 for 
actual humification flow amounts used in the LUCAS 
model.

Emissions
Heterotrophic respiration is a key ecosystem process 
that removes C from the soil layer to the atmosphere in 
the form of CO2. Respiration rates are extremely impor-
tant to understand as they play a large role in the global 
C cycle. While structuring C budgets as a sequence of 

gain-loss correlations, heterotrophic respiration in soil 
often represents the end of the sequence, or the final 
amount of C removed from the terrestrial ecosystem. 
The literature did not provide a value for heterotrophic 
respiration.

Atkinson [50] calculated net peat respiration (total 
soil emissions–root respiration) at Atlantic white cedar 
stands in the GDS and a similar system in Alligator River 
NWR in eastern North Carolina. The GDS site revealed 
an annual soil respiration value of 7.1  t  C/ha−1year−1, 
higher than the value of 4.0  t  C/ha−1year−1 at Alliga-
tor River. These results indicate that lower water tables 
from draining cause an accelerated loss of C compared 
to the mature Atlantic While Cedar stand in the Alliga-
tor River, where water tables are consistently higher. 
Anoxic soil conditions in productive forested wetlands 
limit the decomposition or decay of dead organic matter, 
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contributing to greater accumulations of detritus bio-
mass and C sequestration [52, 53].

We divide the peat structure into two layers based on 
depth and hydrology. The acrotelm, or upper peat layer 
(0–40 cm depth), is periodically occupied by water, and has 
a higher yield, a higher permeability and a faster decompo-
sition rate than the deep peat layer. The upper peat pool 
is where the model simulates heterotrophic respiration. 
The catotelm represents the deep peat layer (41–100 cm), 
which is permanently below the water table where micro-
bial activity is very slow. The transfer of C from the upper 
peat to the deep peat layer is denoted in the model as the 
“Peat Carbon Accumulation” rate and is the mechanism 
for long-term C storage. Scientists are not certain if the 
GDS is a net sink or a net source of annual C. We model 
the upper peat at a steady state, where nearly all of the C 
flowing into the upper soil layer is lost to the atmosphere 
through respiration. We model a slight annual C sink from 
the upper peat to the deep peat; however, these values are 

a major source of uncertainty. Table 7 provides the range 
of literature values for peat C accumulation rates at vari-
ous geographic scales. Based on this range of values from 
peatlands around world, we used a conservative average of 
0.20 t C/ha−1 year−1 from the temperate boreal zone [45]. 
Through a model calibration process, we derived vegeta-
tion-specific peat C accumulation rates.

Calibration
Forest age to biomass “spin up” simulation
Developing models that simulate complex ecosystem pro-
cesses requires calibration and verification of the input 
variables. The C stocks we use are primarily based on 
mature forest stands; however, the stock-flow model runs 
at an annual time-step, modeling incremental growth 
and decay. In order to correlate the C flow rates with age-
structured C stock densities, biomass growth curves are 
needed by species. We generated growth curves for each 
stock type by running a 300-year spin-up scenario in the 

BELOWGROUND LIVE BIOMASS Stock (tC/ha)
Live Roots = 5.45

ROOT NECROMASS Stock (tC/ha)
Dead Roots = 2.53

NET PRIMARY PRODUCTIVITY (annual gains tC/ha/yr)

AGNPP (leaf + wood) = 5.25 BGNPP (roots) = 6.10
Total NPP (AG+BG) flux = 11.35

LITTERFALL (within budget transfer tC/ha/yr)
Leaf Litterfall Flux = 2.53
Tree Mortality Flux = 3.09
Root Mortality Flux = 6.10 

EMISSIONS/DECAY (annual losses tC/ha/yr)
Leaf Litter Decay Flux = 0.91
Deadwood Decay Flux = 1.81

