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Abstract 

Background: As Earth observation satellite data proliferate, so too do maps derived from them. Even when two co-
located maps are produced with low overall error, the spatial distribution of error may not be the same. Increasingly, 
methods will be needed to understand differences among purportedly similar products. For this study, we have used 
the four aboveground biomass (AGB) maps for conterminous US generated under NASA’s Carbon Monitoring System. 
We have developed systematic approach to (1) assess both the absolute accuracy of individual maps and assess the 
spatial patterns of agreement among maps, and (2) investigate potential causes of the spatial structure of agreement 
among maps to gain insight into reliability of methodological choices in map making.

Results: The comparison of the four biomass maps with FIA based total biomass estimates at national scale suggest 
that all the maps have higher biomass estimate compared to FIA. When the four maps were compared among each 
other, the result shows that the maps S and K have more similar spatial structure whereas the maps K and W have 
more similar absolute values. Although the maps K and W were generated using completely different methodologi-
cal workflow, they agree remarkably. All the maps did well in the dominant forest type with maximum agreement 
between them. The comparison of difference between maps S and K with regional maps suggests that these maps 
were able to capture the disturbance and not so much regrowth pattern.

Conclusions: The study provides a comprehensive systematic approach to compare and evaluate different real data 
products using examples of four AGB maps. Although ostensibly the four maps map the same variable, they have  
different spatial distribution at different scale. Except the 2003 map, one can use other maps at the coarser spatial 
resolution. Finally, the disparate information available through different maps indicates a need for a temporal frame-
work for consistent monitoring of carbon stock at national scale.
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Background
Because forests provide important ecosystem services 
and play a role in the global carbon cycle, forest charac-
teristics such as biomass, tree height, and percent forest 
cover have been mapped using a variety of remote sens-
ing techniques [1–7]. As data increase in availability, and 
as mapping techniques proliferate, many similar prod-
ucts are becoming available for the same region—often 
at different spatial scales and derived using different 

techniques. In an ideal world, multiple mapped estimates 
of the same biophysical variable should largely agree in 
the same location and time. Presumably, all credible 
maps are verified against a more reliable source to esti-
mate overall error, but the spatial distribution of errors 
may not be the same for different maps. Thus, when two 
maps of the same quantity are compared at a given loca-
tion, they may disagree. From an end-user perspective, 
this is a problem: different maps may have quite differ-
ent implications for carbon accounting, for example, but 
users are given no guidance about which map to choose. 
From a scientific perspective, this may be an opportunity: 
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patterns of disagreement among maps may provide 
insight into how datasets and techniques perform under 
varying conditions.

Reconciling maps will become an increasingly impor-
tant activity within NASA’s Carbon Monitoring Sys-
tem (NASA-CMS) [8]. NASA-CMS is a broad initiative 
to apply NASA’s synoptic view of Earth systems to the 
monitoring of carbon. NASA-CMS activities run the 
gamut from local-scale mapping of carbon state [9, 10] to 
global scale mapping of carbon flux [11]. Often, projects 
at different scales produce similar products, or products 
that could be compared against other projects through 
simple manipulation (e.g., multiple estimates of biomass 
over time could be compared against estimates of flux). 
As a mix of both regional scale and global scale projects, 
NASA-CMS will be increasingly faced with disparate 
estimates of carbon states and fluxes at different scales.

Recognizing that different estimates of carbon-
related maps co-occur, several researchers have recently 
reported on comparisons among different biomass maps 
[12–14]. In some cases, comparisons among maps were 
made with fine-resolution reference data (e.g., [13, 14]), 
but such data are not always available. In other cases, 
maps were compared at the same spatial resolution (e.g., 
[12]) but this precludes comparisons generated at differ-
ent resolution. In fact, there are often situations where 
we need to identify a map which is most close to the 
truth in the absence of fine-resolution reference data 
while understanding various methodological and input 
grain size differences between various available maps. 
Indeed, the notion of multiple maps may imply that one 
is better, or that one more closely matches truth, but 
such a uniform truth is rarely feasible, and therefore we 
need spatial distribution of uncertainty. In practice, the 
assessment of spatially-distributed map data can be con-
sidered an effort to paint a picture of spatial uncertainty 
which is carried out by describing relative error among 
maps or measurements using a suite of complementary 
quantitative measures [15]. However, there exist several 
challenges in assessing a map and comparing different 
maps. First, the unit of analysis in a raster-based map 
is a square pixel that is arbitrary when we compare to 
any phenomenon in the landscape. Second, raster based 
maps are often generated at different scales, so compari-
son requires cell by cell alignment while ensuring the 
information in individual maps remain same. Moreo-
ver, most of the techniques developed to compare real 
variable maps can be used only for pairwise comparison, 
limiting the ability of simultaneous comparison of mul-
tiple maps to assess the spatial pattern of similarity and 
dissimilarity.

As the NASA-CMS matures, mapped estimates of both 
carbon biomass and flux will be available at different 

scales for the same location, requiring quantitative com-
parisons among many maps. Indeed, NASA-CMS has 
already produced one forest biomass map for the con-
terminous United States, but already several versions 
existed developed by other groups. For users, guidance 
must be given about the relative merits of these maps 
under different conditions, and under what conditions a 
given map may be avoided. For developers and scientists, 
however, comparisons should be structured to leverage 
the differences in methods to provide insight into pos-
sible improvements or best practices. Thus, using these 
several forest biomass maps as a test case, we report 
on strategies and methods both to describe differences 
among maps for users, and to evaluate possible sources 
of disagreement.

We therefore had two broad objectives:

(1)      Descriptive: Assess both the absolute accuracy of 
individual maps and assess the spatial patterns of 
agreement among maps.

(2)      Evaluative: Investigate potential causes of the spa-
tial structure of agreement among maps to gain 
insight into reliability of methodological choices in 
map making.

