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Abstract 

Background:  The estimation of forest biomass changes due to land-use change is of significant importance for 
estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable 
allometric models used in combination with data derived from satellites images and forest inventory data. To reduce 
the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better informa‑
tion on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover 
(LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan 
Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite 
images and locally derived allometric models based on non-destructive measurements to estimate aboveground 
biomass stocks at the watershed level in the Sudan Savannah zone in Benin.

Results:  We compared three types of empirically fitted allometric models of varying model complexity with respect 
to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter 
at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and 
wood density as predictors. While for most LULC classes model III outperformed the other models even the simple 
model I showed a good performance. The estimated mean dry biomass density values and attached standard error 
for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 
(for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agrofor‑
estry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 
(for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations), to 204.92 ± 57.69 (for Eucalyptus 
grandis plantations) Mg ha−1. The higher uncertainty of agroforestry system and plantations is due to the variance in 
age which affects biomass stocks.

Conclusion:  The results from this study help to close the existing knowledge gap with respect to biomass allometric 
models at the watershed level and the estimation of aboveground biomass stocks in each LULC in the Sudan Savan‑
nah in West Africa. The use of model type I, which relies only on the easy to measure DBH, seems justified since it per‑
formed almost as good as the more complex model types II and III. The work provided useful data on wood density 
of the main species of the Sudan Savannah zone, the related local derived biomass expansion factor and the biomass 
density in each LULC class that would be an indispensable information tool for carbon accounting programme related 
to the implementation of the Kyoto Protocol and REDD+ (reducing emissions from deforestation and forest deg‑
radation, and forests conservation, sustainable management of forests, and enhancement of forest carbon stocks) 
initiatives.
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Background
The sources and sinks of carbon from land use and land 
cover change (LULCC) are significant elements in the 
global carbon budget [1]. Current challenges of forest 
management are related to verifiable, reliable, accurate 
and cost-effective methods to adequately document for-
est resources dynamics [2]. The accuracy of biomass 
density maps depends on the availability of reliable allo-
metric models to infer aboveground biomass (AGB) of 
trees from tree census data [3]. Large uncertainties in 
emission estimates arise from inadequate data on the 
biomass density of forests and the regional rates of defor-
estation [1, 4]. These uncertainties compromise the esti-
mation of terrestrial carbon emissions [5–8] and required 
knowledge on biomass stocks.

A number of comprehensive allometric models for bio-
mass estimation have been developed for the major tree 
species in Europe, America and Asia [3, 9–22]. In sub-
Saharan Africa and especially West-African countries, 
most of the estimation of the total carbon stocks has also 
used allometric models together with forest inventory 
data [22–35]. The majority of studies so far have focused 
on forest ecosystems, specific tree species or plantations 
for the estimation of AGB and carbon stocks [3, 23, 25, 
26, 28, 31, 32, 36–46]. Very few studies have dealt with 
the estimation of AGB in the agricultural landscapes [35].

Attempts to estimate AGB at the watershed level 
requires typically satellite images derived LULC informa-
tion as well as allometric models from each LULC class. 
The data for allometric models for estimating biomass in 
woody vegetation comes either from destructive or from 
non-destructive methods. Destructive methods are based 
on the harvesting of the living trees together with meas-
urements of diameter at breast height (DBH) or stem 
girth and total height as well as the dry mass of stem, 
foliage and branches. The collected variables are then 
used as input for estimating tree volume and biomass for 
selected trees species [22, 30, 37, 45, 47]. According to 
Djomo et al. [25], the application of destructive methods 
is labour intensive and time consuming. This method is 
therefore restricted to small trees at small scales [38, 48]. 
Additionally, harvesting trees requires in general special 
authorization which is often not easy to acquire espe-
cially when the study region involves protected areas.