Root Necromass Decay Flux = 0.68
Soil/Peat Emission Flux = 7.94

Li�erfall Humifica�on

N
et

 G
ai

n

N
et

 G
ai

n

ABOVEGROUND LIVE BIOMASS Stock (tC/ha)
Live Leaf = 5.42     Live Wood = 103.87

Li
�
er
fa
ll

Em
ission

Em
ission

ATMOS PH E R E

Em
ission

DETRITUS Stock (tC/ha)
LEAF LITTER = 5.03   DEADWOOD = 25.07 

TRANSFERS TO SOIL (within budget transfer tC/ha/yr)
Leaf Litter Humification Flux = 1.62
Deadwood Humification Flux = 1.28 

Root Necromass Humification Flux = 5.42

UPPER PEAT (0-40 cm) Stock 
SOC = 358.0 (tC/ha)

DEEP PEAT (41-100 cm) Stock 
SOC = 537.0 (tC/ha) 

Fig. 5  Carbon budget diagram for Atlantic white cedar in the Great Dismal Swamp



Page 13 of 20Sleeter et al. Carbon Balance Manage  (2017) 12:2 

stock-flow model. The first step in the process was to run 
the model in “cold-start” mode, where in the first year of 
the simulation all forest cells were given C stocks of zero, 
signifying a forest age of zero. The stocks were initialized 
with zero biomass, but the NPP and associated flow rates 
(growth, litterfall, mortality, humification and emissions) 
discussed in the prior section remained the same. This 
simulation resulted in four forest growth curves, where 
the growth/age equilibrium was found (Fig. 6).

In Fig. 6, cypress-gum reaches a biomass to age equi-
librium at approximately 200 years old with a C biomass 
density of 160 t C/ha, which corresponds well with their 
slow growth yet long life-span. The literature indicates 
that this species contains more above-ground biomass 
per unit area, than the other species in the GDS [25, 
30–32]. The model produced similar curves for Atlantic 
white cedar and maple-gum, both finding equilibrium 
at about 100  years with a C biomass of approximately 
92  t C/ha. The literature indicates the mature stand age 
for both of these species to be about 70 or 80 years with a 
live tree C biomass between 85 and 105 t C/ha, depend-
ing on the health of the stand.

The spin-up model estimates were compared with 
Forest Inventory Analysis (FIA) plot-level C stocks by 
age class obtained from “The Carbon Online Estimator” 
known as COLE [61]. Because the stepped-curve from 
COLE gives C biomass based on all forest types within 
the FIA database in the GDS, the modeled growth curve 
in Fig.  7 represents the average from the four modeled 
species. The overall trajectory and range of the modeled 
growth curves when compared to the literature and the 

COLE database, confirms that the flow rates are effec-
tively functioning at an annual time-step.

Forest age initial conditions map
In the summer of 2014, the USGS conducted an above 
and below-ground biomass field survey covering 76 
plots, representing the four forest types modeled in the 
GDS project. Using a combination of the 2014 plot-level 
biomass measurements and 2010/2012 light detection 
and ranging (lidar) data, a wall-to-wall map of live-tree 
biomass was created with multivariate linear regres-
sion models as a technique (Fig.  8-left panel) [23]. For 
a complete summary of the USGS biomass field survey 
methods, as well as the multivariate linear regression 
models used, see Hawbaker et al. [23] and Hawbaker [62] 
respectively. The LUCAS model requires an “Age” input 
that can be spatial or tabular. We established a present 
day forest age map by using a simple look-up approach 
between the forest age growth curves generated from 
the spin-up scenario and live-tree biomass map (Fig.  8-
right panel). The look-up approach used a simple con-
ditional statement for each forested cell (e.g. if the C 
biomass for maple −  gum =  x, then the forest age for 
maple − gum = X).

Historic simulation of past disturbances (1985–2015)
To test the effectiveness of the LUCAS model applica-
tion for the GDS, we modeled the historic time period 

Table 7  Comparison of literature values for long-term car-
bon accumulation rates of peat

Vegetation specific rates for this study are given based on a standardized peat 
depth of 100 cm

GDS Great Dismal Swamp

Geographic region Peat carbon accumulation 
rates (t C/ha−1/year−1)

Reference

Global 0.29 [54]

Temperate boreal zone 0.20 [45]

Eastern and Western Europe 0.48 [55]

Southern Sweden 0.14–0.72 [56]

Bolivia (Andean Mountains) 0.47, 0.37 [57]