To achieve these objectives, we introduce a compre-
hensive and systematic approach to compare multiple 
maps generated at different scales (extent and spatial 
resolution). This comprehensive approach not only eval-
uates accuracy of individual maps while describing the 
similarity and dissimilarity between the spatial structure 
of various maps, but also systematically explores effects 
of scale and various causes of change.

Methods
Our systematic approach consists of several steps 
(Fig. 1). The foundational step is a thorough assessment 
of key map-making steps. This provides a context for 
the descriptive phase, and helps guide hypotheses to be 
tested in the evaluative phase.

Next, the descriptive phase seeks to quantify how 
well individual maps agree with reference data and 
with each other. Two key strategies are important. 
First, in addition to evaluating pairwise differences, 
as is done in other comparative studies, we advocate 
simultaneous comparison across all maps to under-
stand underlying spatial patterns of agreement and 
potentially isolate outlier maps. Second, we aggregate 
our measures of agreement and disagreement to eco-
logically coherent mapping regions, recognizing that 
some maps may perform better in particular ecological 
contexts and that users may only be interested in this 
regional scale.
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Finally, the evaluative phase seeks to test specific 
sources of error in the map making process. Here, we 
must draw inference from comparisons without the 
benefit of manipulation. Thus, rather than simply devel-
oping a range of comparative metrics, this phase places 
comparisons into specific test of methodological contrast 
among maps. The key is to hypothesize how differences 
in methodology would lead to specific differences among 
pairs of maps, and then test those hypotheses. It is the 
combination of metric and map combination that allows 
greater inference: the observation of an effect in a single 
map is likely uninformative, but hypothesis-driven com-
parison of that effect between maps may provide greater 
insight.

Assessment of map‑making steps
We examined the four national-scale maps of forest bio-
mass that were available at the beginning of our study 
(Fig.  2). Papers detailing map production are given by 
Saatchi et al. [16], Kellndorfer et al. [17], Blackard et al. 
[18], and Wilson et al. [19]. For parsimony, we hereafter 
refer to these maps by their first letter, i.e. S, K, B, and 
W, respectively. All maps are generally considered usable, 
either through self-reported accuracies or through com-
munity use. Map W is reported to have strong agreement 
with plot based estimates of biomass (agreement coeffi-
cient ~0.99) and to have a strong goodness of fit (within 
90 % confidence interval). The average absolute error for 
the map B ranges between 40 and 60 metric tons per hec-
tare, except for the higher-biomass areas of the Pacific 
Northwest (163 metric tons per hectare). The accuracies 
for map S and K are not known, but they, like all of the 

maps, are already being used as input in different studies 
[10, 20, 21].

Like many spatial mapping exercises in remote sens-
ing, the general approach for producing AGB maps is to 
extrapolate high quality training data from a small sample 
of locations to a large, contiguous space. Typically, values 
measured at the training samples are linked with data 
values from geospatial datasets at the locations where 
they intersect. Statistical models built at those locations 
are then used to extrapolate to the rest of the map. Maps 
can differ in how they handle training data, which geo-
spatial datasets are used, and what statistical models are 
built.

We identified six methodological sources of disa-
greement in how the four biomass maps were gener-
ated (Table  1). For each, we developed expectations for 
how that difference may manifest itself in the resultant 
maps. The first source is the forest mask used to define 
the total area for which biomass is estimated. Conserva-
tive forest masks would lead to lower estimates of total 
biomass, but a more liberal forest mask would include 
a higher proportion of marginal forest and thus likely 
reduce average biomass density. The second source of 
potential disagreement between the maps is spatial reso-
lution. Map resolution interacts with the fundamental 
spatial structure of the landscape: If the former is finer 
than the latter, the map can adequately capture the range 
of variability of the landscape. A third contrast among 
maps is the remote sensing source data used for extrapo-
lation. Maps using optical data may be less able to cap-
ture high biomass than maps using radar data, as optical 
data are known to saturate at lower biomass compared to 
radar (longer wavelength such as L- and P-band) [22–25]. 
The sensitivity of L- band SAR data for biomass estima-
tion increases if used along with forest height generated 
using InSAR [25]. The fourth source of difference is the 
statistical technique used for extrapolation (parametric 
vs. non-parametric). Non-parametric techniques could 
be expected to perform better at extreme values (low 
and higher biomass region) than parametric techniques, 
especially if the extreme values deviate greatly from a 
normal distribution. The fifth source of difference is year 
of mapping. Maps produced in different years would be 
expected to differ both because of intervening distur-
bance and growth, and because the pool of training data 
could be different.

The sixth area of potential disagreement rests not with 
the methodologies to extrapolate, but with the training 
data themselves. In the case of forest AGB in the conter-
minous US, the training data come from the US Forest 
Service’s Forest Inventory and Analysis (FIA) program. 
At each of thousands of field plots, field crews measure 
details of trees using a regular sampling and mensuration 

Fig. 1 Overall systematic approach in reconciling maps. a Descrip-
tive phase involves assessing accuracy of individual maps and both 
pairwise and simultaneous comparison of multiple maps, b evalu-
ation phase involves detailed assessment of statistical approach to 
understand implications of identified sources of differences
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Fig. 2 Aboveground biomass (AGB) density maps for conterminous US a Saatchi et al. [16] ‘S’, b Kellndorfer et al. [17] ‘K’, c Blackard et al. [18] ‘B’, d 
Wilson et al. [19] ‘W’

Table 1 Sources of disagreement among the four national AGB maps

AGB maps Forest mask Grain size (m) Spatial predictors Extrapolation  
technique  
(parametric/non‑
parametric)

Year of gener‑
ation of map

Allometric equation

Saatchi et al. [16] (S) NLCD 2006 93 F(MODIS, Landsat, 
L-band PALSAR, 
GLAS, topography)

Maximum Entropy 
(Parametric)