Recent assessments have switched to the use of 
non-destructive methods [42, 49–55]. The tools and 
approaches used thereby vary considerably between 
regions. A biomass expansion factor (BEF) which 

expresses the relationship between stem biomass and 
the total biomass of a single tree species as well as infor-
mation on wood density of the involved tree species are 
the keys variables used by allometric models to assess 
total biomass of living trees. If shape characteristics are 
included in the estimation of the BEF the approach is 
similar to the volume based approach in which informa-
tion on height and diameter of a tree are used together 
with species specific shape and wood density factors 
[82]. The importance of wood density for estimating for-
est biomass and greenhouse-gas emissions from LULCC 
has been stressed by Nogueira et  al. [54]. A variety of 
different approaches has been applied in case studies 
worldwide: Montes et al. [53] e.g. estimated the biomass 
of thuriferous juniper woodland in Morocco based on 
component volumes estimated from two orthogonal-
view photographs and the density of each component. 
This approach is not well suited to estimate biomass 
in natural environments, especially when the environ-
ment is degraded by human use and wood supply for the 
local populations is at stake. Lehtonen et al. [52] devel-
oped expansion factors conditional on stand age and 
dominant tree species to estimate total biomass of pine 
trees in Norway. Flombaum and Sala [50] presented an 
approach for the calibration of a fast non-destructive 
method to estimate aboveground plant biomass by dou-
ble-sampling vegetation cover and AGB in the Patago-
nian steppe. The author fitted linear regression models 
to describe the relationship between vegetation cover 
and biomass for the dominant species and life forms. 
Tackenberg [55] presented a non-destructive method 
based on scaled digital images analysis of the plants sil-
houettes, addressing not only aboveground fresh bio-
mass and oven-dried biomass, but also vertical biomass 
distribution as well as dry matter content and growth 
rates. The method used by Tackenberg [55] is time and 
cost effective compared with destructive measure-
ments, especially if development or growth rates are to 
be measured repeatedly. Another branch of approaches 
aims at identifying wood volumes by remote sensing 
approaches [83–86]—however for relating volume esti-
mates with biomass information on wood density for the 
relevant species is necessary which is missing for many 
natural and semi-natural tree species in the tropics and 
sub-tropics.

Two problems hinder the transfer of the currently used 
non-destructive methods in the West-African context. 
First, BEFs are not available for most relevant local tree 
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species and most devices used in other regions of the 
world are not suitable. In the southern part of the Repub-
lic of Benin, Guendehou et al. [42] assessed stem biomass 
based on stem volume and wood density for selected 
tropical tree species using an increment borer as the 
device of stem wood sample extraction. Unfortunately, 
the obtained BEF could not be applied in the context of 
the present study since the study was undertaken under 
the tropical conditions in West Africa which are different 
from the conditions in the case study region. The work 
by Guendehou et al. [42] therefore needs to be expanded 
to reflect conditions and tree species in different land use 
systems to allow a more precise estimation of the rele-
vance of African trees for biomass and carbon stocks.

The goal of this paper was to accurately estimate AGB 
stocks at the watershed level in the Sudan Savannah zone 
using satellite images derived LULC data and adjusted 
allometric models based on data from non-destructive 
method.

Methods
The AGB estimation at the watershed scale was based on 
the following steps (Fig. 1):

1.	 satellite images analysis and LULC classification,
2.	 forest inventory in each identified LULC class of the 

watershed,
3.	 trees communities analysis and identification of the 

main species of the watershed based on importance 
value index (IVI),

4.	 estimation of basic wood density and BEF model of 
selected species,

5.	 assessment of non-destructive method to the 
destructive one based on available data,

6.	 development of allometric models using DBH, tree 
height and basic wood density of main trees species,

7.	 calculation of biomass data at the tree and the plot 
level using the best allometric equations of each 
LUCa and extrapolation at the watershed level,

Fig. 1  Flowchart showing the approach for the estimation of aboveground biomass at the watershed scale



Page 4 of 18Chabi et al. Carbon Balance Manage  (2016) 11:16 

8.	 mapping the biomass density using ArcGIS 10.2.1 
software.

Site location
The analysis took place in the Dassari basin situated 
in North-West of Benin (Fig.  2) and covers an area of 
192.57  km2. The site is located between 10°44′08″ and 
10°55′42″ North and 1°01′32″ and 1°11′30″ East.

Long-term (1952–2010) minimal daily temperature at 
Natitingou station located 50  km from the site ranged 
from 15.25 to 25.08 °C with an average of 20.53 °C. Daily 
maximum temperature ranged from 26.63 to 39.27  °C 
with a mean temperature of 32.59 °C. Long-term (1971–
2013) mean monthly precipitation for Tanguieta station 
(15–20 km from the study area) was 87.5 mm.