Ontario, Canada 0.13–0.31 [58]

Conterminous United States 0.71 [59]

Northeast United States 0.48 [45]

Florida 2.25 [60]

Atlantic white cedar (GDS) 0.36 This study

Cypress-gum (GDS) 0.14 This study

Maple-gum (GDS) 0.12 This study

Pond pine (GDS) 0.17 This study
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Fig. 6  The modeled “spin up” scenario, where live-tree growth is 
plotted over 300 years, shows the relationship between tree age and 
carbon biomass for all four species. The results show that all species 
reach equilibrium as expected. Cypress-gum reaches equilibrium 
around age 200 with 160 t C/ha which is very close to the literature. 
Note that the Atlantic white cedar and the maple-gum growth curves 
overlap and reach equilibrium around 100 years around ~95 t C/ha; 
however, the model captures a slightly faster initial growth period for 
maple-gum as expected. The model spin up exercise verifies effec-
tiveness of the carbon flow rates as parameters in the model. AWC 
Atlantic white cedar; CG cypress-gum; MG maple-gum; PP pond pine
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from 1985 to 2015, using the calibrated forest growth 
curves, stock and flow rates, known fire and hurricane 
data (spatial location, patch size, and year/severity of dis-
turbance), and management actions related to Hurricane 
Isabel. Results from the model testing are compared to 
the recently published [23, 63] C loss estimates from the 
South One and Lateral West fire events.

To initialize this simulation, the present day for-
est age map was modified by rolling back the forest age 
for each cell by 30 years. We acknowledge that this is a 
generalization and that by simply subtracting 30  years 
from the current forest age, we are ignoring some of the 
past disturbances that may have impacted age. For the 
purpose of this model test, we are most interested in 
the area affected by Hurricane Isabel and the two cata-
strophic fires, which were southwest of Lake Drummond 
(see Fig. 1). Because most of this area had converted to 
marsh by the time the present day forest age map was 
generated, an assumption about the 1985 stand age was 
needed. The USFWS reported that in 2003, Hurricane 
Isabel uprooted and flattened approximately 1200  ha of 
Atlantic white cedar; which was the last pure stand in the 
GDS. This same general area experienced the South One 
and the Lateral West fires (Fig.  1). Given this informa-
tion, the 1985 forest age for the disturbed area was set to 
100 years, which is the average mature age for an Atlantic 
white cedar.

Hurricane Isabel and the six fires modeled were char-
acterized using a spatial multiplier to show the exact 
location and patch size of each event. When the hur-
ricane occurred in 2003, the model transitioned 625 ha 
of the live biomass to deadwood and litter. Over the 
next 4 years, a total transition target amount of 316 ha 
(781 acres) was input into the model to show the active 
removal of downed deadwood (Fig.  9). The deadwood 
was mechanically removed and salvaged for commercial 
use. In the model, deadwood is moved to the harvested 
wood products pool, at which point the C is removed 
from the GDS ecosystem. In the same cells where dead-
wood was removed, Atlantic white cedar was planted. In 
2008, the South One fire burned approximately 2500 ha, 
of which 316 ha were newly restored from the hurricane. 
The South One consumed 80% of the above-ground liv-
ing biomass (Fig.  9), and 50% of the upper peat layer. 
This amount is equivalent to 20  cm of peat depth and 
0.42 Tg C (Table  8). The decision to use 20  cm of peat 
consumption stems from the recent work by Hawbaker 
et  al. [23], where the 17  cm of soil elevation loss was 
measured with lidar.

During the 3  years between the South One and Lat-
eral West fires, the USFWS observed Atlantic white 
cedar regenerating naturally, and restoration manage-
ment continued by replanting saplings. With condi-
tions already severely disturbed and dry, a lighting fire 
started in 2011 and burned for 144  days in approxi-
mately the same patch area. In the model, the second 
catastrophic fire consumed an estimated 50 cm of peat 
soil and the remaining above-ground biomass in the 
overlapping burn area. Hawbaker et al. [23] and Reddy 
et al. [63] measured the soil elevation loss from this fire 
as 46 and 47 cm, respectively (Table 8). After the repeat 
catastrophic fire event, the burn scar transitioned to 
standing water and marsh, which has started to show 
minimal vegetation growth, but no Atlantic white cedar 
regrowth.