2005 Component ratio 
method

Kellndorfer et al. 
[17] (K)

NLCD 2001 30 F(C-band InSAR, Land-
sat, NLCD canopy 
density, structure, 
SRTM)

Regression tree 
(Random forest, 
Non-parametric)

2000 Regional method

Blackard et al. [18] (B) In house 250 F(MODIS, climate 
variables variables, 
topography)

Regression tree (Cub-
ist, Non-parametric)

2003 Regional method

Wilson et al. [19] (W) No Forest mask 250 F(MODIS, climate vari-
ables, topography, 
level III ecoregions)

Phenological gradient 
nearest neigh-
borhood (Semi-
parametric/Semi-
nonparametric)

2009 Component ratio 
method
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protocol. These raw tree data can then be converted to 
estimates of plot-level biomass using allometric equa-
tions that relate tree characteristics to known biomass 
measured destructively at a sample of locations (and 
often as an entirely separate effort). Allometric equa-
tions varied across the four maps studied here, with 
some using regional-specific equations and others a more 
nationally-consistent component ratio method (CRM) 
[26]. The CRM approach has been shown to lead to lower 
biomass estimates then the regional approach [26], and 
thus maps based on the CRM would thus be expected to 
show an overall bias toward lower values.

Descriptive comparisons
Descriptive comparisons provide users guidance about 
which maps are more accurate, and where on the land-
scape (at both national and regional scales) the maps 
agree and disagree when analyses carried out at pixel 
level.

Comparison with ground reference data
Because the FIA program is tasked with providing defen-
sible estimates of forest resources at the national scale, 
estimates from FIA plot data are the de facto standard 
against which any forest resource maps must be com-
pared. Although FIA plot data are used as inputs in vari-
ous points of the mapping process for all four national 
maps tested here, this does not guarantee that summa-
rized estimates of biomass will agree, since maps extrap-
olate the FIA information differently.

Comparison with FIA data requires appropriate use of 
those data. The goal of the FIA sampling design is to pro-
vide good estimates at aggregated administrative levels: 
The smallest unit is typically the US county or parish, but 
state-level comparisons are more common and robust, 
especially when the analyses is carried out at the MODIS 
scale [27]. Additionally, normal users do not have access 
to actual plot locations, and thus data are typically avail-
able and readily usable only at county or larger scales.

Thus, for our comparisons we compared plot and map 
data at the aggregation level of the state. Map data aggre-
gation was a simple matter of summing biomass density 
estimates to the state level, utilizing each map’s own for-
est mask for the aggregation footprint. For plot data, we 
acquired state level FIA AGB data from the FIA 2013 
database [28] at the appropriate time step for the FIA 
collection strategy of the state. For forests in the eastern 
US, we used the time frame of 2003–2007, as that was 
the most consistent time frame without double count-
ing any trees across different states. For forests in the 
western US, which are on a 10 year repeat cycle, we used 
data from 2000 onwards for the west side as that was the 
most consistent data available through the website across 

all the states at the time of analyses. The estimates have 
already converted the plot-level tree measurements to the 
plot scale, and then used sample-design considerations to 
scale the plot-level data to the state level. Three consid-
erations of the FIA data are relevant for later compari-
sons. First, the FIA uses the CRM approach to calculate 
biomass from tree measurements. Second, the inventory 
cycles occur at 5 and 10  year cadences in the east and 
west, respectively, meaning that an estimate at a given 
time will be a different mix of older and more recent plots 
in the east and the west. Finally, the extrapolation scaling 
factors are based on forestland masks developed by the 
US Forest Service (and also used in the B and W maps).

Once biomass had been aggregated, we produced three 
descriptive products. First, we summed forest biomass 
among all maps and all plots at the conterminous US 
scale. Second, we used simple regression of aggregated 
map biomass at the state level against FIA plot biomass 
(n = 48 states in conterminous US). Finally, we calculated 
the Wilmott’s index of agreement (d):

where Xi was the biomass estimate for state i estimated 
from FIA plot data and Yi was the same estimated from 
the maps [29]. The X variable is considered to be the 
truth variable, which is appropriate here because FIA 
plot data are the national standard for forest monitor-
ing. Wilmott’s index of agreement is symmetric, bounded 
and does not over penalize for disagreement. High agree-
ment is indicated by values close to 1.0. There exist many 
other indices for such pair wise comparison such as mean 
square error (MSE) and its root (RMSE) to more special-
ized metrics [e.g., agreement coefficient (AC)] to com-
paring distribution. The indices such as MSE, RMSE have 
been critiqued for being unbounded and asymmetric [30] 
while the AC is found to highly sensitive to outlier. The 
comparison of distributions could simply yield the unin-
teresting finding of differences with little insight on the 
reason behind the differences. Spatial structure of agree-
ment and disagreement is critically useful for under-
standing whether disagreement is potentially related to 
specific issues.

Comparison of multiple maps
After descriptive comparison against a trusted data 
source (FIA based estimates), the next step was to show 
where maps agreed and disagreed. We used principal 
components analysis (PCA) for simultaneous compari-
son among all maps. PCA is a spectral decomposition 
technique commonly used in remote sensing to remove 
the redundancy from multi-spectral images, but it can 
also be used to identify the dominant pattern common 

d = 1−

∑
n

i=1
(Xi − Yi)

2

(|Xi − X | + |Yi − X |)2
X



Page 6 of 20Neeti and Kennedy  Carbon Balance Manage  (2016) 11:19 

among various maps [31]. The six orientation modes 
(O, P, Q, R, S, T) commonly used for PCA differ in their 
definition of statistical variables and observations [32]. In 
this case, statistical observations are samples in space and 
statistical variables are various continuous maps, there-
fore, R-mode PCA is used for the analysis.