We used the standardized precipitation index (SPI) 
programme developed by Brown [68] and the result 
showed two periods (1978–1979; 1985–1986) of extreme 
drought with some years of moderate to severe drought 
during these 42 years of observation.

Data collection
Data sources for images classification
The estimation of aboveground tree biomass at the 
watershed scale was complicated by the heterogeneous 
tree species distribution across the different LUCa. Two 
Landsat 8 scenes (http://glovis.usgs.gov) were used for 
LULC classification. The acquisition dates were 13 Octo-
ber 2013 and 29 October 2013 both with path-row 193-
53. The acquisition dates were chosen since they fit well 
with the high photosynthetic activity of natural vegeta-
tion, crops and offset cloud cover and fire pattern distur-
bance. The scenes selected had zero percent cloud cover. 
Landsat 8 images were provided atmospherically and 
geometrically corrected (Landsat 8, level 2A product).

To separate agroforestry and plantation which are eas-
ily confused with natural vegetation at the 30 m Landsat 
resolution we used Worldview-2 imagery1 (0.46/1.84  m 
resolution panchromatic/multispectral) from with addi-
tional ground truthing data (field surveys of plots data 
from agroforestry systems and plantations).

Establishment of gridded vegetation index map using MODIS 
data
To select sample points that cover the different land use 
classes adequately, we first derived clusters of land use 
based on time series of the moderate-resolution imaging 
spectro-radiometer (MODIS) normalized difference veg-
etation index (NDVI) product. These clusters were then 
used as strata in a stratified sampling procedure to select 
sampling points.

1  Worldview-2 imagery can be found at http://www.digitalglobe.com.

The NDVI [87] is one of the most widely used vegeta-
tion indexes and is correlated with several biophysical 
properties of the vegetation canopy, such as leaf area 
index, fractional vegetation cover, vegetation condition, 
and biomass. The NDVI is defined base on the relation-
ship between near infrared (NIR) and red light (RED) and 
relates the difference of both wave lengths to their sum 
(Eq.  1). It is built on the observation that chlorophylls 
a and b in green leaves strongly absorb light in the Red 
while the cell walls strongly scatter light in the NIR region 
[88]. NDVI normalizes values between −1 and +1; dense 
vegetation has a high NDVI, while soil values are low but 
positive, and water is negative due to its strong absorp-
tion of NIR.

We used MODIS data with 500  m resolution and 
0  % cloud cover from August 2013 to November 2013 
(https://lpdaac.usgs.gov/products/modis_products_
table). We calculated the mean NDVI (Eq. 2) of six times 
series per pixel across time. The mean NDVI was used as 
input in a k-mean cluster analysis [89] with the number 
of clusters set to the number of LUCa (forest land, grass-
land, cropland and settlements and other land use) used 
in the analysis. The clusters were then used for a strati-
fied random sample creation in ArcGIS 10.2.1. The cen-
troids of the selected pixels were used to establish plots at 
which ground training area information was derived for 
the classification (Figs. 1, 2).

where NDVI =  normalized difference vegetation index, 
NIR =  near-infrared band of MODIS, Red =  red band 
of MODIS, i =  pixel position (i.e. pixel i) in the scene, 
N  =  number of scenes or elements, x  =  longitude 
coordinate of pixel i, y =  latitude coordinate of pixel i, 
MeanNDVI (i) = mean NDVI of pixel i, Min = minimum 
value of Mean NDVI of all pixels, Max = maximum value 
of Mean NDVI of all pixels.

We rescaled NDVI from range [−1; 1] to [0; 255] using 
the logarithmic function (Eq. 3) in ERDAS Imagine 10 to 
avoid negative values in data manipulation and visualiza-
tion (Fig. 2).

Both sample points for calibration as well as for valida-
tion were sampled using the same procedure. Validation 

(1)NDVIi =
NIRi − Redi

NIRi + Redi

(2)MeanNDVIi =

∑N
i=1

(

NDVI(x,y)i
)

N

(3)
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=
[(

MeanNDVIi −NDVImin

)

/

(NDVImax − NDVImin)]×
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http://glovis.usgs.gov
http://www.digitalglobe.com
https://lpdaac.usgs.gov/products/modis_products_table
https://lpdaac.usgs.gov/products/modis_products_table
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Fig. 2  Geographic location of Dassari watershed in North-West of Benin and the gridded vegetation index map with plots locations
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sample points were not used for the training of the 
classifier.