Results
Net ecosystem carbon balance (1985–2015)
The net ecosystem carbon balance (NECB) refers to the 
long-term C storage potential of an ecosystem while fac-
toring in the annual C gains and losses due to impacts 
from natural disturbance and anthropogenic land uses. 
Before we simulated the NECB for the GDS, we mod-
eled the net ecosystem production (NEP) for the historic 
30-year period (1985–2015). The NEP reflects the annual 
growth minus the heterotrophic respiration (Rh), with-
out factoring in disturbance or management. The NEP 
was estimated at an average annual rate of 0.64 t C/ha−1/
year−1 (64 g C/m2/year−1) or a net sink of 0.97 Tg C.

-20

0

20

40

60

80

100

120

1 26 51 76 101

t C
/h

a

Years

Carbon Biomass Accumulation by Age (Modeled 
vs. COLE)

Modeled Average COLE
Fig. 7  Live tree carbon biomass (by age) is shown for 100 years, 
where the modeled average from Fig. 6 is compared to the live tree 
carbon biomass by age class for the FIA plots in the Great Dismal 
Swamp region. The data points from the FIA were generated using 
COLE, a tool available from the USDA Forest Service. Both growth 
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curve lacks the signature “S” shape. The “S” shape reflects the rapid 
growth rate of young forests indicating a higher NPP in early growth 
stages. The modeled curve uses a constant NPP value. FIA Forest 
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Fig. 8  On the left Above-ground, live-tree carbon biomass. This map was derived from a combination of 2010 lidar and 2014 field samples (76 total 
plot samples) of diameter breast height by species. These two data sources were used as the variables for a linear regression model to produce wall-
to-wall carbon biomass values at 10 m pixel spacing. On the right Forest Age map derived from the biomass map. Forest age reflects the present-day 
age of the above-ground biomass and does not reflect the historic age (1985). This map uses 100 m pixel spacing

Fig. 9  The LUCAS model captures above-ground and below-ground carbon emissions for each historic fire event. The South One fire in 2008 
consumes significantly more above-ground biomass than the Lateral West fire in 2011 due to the heavy fuel loads remaining from Hurricane Isabel. 
When the Lateral West fire ignites, the remaining above-ground biomass was consumed as well as 0.95 Tg C from soil and roots. Carbon loss is also 
modeled from the management actions taken in response to Hurricane Isabel from 2003. Deadwood from approx. 300 ha of Atlantic white cedar 
was mechanically removed from the Great Dismal Swamp and moved to a harvested wood products pool. Values are in Tg C. AGB  Above-ground 
biomass; BGB Below-ground biomass



Page 16 of 20Sleeter et al. Carbon Balance Manage  (2017) 12:2 

where Growth  =  14.73 Tg C; Rh  =  13.76 Tg C; 
NEP = 0.97 Tg C.

When the six historic fire events were modeled during 
the 30-year period, including the South One and Lateral 
West fires, the GDS became a net source of 0.89  Tg  C 
(NECB = − 0.89 TgC).

where Growth  =  14.73  Tg  C; Rh  =  13.76  Tg  C; Man-
agement  =  0.01  Tg  C; Fire Emissions  =  1.86  Tg  C; 
Fire Emissions  =  South One (0.66  Tg  C)  +  Lat-
eral West (1.04  Tg  C)  +  Other Fires (0.16  Tg  C); 
NECB = −0.89 Tg C.