Implementation of the PCA took place in the R statisti-
cal package [33], and required some basic preparation of 
the datasets. First, because the maps reported biomass in 
different unit systems and different map projections, we 
aligned all biomass map values to the same system at the 
pixel scale, and then aggregated (taking mean of x by x 
window size followed by nearest neighborhood resam-
pling, x = 8 for map S, x = 2) the finer-scale maps (S and 
K) to the 240 m grain size of the coarser maps to make 
them comparable to the other two maps. The coarser 
resolution maps (B and W) were resampled from 250 m 
to 240  m resolution by using nearest neighborhood 
approach. Second, we clipped all maps to the forest mask 
area common to all forest masks, as “no-data” would not 
be informative in the PCA analysis. Finally, we stacked all 
four maps into a single, four-layer image. Once these pre-
paratory steps had been taken, we ran the PCA analysis 
on both the entire conterminous US data (at the 240 m 
pixel scale) and at the scale of each of the 66 mapping 
regions [34]. The regional scale analysis is useful because 
the PCA statistical space is defined by the range of vari-
ation in the whole dataset, and thus the broad US-wide 
comparison may obscure patterns that would be relevant 
to users at the regional scale.

Results of the PCA were interpreted in two ways. 
First, spatial patterns in the first and second axis images 
show where on the landscape the maps agree and disa-
gree. Because PCA axis 1 identifies the vector through 
the multivariate space that explains the most variation, 
it can be interpreted as the overall pattern of biomass 
agreement across all maps. PCA axis 2 is orthogonal to 
the first axis, and thus indicates the dominant sources of 
disagreement among the maps. Second, the correlation 
coefficients of each map contributing to those two axes 
can give insight into which maps are agreeing or disa-
greeing with the other maps. A map with high correlation 
coefficient on the first axis is one whose spatial patterns 
agree with the other maps; a map with high correlation 
coefficient on the second axis is one whose spatial pat-
terns disagree with the other maps.

Scale of agreement
If maps generally agree with truth data when aggregated 
to the mapping region scale, but show patterns of disa-
greement at the pixel scale, then a natural question from 
users is whether intermediate scales of resolution may 
make maps more comparable. To evaluate this question, 

we conducted pair-wise map comparison to analyze the 
impact of spatial resolution on map agreement. As with 
the PCA analysis (‘‘comparison of multiple maps’’ sec-
tion), we first ensured that all maps were clipped to the 
same footprint and were at the same starting pixel reso-
lution (acknowledging that the 30 m and 90 m products 
were already degraded for the first comparison), and 
then we aggregated from the starting 240  m resolution 
to pixel resolutions of 480, 720 and 960  m. For each of 
those resolutions, we evaluated paired map agreement 
with the Wilmott’s index of agreement at mapping region 
scale, as all the pixels in a mapping region are expected to 
have similar ecological condition. Critically, because no 
map could be considered the truth map, we conducted 
this analysis on all pairwise comparisons. High median 
d-scores across all mapping regions suggest consistent 
strong agreement, while high range of d-scores suggests 
spatial patterns of variability across mapping regions.

Evaluative comparisons
Evaluative comparisons were designed to test whether 
patterns of agreement and disagreement could provide 
insight into sources of error in map production. Because 
each map was produced using a different suite of meth-
ods (Table 1), each map needed to be compared individu-
ally to the other maps. To test the six different possible 
sources of differences, we used a range of different pair-
wise map comparisons, both on the original data and on 
maps of differences between pairs of maps. Additionally, 
for certain tests we brought in ancillary data on forest 
type, topographic position, and regional biomass time 
series. We first describe the basic data manipulations, 
and then describe how these were used to evaluate the 
six different sources of map difference.

Data manipulations
Cumulative biomass The simplest data manipulation 
was simple summing of biomass across all pixels in a given 
map to estimate total forest biomass at the national scale. 
Total biomass at the national scale had already been cal-
culated for the descriptive phase (see section on ‘‘cumula-
tive biomass’’ section).

Mapping region scale biomass density Within each map-
ping region, we calculated the cumulative frequency dis-
tribution of biomass density values of a map for all pixels 
in each map’s forest mask. From these, we identified the 
10th-, 50th- and 90th percentile values for the mapping 
region. We also calculated mean biomass density by map-
ping region.

Difference maps For all pairwise combinations of the 
four national-scale maps, we developed maps of biomass 
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difference at the pixel scale. As with the PCA analysis, 
the maps were first clipped to a common forest mask, 
and if the pixel sizes of the two maps were different, the 
higher resolution map was resampled and aggregated to 
the lower resolution map cell size (see details on aggre-
gation above). Differencing was achieved using simple 
image algebra on a cell by cell basis. Spatial patterns in 
the difference maps were then related to spatial patterns 
of ancillary data.

Ancillary data We sought to understand whether 
spatial patterns in map differences were related to spa-
tial patterns in other geospatial datasets. For these, we 
obtained the spatial predictor data layer and manipulated 
the map as necessary (using mean/mode aggregation 
and/or nearest neighborhood resampling) to ensure cell 
alignment among maps. We obtained through the ORNL 
website [35] a forest type land cover map with cells of 
250  m resolution, for the nominal mapping year 2001. 
We utilized all forest cover types for analysis. Separately, 
we obtained a forest age map with cell size of 1 km for 
the nominal mapping year 2006 [36] and grouped pixels 
into young (<40 years old), immature (40–80 years old), 
mature (80–140 years), and old (>140 years). Finally, for 
topographic variables, we obtained SRTM elevation at 
30  m resolution and derived slope. We grouped pixels 
according to three elevation categories (<500  m, 500–
1500 m, and >1500 m), and, where appropriate, two slope 
categories: relatively benign (0 to <30 degree slope) and 
extreme (30–50 degree slope). Within mapping regions 
of interest, we summarized the difference maps accord-
ing to the zones delineated by the groups in those ancil-
lary data sources.