Image classification
We used seven LULC classes that reflect the dominant 
land use classes for biomass stocks assessment in our 
case study region: riparian forest and woodland, Savanna 
Woodland, shrub savanna, cropland and fallow, settle-
ments, agroforestry and plantation. At some locations 
in the text we refer to forest land that incorporates the 
land use category (LUCa) riparian forest and woodland, 
Savanna Woodland and shrub savanna. We further sepa-
rated agroforestry and plantation from cropland since an 
increase of agroforestry and plantation could be a mitiga-
tion strategy to climate change.

Based on the ground truthing data derived for the sam-
ple points, a random forest classifier was trained and 
used to classify the Landsat 8 data. For the classification 
bands 2, 3 and 4 were used. The random forest approach 
is a machine-learning approach that builds on classifica-
tion and regression trees but overcomes their sensitivity 
towards noise in the data. Instead of relying on a single 
decision tree, using the majority vote of a forest of deci-
sion trees fit to bootstrap samples from the original data. 
While individual decision trees suffer from a high vari-
ance of estimates the averaging across the bootstrap sam-
ple leads to a significant variance reduction [90, 91]. In 
addition to bagging approaches, random forests decor-
relate the trees by using only a random sample of the 
variables (i.e. spectral bands) for each split. The analysis 
was done in R [69] using the package randomForest [70]. 
Random forest classifiers have been applied successfully 
in a number of remote sensing studies [92–94] which 
showed that the approach is superior to the widely used 
maximum likelihood classifier.

Since it was not possible to separate agroforestry and 
plantations from forest land at the scale of the Landsat 8 
data these classes were separated based on several high 

resolution Worldview-2 images, known plantation and 
agroforestry sites and their geometric properties (regular 
spacing between trees) in ArcGIS 10.2.1. Areas that were 
identified as either agroforestry or plantation were vali-
dated in the field and assigned to the proper class based 
on the field validation. For the final LULC map identified 
agroforestry and plantations were superimposed on the 
existing classification (Fig. 1).

Accuracy assessment of the classification
The accuracy of the random forest classification (with-
out the superimposed classification of agroforestry and 
plantations) was based on independent validation points 
that were sampled similar to the training sample points. 
By comparing classification results and observed land use 
classes at the location of the validation points a confu-
sion matrix was derived. Based on the confusion matrix 
overall accuracy and the kappa index [71] were derived to 
assess the accuracy of the classification.

Forest inventory
Forest inventory and tree species community analysis was 
carried out during 7 months (from March to September 
2014). In every LULC class, plots were installed randomly 
proportionally to their size (Table 1) using the equation 
from Pearson et al. [72]. The size of plots was 30 × 30 m 
in forest land, grassland and cropland, 100  m ×  100  m 
within the settlements and 10 m × 20 m in agroforestry 
and plantation. The total 250 plots (Fig. 2; Table 1) have 
been surveyed which cover 27.26 ha.

Importance value index (IVI) analysis
The objective of IVI calculation was the selection of the 
main species of the watershed for the development of 
tree biomass allometric equations. The IVI analysis has 
been used for the first time by Curtis [73] to determine 
the overall importance of tree species for a tree com-
munity structure. The IVI of a species is the sum of the 

Table 1  Land use/land cover (LULC) classes and number of installed plots

Agroforestry and plantation were seen as mitigation strategies to climate change, we therefore choose to discriminate them from cropland

RFW riparian forest and woodland, SW Savanna woodland, SS shrub Savanna, GL grassland, CPF cropland and fallow, SL settlement, AGF agroforestry, PLT plantation

Characteristics IPCC [95] land use categories (LUCa)

Forestland Grassland Cropland Settlement Others land 
use

LULC RFW SW SS GL CPF SL AGF PLT

Area (ha) 341.19 5476.5 4282.56 96.57 8044.47 488.34 20.7 17.1

Percentage in the watershed 1.77 28.44 22.24 0.50 41.77 2.54 0.11 0.09

Area sampled (ha) 0.81 2.43 5.04 3.06 7.2 8 0.26 0.46

Number of establishing plots 09 27 56 34 80 08 13 23
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relative frequency, relative density and relative domi-
nance of the species in a region.