Assuming an elevation loss of 0.70  m depth for a 
burn scar area of 25  km2, cumulative above and below-
ground C loss estimated from the South One and Lateral 
West fire events totaled 1.70 Tg C. The C loss in below-
ground biomass alone totaled 1.38 Tg C, with the bal-
ance (0.31  Tg  C) coming from above-ground biomass 
and detritus. Recent findings from Hawbaker et  al. [23] 
estimated C losses from the South One and Lateral West 
fires at 1.83  Tg cumulative and 1.47  Tg below-ground. 
The soil surface elevation loss (0.63 m) used in these find-
ings was derived from lidar (Table  8). In Fig.  10, the C 
emissions from fire events are plotted showing the differ-
ence between above-ground biomass and below-ground 
biomass. It is important to note that the model was able 
to capture the higher amount of above-ground biomass 
consumed in the South One fire compared to the Lateral 
West fire, in part due to the heavy fuel loads resultant 
from Hurricane Isabel. Figure 9 and Table 8 also show the 

Growth− Rh = NEP

Growth− Rh −Management− Fire Emissions = NECB

amount of C that was removed from the ecosystem from 
management actions.

Figure  10 shows the results from all contributing C 
stocks during the 30-year period. The above-ground 
and below-ground C biomass stocks were aggregated 
for presentation purposes, but can also be displayed and 
analyzed individually and by state class (i.e. forest type) 
or strata (i.e. dry or wet zone). The annual C flows can 
also be exported and analyzed in the same way.

Conclusion
The baseline net ecosystem C balance parameters will be 
used as a reference scenario in the LUCAS model for fur-
ther collaboration with the GDSNWR. The overall pro-
ject collaboration is designed to provide an estimate of 
local- and regional-scale C fluxes, ecosystem C balance, 
and long-term sequestration rates, with a primary goal of 
understanding how to maximize C sequestration on pub-
lic lands while assessing potential tradeoffs with other 
ecosystem services. The methodology and results pre-
sented in this paper provide an operational framework 
for the future use of LUCAS in the GDS.

One of the strengths of our approach is the ability to 
isolate all of the variables on an annual basis in order to 
test the sensitivity of particular parameters. Although the 
input parameters were adapted from the literature, we 
used a robust calibration process and model test to vali-
date the forest age to biomass threshold and C emissions 
from disturbance. As the LUCAS model for the GDS 
transitions to the use of in  situ C stock and flow values 
collected by the USGS, the same calibration methods can 
be used to verify the forest age to biomass relationships. 
Preliminary results from 2014 USGS field data show a 

Table 8  Comparison of fire emission estimates between LUCAS Reddy et al. [63] and Hawbaker et al. [23]

The latter two studies used lidar-derived elevation loss estimates pre and post fire, coupled with soil carbon characteristics to calculate carbon loss. The LUCAS model 
arrived at comparable results by simulating carbon gain-loss estimates between 8 pools and 14 fluxes on an annual time-step
a  For the LUCAS model results, soil elevation loss is calculated by the soil carbon equivalent

Results compari‑
son

South one fire (2008) Lateral west fire (2011) Cumulative

Hawbaker et al. 
[23]

LUCAS Historic Hawbaker et al. 
[23]

Reddy et al. 
[63]

LUCAS Historic Hawbaker et al. 
[23]

LUCAS Historic

Below-ground 
carbon loss (Tg)

0.38 0.42 1.09 N/A 0.95 1.47 1.38

Above-ground 
carbon loss (Tg)

0.22 0.23 0.14 N/A 0.09 0.36 0.31

Deadwood 
removal Carbon 
loss from Man-
agement (Tg)

N/A 0.01 N/A N/A 0.00 N/A 0.01

Total carbon loss 
(Tg)

0.60 0.66 1.23 1.10 1.04 1.83 1.70

Soil elevation loss 
(m)

0.17 0.20a 0.46 0.47 0.50a 0.63 0.70a



Page 17 of 20Sleeter et al. Carbon Balance Manage  (2017) 12:2 

GDS average of 120 t C/ha−1 for above-ground biomass, 
which is the summed average of the live tree (leaf and 
wood), shrub and herbaceous stocks. The average above-
ground biomass that we modeled from the literature val-
ues and provided in Table 4 is 126.44 t/C ha−1. The IPCC 
Agriculture, Forestry, and other Land Use inventory 
guidance [38] gives default reference values for ecological 
zones and forest type. For temperate continental forests, 
the above-ground biomass is reported at 120  t  C/ha−1. 
These three above-ground biomass averages show that 
the preliminary plot samples, as well as the literature val-
ues used for the historic scenario in LUCAS are practical 
and compare well with Tier 1 IPCC guidance.