To assess impact of year of map generation, we 
required ancillary biomass map data where technique of 
production was held constant across time. At present no 
such map exists at the national scale, and thus we used a 
regional-scale map product [37]. That product generated 
yearly biomass estimates from 1990 to 2010 for the high-
biomass states of Washington, Oregon, and California. 
Because the core of that approach was a change detec-
tion approach at the Landsat scale, those maps explic-
itly represent the effects of growth and disturbance on 
biomass. We refer to these maps as KennXXXX, where 
XXXX represented the year of map. We differenced Ken-
nXXXX maps for the years corresponding to each of the 
map pairs in the national efforts, and compared distri-
butions of the differences in the consistently-produced 
maps to the differences in distributions in the national 
maps. Note that we not using this map as a truth dataset, 
but simply as a means of holding constant the means of 
production across time to isolate the impacts of growth 
and disturbance.

Evaluative tests
The data manipulations were then used in evaluative 
tests of each of the six identified sources of map error. 
We emphasize that evaluative tests utilize metrics that by 
themselves could be uninformative—they key is to com-
pare the metrics among map pairs, driven by hypotheses 
about how map production could lead to differences.

Forest mask Each map used a slightly different mask to 
identify potential forested pixels. If the forest mask were 
the only factor affecting map results, we would expect that 
maps with a conservative forest mask would show a lower 
total biomass when aggregated to the national scale.

To test, we simply summed biomass nationally for all 
four maps and evaluated relative to the forest mask area 
of each map.

Spatial resolution Spatial resolution determines the 
scale of pattern which can be captured by a given map. 
If spatial patterns of forest biomass vary meaningfully at 
a scale finer than that of a given map, that map will be 
unable to capture the high and low biomass values, and 
thus would be expected to have a compressed range of 
biomass relative to the actual landscape [24]. When com-
paring among maps of different resolution, the impact of 
resolution will matter if the scale of meaningful variation 
is intermediate between resolutions of the maps.

To test, we compared 10th and 90th percentile val-
ues by mapping region (‘‘mapping region scale biomass 
density’’ section) for all pairs of maps. If pixel resolution 
were a driving factor, we would expect to see compressed 
ranges in both the W and B maps relative to the S and K 
maps.

Source sensor data Because the signal retrieved from a 
passive optical sensor typically saturates at biomass lev-
els lower than that of an active sensor such as radar (e.g., 
L-Band SAR, C-band InSAR) [26, 27], we might expect 
that maps involving radar would be able to track biomass 
better in high-biomass mapping regions even though there 
may be difference between various radar data depending 
on frequency and polarization. To test, we compared the 
90th percentile values by mapping region for all pairs of 
maps. If sensor source were a driving factor, we would 
expect the W and B maps to show a compressed upper 
end relative to the S and K maps.

Similarly, because older forests have more structur-
ally complex canopies, we might expect an active-sensor 
approach to better capture biomass in older forests, or 
in generally higher-biomass forest types [38]. To test, we 
compared difference maps grouped by forest type and 
age for mapping regions where high biomass and older 
forests were more prevalent. If active sensors performed 
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better in these systems, we might expect the S and K 
maps to show higher biomass (net positive difference) vs 
the B and W maps in older forests and in higher biomass 
type forests.

Finally, because of the side-looking nature of radar, we 
might expect the radar-derived maps to perform more 
poorly in topographically complex areas [39]. To test, 
we compared difference maps grouped by elevation and 
slope categories (noted in section on the ancillary data in 
the method above). If error introduced by side-looking 
radar were an issue, we would expect the S and K maps 
to show greater difference with the optical maps in either 
high elevation or high slope areas.

Extrapolation technique When linking the observed 
covariate (here, biomass) to predictor data (here, geo-
spatial data), parametric regression techniques explicitly 
attempt to minimize variability in the covariate, often 
resulting compressed prediction ranges when extrapola-
tion is later performed [40] low values are overestimated 
and high values are underestimated. Non-parametric 
approaches may not suffer from this extrapolation issue. 
To test, we examined the 10th and 90th percentiles of 
biomass distributions. If extrapolation technique were an 
issue, we would expect the W and S maps to show ranges 
compressed relative to the K and B maps.

Nominal year of map National maps were produced in 
different years, and thus some differences between any 
pair of maps would be caused by intervening growth and 
disturbance in the period between the two maps. Thus, 
the observed difference between maps convolves both 
map production differences and real differences in the 
landscape. To test, we compared difference maps to dif-
ferences in the KennXXXX map pairs for the same period. 
Because the KennXXXX maps explicitly capture distur-
bance and growth processes using a consistent technique, 
they serve as a proxy for the expected differences between 
maps for any given pair of years. If two maps agree but 
differ only in disturbance and growth, we would expect 
the distributions of biomass difference to be similar to 
that in the proxy maps. Substantial departures from that 
expected distribution would indicate that year of map pro-
duction was not the only cause of difference in the maps.

Allometric equations Because the CRM method used 
nationally has been shown to produce lower estimates of bio-
mass than regionally-specific allometric equations, we would 
expect mean and median values of biomass to be lower in 
those maps using CRM approaches. To test, we compared 
median and mean values by mapping region. If allometric 
equations were a critical difference, we would expect the S 
and W maps to be consistently lower than the K and B maps.

Results and discussion
Descriptive comparisons
Comparison with ground reference data
All four maps estimate slightly higher national AGB than 
does the summed FIA plot data based estimates for con-
terminous US (Table 2). Of the four, map S’s estimate is 
most similar to FIA and map B’s most dissimilar.

When regressing biomass on a state-by-state basis 
(Fig. 3), map S shows the closest alignment with the 1:1 
line (slope: 1.02), but with greater scatter than both maps 
K and W (r2 = 0.98, 0.99). Map B remains substantially 
different at the state scale, particularly for medium to 
high biomass states. Wilmott’s d suggests that map W is 
most similar to the FIA estimates at state scale, followed 
closely by map S.