Relative density (RD%) for species i:

Relative frequency (RF%) for species i:

Relative dominance (RDom%) for species i:

Importance value index (IVI):

where IVI (Ai)  =  importance value index of species 
Ai with i varied from 1 to N (here N  =  81 species), 
RDi = relative density of species i (%), RFi = relative fre-
quency of species i (%), RDomi  =  relative dominance 
of species i (%), Total density for all species =  sum of 
density across all species, Total frequency values for 
all species =  Sum of frequency across all species, Total 
dominance for all species = sum of dominance across all 
species.

Among the 84 inventoried species within the entire 
watershed, only three were not taken into the account for 
IVI calculation. The first species was Adansonia digitata 
which has DBH range 9.2–185 cm, with a relative abun-
dance of 9.87 % and the density of 0.54 (<1 plant ha−1). 
Phoenix reclinata and Borassus flabellifer were removed 
since we could rely on published allometric equations for 
coconut biomass estimation, by Schoroth et  al. [74] for 
these two species. For the remaining 81 species the IVI 
was calculated using Eqs. 4–7 to obtain 15 most impor-
tant tree species. These 15 tree species were used for the 
further analysis.

Field campaign and the estimation of wood density of the 
main species of the watershed
The materials used for this study were an increment 
borer, scale weight of 25  kg, metric tape scaling, metre 
increment and an oven for drying the wood samples. 
During the second field campaign (from October 2014 
to December 2014) wood samples from 270 trees within 
the 15 main species (Terminalia macroptera, Acacia 
seyal, Combretum glutinosum, Pterocarpus erinaceus, 
Anogeisus leiocarpus, Mitragyna inermis, Lannea micro-
crapa, Lannea acida, Ficus sp., Crosopteryx febrifuga, 
Entada africana, Parkia biglobosa, Vitelaria paradoxa, 

(4)RDi =
Density of species Ai

Total density for all species
× 100

(5)

RFi =
Frequency value for species Ai

Total frequency values for all species
× 100

(6)RDomi =
Dominance for species Ai

Total dominance for all species
× 100

(7)IVI(Ai) = RDi + RFi + RDomi

Azadirachta indica, Anacardium occidentale) were 
extracted with the increment borer at 1.3  m above the 
ground. A. occidentale was surveyed in the agroforestry 
system (cashew). The basic wood density of the samples 
was estimated after oven-drying them at 75  °C—over 
2–3  days depending on the water content of the wood 
samples.

Tree measurements (destructive and non‑destructive 
methods)
It was possible to analyse trees selected for logging in a 
rural electrification project along the road from Dassari-
Tigniga (Fig.  2) in the Dassari basin. Seven species (T. 
macroptera, Ficus sp., A. seyal, Entanda Africana, C. 
glutinosum, C. febrifuga and A. leiocarpus) and 13 indi-
vidual trees were selected. Only tree species which were 
going to be logged by rural electrification project officers 
and that belonged to the previously mentioned 15 main 
species (Table 3) of the watershed were analysed. These 
samples allowed the estimation of the parameters of the 
BEF function as well as an assessment of the uncertain-
ties attached.

The following activities were undertaken in preparation 
for the use of the non-destructive approach:

1.	 Measurement of stem girth at 1.3  m, 2.3  m and 
crown base, and stem height (Fig. 3);

2.	 Extraction of stem wood sample of the tree at 1.3 m 
above ground using the increment borer;

3.	 Oven-drying the wood sample obtained with the 
increment borer and estimation of the wood density 
of the surveyed tree;

4.	 Estimation of stem-dry mass of the tree species using 
Eqs. 8–11.

The destructive approach consisted of the following 
steps:

1.	 Logging of the tree species by rural electrification 
project officers,

2.	 Weighting of fresh mass of stem, branches and foli-
age using scale weighting of 25 kg,

3.	 Oven-drying of fresh wood samples selected from 
stem, branches and foliage at 75  °C for 2–3  days to 
constant weight;

4.	 Estimation of dry mass of stem, branches and foliage 
of the tree using Eq. 12,

5.	 Calculation of BEF based on dry mass of stem, 
branches and foliage using Eq. 13,

6.	 Modelling BEF as a function of stem dry mass using 
Eq. 14,
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7.	 Comparison of the non-destructive method to the 
destructive method based on predictive total biomass 
by BEF function.