Other model inputs, however, may differ from the 
parameters we used to run the historic simulation. In 
particular, biomass pools that are typically difficult to 
measure in the field often use allometric equations to 
generate missing values. One example of this is below-
ground root biomass, where many regression equations 
have been produced to predict live root biomass based on 
a ratio of the above-ground biomass [64, 65]. For exam-
ple, Cairns et al. [65] summarized 160 studies of tropical, 
temperate and boreal forests, and found that the mean 
root to shoot ratio was 0.26, assuming that roots account 
for 26% of above-ground biomass. In a dynamic below-
ground system where there has been a departure from 
healthy ecosystem conditions, the lack of measured root 
stock and growth rates will add to the overall uncertainty 
of future modeling.

The soil emission rates are highly variable depend-
ing on soil moisture, disturbance and biophysical con-
ditions. The soil emission rates used in this paper are a 
major source of uncertainty, yet one of the most impor-
tant factors for long-term C storage and accumulation. 

We assumed a steady-state C balance for the upper peat 
layer where the total C emission from soil had a net bal-
ance and did not exceed the annual C input to soil. If a 
higher or lower soil emission rate was used, the total eco-
system C would be greatly influenced. In  situ field data 
are currently being collected using gas flux chambers and 
their use will affect the C budget modeled in LUCAS. 
Similarly, the long-term peat accumulation rate, where 
a small proportion of C flows from the upper peat layer 
to the deep peat layer can be a sensitive variable for total 
ecosystem C over a long simulation period. Due to the 
short 30-year time horizon used in the historic simula-
tion, the peat accumulation rates had less of an impact on 
NECB; however, if a longer time horizon is modeled (i.e. 
100–300 years), the rate of peat accumulation would have 
a greater impact on C balance.

Based on two of the driving model assumptions used 
in the historic simulation, a total peat consumption of 
70 cm for the burn scar, and the peat accumulation rate 
for Atlantic white cedar of 0.36 t C/ha−1/year−1, the total 
soil carbon loss from the South One and Lateral West 
fires would take an estimated 1740  years to re-amass 
assuming the forest regenerated and was undisturbed. 
Due to the impractical time horizon this presents for 
land managers and decision making, this particular loss is 
considered permanent. Through alternative management 
actions such as re-wetting, below-ground biomass loss 
may have been avoided, resulting in the added sequestra-
tion capacity of 1.38 Tg C for the GDS. However, if the 
same calculation was performed using a long-term peat 
accumulation rate of 0.71 t C/ha−1/year−1 for the conter-
minous U.S. (Table 7) as conveyed in Bridgham et al. [59], 
the total soil C loss would take approximately 880 years 
to re-amass. This substantial difference points to the fact 

Fig. 10  Above-ground and below-ground carbon stocks for the Great Dismal Swamp from 1985 to 2015. Above-ground stocks were aggregated 
for presentation purposes and include: living wood, living leaf, living root, leaf litter and deadwood. Below ground stocks include: dead root, upper 
peat and deep peat. Total area summarized equals 54,000 ha. Values are in Tg C
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that the input parameter for the long-term accumulation 
rate is a highly sensitive variable and a source of uncer-
tainty. Future model simulations will reduce uncertainty 
in in situ measurements of peat.

The comparison of fire emissions with the two recent 
studies (Table  8) show that the LUCAS model pro-
duced analogous results. These results provide a source 
of model validation for future applications of LUCAS in 
the GDS. By testing the input stock and flow parameters 
with past events, the model was able to capture natu-
ral processes (i.e. growth, mortality, humification, and 
respiration) as well as the ecosystem response to hurri-
cane, fire and management. Land management planning 
often requires a stakeholder process with scenario anal-
ysis to assess future decisions. Given the robust param-
eter options within the LUCAS model, local and regional 
stakeholders can use LUCAS as an interactive decision 
support tool. Results benefit the evaluation of future 
management actions and their associated impacts on pri-
ority ecosystem services such as C sequestration, biodi-
versity, and disturbance prevention.
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