Comparison across multiple maps
The national-scale PC1 image shows patterns of bio-
mass that are generally in agreement among all four 
maps (Fig.  4a), with correlations strong between PC1 
and all four source maps (Fig.  4c). As expected, forest 
biomass is highest in west-coast forests, lower in parts 
of the mountainous eastern interior forests and lowest 
in the interior west and north central states. Patterns of 
biomass disagreement (PC 2) are more spatially hetero-
geneous (Fig. 4b), and appear to be dominated by map B 
(Fig. 4d). The difference of map B is in the PCA analysis 
is consistent with its difference against the other maps 
in the state level comparison with FIA plot data (Fig. 3). 
Relative to PC comparisons at the national scale, map-
ping-region scale PC analyses can show more nuanced 
or even opposing patterns. Mapping region 1 (Washing-
ton state) and mapping region 52 (Wisconsin and Michi-
gan state) provide useful examples. In mapping region 1 
(Fig. 5), patterns of biomass agreement (PC 1, Fig. 5a, c) 
are as expected, with high biomass forests in the wetter 
western portions of the state and lower in the drier east-
ern portions of the state. Consistent with the national 
scale analysis, Map B dominates the disagreement vector 
(PC 2, Fig.  5b, d). However, in mapping region 52, Map 
W and map B dominate the disagreement vector (PC 2, 

Table 2 Total forest area and biomass for conterminous US 
for the four AGB maps based estimates and FIA based esti-
mates

AGB map Forest area (Million Ha) Total biomass (Gt)

K 414.8 27.4

B 260.47 29.6

S 350.23 26.7

W 486.14 27.2

FIA – 25.4
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Fig.  6b) even though the patterns of biomass agreement 
are largely as expected (Fig. 6a, c). The map W and map B 
has completely opposing patterns in the mapping region, 
and the spatial pattern is not at all related to the other two 
maps (Fig. 6b, d). Thus, the guidance for which map is less 
reliable may vary with mapping region, and points to the 
need for local users to develop local-scale comparisons.

Scale of agreement
For all maps but Map B, the Wilmott’s measure of agree-
ment between pair-wise maps suggests that agreement 
increases at coarser spatial resolution, potentially leveling 
off at the top end of the range of spatial resolution tested 
here (Fig.  7a). There is high consistency across all pair-
wise comparisons at multiple spatial resolution (range of 
d values less than 0.4) except for the comparison with the 

map B. For Map B, similarity did not change with increas-
ing resolution, and the range of disagreement was high 
(range of d values near 0.8). However, similar to mapping 
region results for PCA, the agreement between maps 
varies with regions (Fig. 7b). The comparisons of map S 
with the other three maps at 240  m resolution suggest 
that it has maximum agreement with the map K across 
all the mapping regions. The agreement of map S with B 
decreases in the eastern mapping regions (Fig. 7b).

Evaluative comparisons
Given that these maps are being compared post hoc, no 
experimental manipulations of method can be designed 
to unambiguously identify causes of change. However, 
by designing evaluative tests to compare specific maps 
against each other under specific hypotheses of change, 
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we can paint a richer picture of possible sources of dif-
ference. Thus, we first describe the results of the metric 
comparisons here, and then follow with an assessment of 
how those comparisons should be interpreted on a pair-
wise basis to test potential methodological sources of 
error.

Cumulative biomass
The same cumulative biomass results conducted for the 
descriptive phase apply to the evaluative phase (Table 1; 
Fig. 3). Notably map S and map W agree well with FIA, 
and maps W and B have higher estimates. This contrast is 
likely related to the commonality of allometric equation 
(CRM approach) between the FIA and S and W maps.

Mapping regions scale biomass density
Pairwise comparisons between the four maps at low, 
medium and high biomass density quantiles at mapping 
region scale parse out differences among maps more 
closely. In general, maps K and W track the 1:1 line at 

low, median, and high biomass, suggesting agreement 
across the biomass distribution and across all mapping 
regions (Fig. 8d, h, k). Map S agrees with Maps K and W 
at the median of the biomass distribution (Fig.  8d), but 
is generally higher than Maps K and W at both high and 
low ends of the range (Fig.  8g, j). Map B is higher than 
all other maps in nearly all situations, and particularly 
appears to have relatively higher biomass at the low end 
of the biomass range (Fig. 8g–i).

Difference maps and relation to ancillary data
We evaluated difference maps in relation to ancillary 
data for all 66 mapping regions. At the  US scale, the 
difference between the map S and K suggests that the 
map S has higher biomass estimates compared to the 
map K at higher biomass regions, and lower biomass 
at lower biomass regions (Fig. 9a). Again, we use map-
ping region 1 to illustrate core principles and findings. 
In mapping region 1, Map S has higher biomass esti-
mates than does Map K in the wetter, western part of 

Fig. 4 Spatial pattern of agreement and disagreement among four AGB maps at pixel scale for conterminous US generated using PCA a Principal 
Component 1 (PC1) score. b Principal Component 2 (PC2) score. c Correlation between PC1 score and the four AGB maps. d Correlation between 
PC2 score and the four AGB maps
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the region, but that pattern is generally flipped when 
compared to Maps B or W (Fig. 9 b–d). Forest charac-
teristics (Fig. 10a, b) and topography (Fig. 10c, d) were 
then related on a pixel by pixel level to the difference 
map, and difference median and range summarized by 
forest type (Fig.  11a), forest age (Fig.  11b), elevation 
(Fig.  11c), and slope (Fig.  11d). As before, Map B was 
an outlier in most comparisons in this mapping region. 
In most of the comparison with map B, the median bio-
mass difference is farther from 0, the range of differ-
ence is larger with higher biomass estimates across the 
mapping region.  