Figure  3 shows the various properties collected from 
sample trees in this watershed.

The pole of tree height measurement was 4 m in length. 
One worker holds the pole next to the tree when measur-
ing the stem height. The second worker stood far enough 
away to estimate the stem height of the tree. Samples of 
wood were extracted from the tree using an increment 
borer (Fig. 4).

Collection of wood samples in the field
The inner diameter of the bit of the increment borer 
device was 0.5 cm leading to a diameter of the sample of 
0.5 cm. The length L of the sample was measured after its 
extraction. The application of the tool is shown in Fig. 4.

The main activities preformed related to the destruc-
tive approach were the estimation of dry mass of wood 
samples of stem, branches and foliage followed by the 
estimation of BEF.

Data analysis
Estimation of basic wood density
The core wood sample was oven-dried at 75  °C dur-
ing 2–3 days till the stabilization of dry mass. The oven 
dry density (ρ) in terms of dry mass per fresh volume 
(g  cm−3) of all collected wood samples was estimated 
using Eq. 8.

where: dMSi =  dry mass of wood sample i obtained by 
the increment borer, d = diameter of the bit, Li = length 
of the sample i.

Estimation of stem volume and stem biomass of surveyed 
trees
The stem volume of the trees was measured by section 
according to Fig.  3. The truncated cone function was 
used to estimate this stem volume (Eq. 9):

where Hi  =  height in m of section i of the tree stem, 
C1i =  the greater girth of the section i of the tree stem, 
C2i = the smaller girth of the section i of tree stem, Vis-
temi = Volume in cm3 of section i of the tree stem.

The stem biomass was estimated based on wood den-
sity and stem volume values of the sections of the tree 
stem (Eq. 10) and added up to get the total stem biomass 
based on non-destructive approach (Eq. 11):

(8)ρ =
4dMSi

πd2Li

(9)Vistemi = Hi ×
1

12π
×

(

C2
1i + C2

2i + C1i · C2i

)

(10)Bistemi = (ρ × Vistemi)/1000

(11)
TBstem =

n
∑

i=1

Bistemi

Fig. 3  Tree design showing details of measurement of diameters and 
heights on individual sample tree. Where G1 = stem girth of tree at 
breast height (at 1.3 m), G2 = stem girth of tree at 2.3 m height, G_
crown = stem girth of tree at the crown base, h_1.3 m = stem height 
at 1.3 m, h_2.3 m = stem height at 2.3 m

Fig. 4  Wood sample obtained from increment borer. CHABI, October 
2014. 1 Increment borer, 2 wood sample
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where Vistemi =  volume in cm3 of section i of the tree 
stem, Bistemi  =  biomass in kg of section i of the tree 
stem, TBstem = total biomass of tree stem, n = number 
of the section of the tree stem.

In the next step, dry mass of stem, branches and foliage 
were added up to get the total biomass of the tree based 
on destructive approach:

where Btot =  total biomass of a tree (sum of dry mass 
of stem, branches and foliage) in kg, fM = fresh mass of 
stem, branches or foliage, dMS = dry mass of wood sam-
ple of stem branches or foliage, fMS = fresh mass of sam-
ple of stem branches or foliage, j = index of the different 
components (stem, branches and foliages), m = number 
of components, 3 in the present case.

The BEF per tree was calculated using Eq. 13.

where Btot = total biomass of a tree (sum of dry mass of 
stem, branches and foliage) in kg, Bstem = stem dry bio-
mass in kg, BEF = biomass expansion factor.

Modelling BEF as a function of stem dry mass
The relationship between BEF and stem dry biomass 
(Bstem) was modelled by a linear regression model in R 
[75]. Stem dry biomass has been log-transformed to pro-
vide a more even spread of the data.

where β0 and β1 are regression coefficients and ε the error 
term which we assume to be normally distributed and 
centred on zero.