Testing sources of disagreement
Metrics of comparison described above are the core 
from which tests can be developed. Again, the goal 
of the evaluative comparisons is to use specific map-
pair comparisons by metric to infer whether cer-
tain methodological choices are contributing to map 
disagreement.

Forest mask
If forest mask area were a fundamental reason for disa-
greement, we would expect maps with conservative for-
est area to show less biomass. But comparing total forest 
and total biomass (Section on cumulative biomass above, 
Table 2), there is little evidence that forest mask was an 
important factor driving the difference among maps. 
Indeed, the map with the highest biomass estimates (Map 
B) had the most conservative forest mask.

Spatial resolution
For tests of the impact of spatial resolution, we compared 
the high-resolution maps (S and K) with the coarser-
resolution maps (W and B). If spatial resolution were an 
issue we would expect coarse resolution maps to show 
compressed data ranges at both high and low biomass 
values relative to the higher resolution maps. Map S 
appears to show this effect, as it shows greater range in 
both the 90th and 10th percentiles compared to the W 
map (Fig. 8j, g). However, map K did not show this effect 

Fig. 5 Spatial pattern of agreement and disagreement among four AGB maps at pixel scale in mapping zone 1 generated using PCA. a Principal 
Component 1 (PC1) score. b Principal Component 2 (PC2) score. c Correlation between PC1 score and the four AGB maps. d Correlation between 
PC2 score and the four AGB maps
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in comparison to map W (Fig.  8h, k), suggesting that 
resolution alone does not explain the differences in the 
maps.

Source sensor data
If active sensors are able to map higher biomass without 
saturating, we would expect maps W and B to saturate at 
high biomass relative to both map S and K. Map S does 
appear to estimate higher biomass (90th percentile) than 
all other maps (Fig.  8j), but this effect does not occur 
with the other map created using an active sensor (Map 
K). However, this effect may be associated with the use 
of L-Band PALSAR in the map S. Map K uses C-band 
InSAR, which is less sensitive to the higher biomass com-
pared to the higher wavelength [23]. Thus, our results are 
consistent with the notion that a specific type of active 
sensor may provide greater response to high biomass 
areas.

This pattern can be partially corroborated by focusing 
on the high-biomass mapping region 1 (Fig. 11a). There, 
map S shows higher biomass estimates compared to K 
(that uses C-band radar data for height measurement) 
for high biomass forests (Douglas fir or Hemlock/Sitka 
spruce; Fig. 11a). However, the contrast does not hold for 
high biomass age classes (>80 years old; Fig. 11b). More-
over, when compared to optical-based maps, the map 
K map does not consistently show higher biomass esti-
mates in high biomass forests (Douglas fir or Hemlock/
Sitka spruce; Fig.  11a) nor in high biomass age classes 
(>80 years old; Fig. 10b).

Moreover, we see no evidence for topographic impacts 
on radar-derived maps. If topographic conditions were 
an issue for side-looking radar, maps S and K might 
show dampened range in regions of higher topography. 
But instead, we find that the range of difference values 
between either the S or K maps and the other maps show 

Fig. 6 Spatial pattern of agreement and disagreement among four AGB maps at pixel scale for mapping zone 52 generated using PCA. a Principal 
Component 1 (PC1) score. b Principal Component 2 (PC2) score. c Correlation between PC1 score and the four AGB maps. d Correlation between 
PC2 score and the four AGB maps
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no patterns with topographic condition (Fig.  11d). We 
acknowledge that these maps also began as higher resolu-
tion sources, and thus errors of topography may be offset 
by improvements from resolution.

Extrapolation technique
We see no evidence that extrapolation technique influ-
enced differences among the maps. Again, we focus 
on the high and low end of the biomass range, and ask 

Fig. 7 Pairwise comparison between the four AGB maps a multiple resolution comparison at mapping zone scale where X1 = 240 m, X2 = 480, 
X3 = 720 m, X4 = 960 m; X = AGB map, b Comparison at 240 m at pixel level within each mapping zone



Page 14 of 20Neeti and Kennedy  Carbon Balance Manage  (2016) 11:19 

whether maps that use parametric or semi-parametric 
approaches (maps S and W) are compressed relative to 
counterparts that use nonparametric approachs (maps 
B and K). In this case, neither the S nor W map shows 
compressed ranges in the 10th or 90th percentiles of bio-
mass distributions relative to the other maps (Fig. 8). This 

argues that extrapolation technique may not play a large 
role in determining differences among maps.

Nominal year of map
Because maps differed in nominal year represented, we 
would expect possible differences due to disturbance and 

Fig. 8 Pairwise comparison (least square regression) of mean and different percentiles of four AGB maps at mapping zone scale: mean (first row), 
median (second row), 10th percentiles (third row), and 90th percentile (fourth row) and each column in a row represents a particular AGB map as 
x-axis (a, d, g, j: S map as X axis; b, e, h, k: K map as X axis; c, f, i, l: W map as X axis) 
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Fig. 9 Pairwise differences between four AGB maps: a Difference between the map S and the map K for conterminous US, pairwise difference 
between AGB density maps in mapping zone 1: b S & K, c S & B, d S & W e K & B f K & W, and g W & B



Page 16 of 20Neeti and Kennedy  Carbon Balance Manage  (2016) 11:19 

growth of forests between map years. We tested against 
a regional scale map whose production focused on dis-
turbance and growth, and that had consistent methods 
across time (Fig.  12). Although weak, evidence suggests 
that between 40 and 45 % of the total difference between 
national maps was consistent with growth and distur-
bance in the regional-scale map (Table 3).

Allometric equations
Allometric equation impacts may have played a role in 
some of the differences among maps. Median and mean 
biomass estimates from Map B (using regional scale 
equations) were consistently higher than all other maps 
(Fig.  8a–f ), and Map W’s estimates (using CRM equa-
tions) were lower than Map K’s. However, Map S did not 
fit the pattern, showing higher median values than both 
Map K and W.

Conclusions
There exist several AGB maps generated using differ-
ent set of input data and methodology. Although these 
maps describe the same biophysical variable, they vary 
both in quantity and spatial pattern. We provide a sys-
tematic approach to describe and evaluate the differences 

between maps at multiple scales, while assessing the 
accuracy of individual mapping effort at an aggregated 
scale. This study emphasizes that comparison between 
maps need to be structured with specific hypothesis and 
tests. Moreover, we suggest that simple directives about 
which map to use are perhaps overly simplistic. Indeed, 
the answer for defining various tests depends on the need 
of the user and scale of comparison and therefore one 
needs to have set of methodology at different scale with 
different identified steps. The results from this system-
atic analysis on comparison of four national level AGB 
maps suggest that the absolute accuracy and spatial pat-
tern of agreement vary with scale (both spatial resolution 
and spatial extent). Three (S, K and W) of the four maps 
largely agreed, and the two maps (K and W) generated 
with quite different methodological workflows agreed 
remarkably well. One map generated with high resolu-
tion, active sensor data appeared to capture a greater 
range of data. Finally, the map that did not agree at the 
pixel scale continued to disagree even with aggregation, 
indicating aggregation alone may not make maps similar.

When compared with FIA based AGB summed at 
national scale—which is also basis for national level car-
bon accounting—all four maps slightly overestimate 

Fig. 10 Forest and topographical characteristics for mapping zone 1: a forest type b forest age, c elevation, and d slope
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biomass. However, the total summed AGB for map S is 
most similar to FIA based estimates, and would there-
fore argue that the map S could be chosen among the 
four maps for national level analysis. However, the map 
W is most similar to FIA based estimates when aggre-
gated to the state scale. The comparison among biomass 
maps at pixel level (240 m resolution) using R-mode PCA 
suggests that spatial structure of agreement varies at 
national and regional scale (spatial extent). Map B disa-
grees most with respect to the other maps when analyzed 
at national scale, but it is not always true when analyzed 
at the mapping region scale. Thus, one needs to look at 
both regional and broad scale differences before mak-
ing decision about using one map over others for carbon 
accounting. The spatial structure of the maps S and K 
have maximum agreement at national scale PCA analy-
sis, thus they agree well with each other as well as FIA 
based estimates.

The spatial structure of agreement also varies with the 
spatial resolution. Except for map B, the agreement among 
other maps increases as spatial resolution coarsens. Maxi-
mum agreement occurs in the northwest (higher biomass) 
mapping region of the country. The changes in agreement 

with aggregation varied between maps, and were not 
same for the three maps (leaving map B aside).

The structure of the agreement and disagreement 
among the AGB maps achieved by testing the full suite of 
potential sources of differences provides evidence in sup-
port of causes of differences. For example, all the maps 
did best in the dominant forest type of a given region, 
but variability was found in non-dominant forest types. 
The comparison of maps with regional efforts provided 
information about how well these maps were able to cap-
ture regrowth and disturbance pattern. For example, the 
comparison of the difference between the maps K and S 
with regional map suggest that the locations where there 
is lower biomass in S compared to K is mainly due to dis-
turbance. However, the difference between the two could 
not capture regrowth well. Thus, sequences of maps cap-
ture both actual change and the combined effects of each 
map’s error, and thus argues against using sequences of 
these maps for spatial monitoring of biomass over time.

Our strategy for testing the full suite of potential error 
sources shows how remarkably consistent some maps 
were. Notably, the W and K maps differed in nearly 
every methodological approach, yet agreed closely at 
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the mapping region scale. The magnitude of W and K 
matches closely even though the spatial structure differs 
whereas the spatial structure of S and K agrees (simul-
taneous comparison using PCA) but magnitude differs 
(pairwise comparison) when compared at ecoregion 
scale.

While most of the maps generally agree at broad spa-
tial scales, spatial patterns of disagreement at the local 
scale are notable. PCA analyses at both national and 

mapping region scale clearly show that the disagreement 
(PC2) has spatial pattern, and the improvement of agree-
ment with spatial aggregation (Fig.  11) corroborates 
the notion that pixel-level estimates vary considerably 
among maps. Thus, a user at the regional scale would be 
advised to evaluate local scale variation among all maps 
before choosing one to get insight on the sources of dif-
ferences (error or physical change in the landscape). 
With the understanding of differences, one can use 
ensemble approach to have an accurate map of above-
ground biomass map.

Thus, this study provides guidance how to approach 
comparison of multiple maps systematically by design-
ing specific steps for various hypothesis for describing 
and evaluating the spatial pattern of differences between 
maps.

Abbreviations
NASA-CMS: National Aeronautics and System Administration Carbon Monitor-
ing System; MSE: mean square error; RMSE: root mean square error; AGB: 
above ground biomass; FIA: Forest Inventory and Analysis; CRM: Component 
Ratio Method; PCA: Principal Components Analysis; ORNL: Oak Ridge National 
Laboratory.
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Table 3 Total biomass estimates in million tonnes in three 
western states (OR, WA, and CA) over four years: Compari-
son between  national map and  regional map based esti-
mates

States 2000 (Mt) 2003 (Mt) 2005 (Mt) 2009 (Mt)

WA K: 1564.88 B: 2091.94 S: 1812.82 W: 1732.58

Kenn: 1547.72 Kenn: 1537.92 Kenn: 1526.93 Kenn: 1509.06

OR K: 1838.67 B: 2564.11 S: 2150.93 W: 1957.12

Kenn: 1765.63 Kenn: 1734.37 Kenn: 1727.32 Kenn: 1708.72

CA K: 2106.35 B: 2305.67 S: 1818.43 W: 1974.56

Kenn: 1815.66 Kenn: 1808.30 Kenn: 1810.52 Kenn: 1798.77
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