Fitting aboveground biomass (AGB) equations for the 
surveyed individual tree species
Total samples consisted of 270 individual trees that have 
been non-destructively surveyed (Table  3). For each 
tree of that sample, the BEF was applied to calculate 
the AGB. This AGB was then modelled by generalized 
linear models (GLM) [76] using predictors easily meas-
ured in the field. We selected DBH, total height (H) and 
wood density (ρ) as predictors. Since the effort to meas-
ure the predictors increases from DBH to H and to ρ 
we fitted models for three sets of predictors: (1) just on 
DBH, (2) DBH and H, (3) all three predictors together. 
Based on the properties of the residuals we decided on a 
Gamma GLM with a log link. For each level of complex-
ity we started with a model that contained the interac-
tions between all involved predictors as well as the main 

(12)Btot =

m
∑

j=1

fMj × dMSj

fMSj

(13)BEF =
Btot

Bstem

(14)BEF = β0 + β1ln(Bstem)+ ε

effects (conditional on the interactions). We tried to 
simplify the model structure based on the small sample 
size of corrected Aikaike information criteria (AICc) [77, 
78]. Quadratic effects were not considered since their 
inclusion led to unrealistic model behaviour for higher 
response values which we interpreted as a result of over-
fitting the model.

The aim was the fitting of model at land use categories 
(LUCa) level—i.e. data were subsetted by LUCa before 
fitting—in addition to a generic category which included 
all LUCas. Effects of species on the model fit as well as on 
the structure of the residuals were tested but effects were 
small. We used the following LUCa to fit the models: 
forest land (the combination of riparian forest, Savanna 
Woodland and shrub savanna), savanna grassland (grass-
land), settlement, cropland (cropland and fallow). The 
sample size differed by LUCa: agroforestry: 25, forest: 
181, cropland: 178, settlements: 63, grassland: 90. We 
did not fit models for the LUCa plantation but applied 
published equations. AGB from plots plantations of Tec-
tona grandis and Eucalyptus grandis were obtained using 
respectively published allometric equations from Guen-
dehou et  al. [42] and Montagu et  al. [79] whereas the 
generic equation (cf. Fig. 7; Additional file 2) was applied 
to estimate AGB of A. indica and Gmelina arborea.

Validity domain of equations for DBH
The models were run under certain ranges of DBH 
obtained from each LUCa. The DBH ranges were 5.6–
44.7, 7.6–40.7, 6.9–62.4, 7–52.7 and 9.2–57.9 cm respec-
tively in forest land, savanna grassland, cropland and 
fallow, settlement and agroforestry systems (cashew 
plantation).

Estimating aboveground biomass at the watershed level
We generated the biomass density map using the best 
specific equation for each LUCa especially equation 
type III which involved the three predictors. For agro-
forestry model II was used since wood density did not 
have a significant effect on AGB estimates in this LUCa. 
We estimated biomass content of each plot in two steps 
when we found P. reclinata and B. flabellifer in the plot 
data. We first retrieved these species from each plot 
data and we estimated their biomass using equation 
from Schoroth et al. [74] developed for the estimation 
of AGB of coconut. In the second step we applied spe-
cific equations for the concerned plots and we summed 
up together the two results to obtain the total biomass 
of the plot. The total biomass stocks of each LULC class 
is equal to the mean AGB density expressed in Mg ha−1 
times the area in ha of the defined LULC class. The 
biomass stocks map was edited using ArcGIS 10.2.1 
software.
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Results and discussion
Land use classification
The accuracy of the classification of the Landsat 8 
imagery (Fig. 5) was acceptable to good given the overall 
accuracy of 0.75 and the kappa index of 0.70. Since the 
identification of the agroforestry systems and planta-
tions was done manually we could not derive an accuracy 
measure.

Main species in the study area
Based on the IVI analysis we identified 15 main species 
that were used for the further analysis. These represented 
80.5, 82.75, 79.55 and 76.8 % of the total number of tree 

species for forest land, grassland, cropland and fallow, 
and settlement respectively (cf. Table 2).

Basic wood density of the main species of the study area
Table  3 shows the estimated basic wood density of the 
main species in the study area. The species A. leiocarpus, 
C. glutinosum, T. macroptera, V. paradoxa, P. erinaceus, 
A. indica, A. seyal, and C. febrifuga were characterized 
by a high mean wood density. The low mean density 
observed for L. microcrapa and Ficus sp. is in line with 
the high water content of the species which is lost dur-
ing the drying process. Standard deviations of the meas-
urements were very low for all species and confirmed 

Fig. 5  a The land use/land cover classes and b biomass density of the watershed. The biomass density was expressed in Mg ha−1. The total biomass 
stocks in each LULC are presented in the Table 6
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thereby the accuracy of the measurements as well as the 
relative low importance of confounding factors which 
influence density variation per species as described by 
Chave et  al. [56]. Measurements on basic wood density 
were in line with results from previous studies [57–62].

BEF
The BEF increased significantly with the log of stem dry 
biomass (Table  4; Fig.  6, left panel). The BEF as a func-
tion of stem dry biomass varied between 1.46 and 1.88 
with a mean of 1.67 ± 0.04 (SE). The BEF of T. macrop-
tera which is the main species of the study site ranged 
from 1.55 to 1.88 with a mean of 1.73 ± 0.009 (SE). The 
model explained 69 % of the variance in the data. Residu-
als showed no relevant pattern with respect to the differ-
ent tree species.

Total biomass obtained by the destructive method 
(observed values from 13 trees) and the total biomasses 
estimated by the non-destructive method (predicted 
values from these trees using the estimated BEF–stem 
dry mass relationship) were highly similar (Fig. 6 centre 
panel, Pearson correlation coefficient of 0.99).

Our results differ significantly from relationships iden-
tified in other land systems stressing the importance of 
deriving BEF relationships adjusted to the conditions in 
the ecozone. Segura [63] used a similar approach based 
on an estimated BEF function for the per-humid premon-
tane transitional forest zone in Costa Rica. In contrast to 
our findings BEF decreased with stem biomass in Costa 
Rica. While the Costa Rican study underestimated total 
biomass of trees on average by 17.31 %, the application of 
the BEF to our data overestimated total biomass slightly 

Table 2  Importance value index of  main species in  each 
land use/cover category (LUCa)

Species name Importance value index (IVI) (%)

Forestland Grassland Cropland Settlement

T. macroptera 42.57 125.85 19.23 –

A. seyal 33.18 24.39 21.01 –

C. glutinosum 31.13 – 5.99 –

P. erinaceus 25.55 – 6.02 –

A. leiocarpus 24.09 – – –

M. inermis 18.22 – – –

L. microcrapa 16.06 – 44.97 28.25

Ficus sp. 8.79 32.28 28.84 42.08

C. febrifuga 8.01 – – –

E. africana 7.32 22.27 – –

P. biglobosa – 42.14 65.50 –

V. paradoxa – – 21.28 –

A. indica – – 15.92 96.63

Table 3  The basic wood density (g cm−3) of the main species of the watershed

n = Number of tree selected. The stem wood samples of selected trees were extracted at 1.3 m of the ground. DBH range = range of diameter at breast height of 
sampled tree species. Figures in bracket represent the standard error (SE) of the mean

Authors of previous studies: a Sallenave [57, 58], b Von Maydell [59], c Carsan et al. [60], d Oey et al. [61], e Little et al. [62]

Trees species The present study Previous studies
ρ (g cm−3)

n Basic wood density Mean (SE) DBH (cm)

Min. Max. Min. Max.

T. macroptera 19 0.740 0.893 0.821 (0.010) 9.3 40.7 0.768a; 0.870b

A. seyal 16 0.669 0.909 0.751 (0.015) 7.6 34.4 –

C. glutinosum 11 0.827 0.962 0.877 (0.013) 7.9 31.9 0.900b

P. erinaceus 21 0.671 0.973 0.826 (0.015) 6.9 44.7 0.740a

A. leiocarpus 16 0.813 0.977 0.889 (0.012) 6.9 32.4 –

M. inermis 18 0.579 0.687 0.631 (0.008) 7.0 34.5 –

L. microcrapa 22 0.472 0.648 0.546 (0.011) 7.0 50.6 –

L. acida 06 0.504 0.676 0.573 (0.027) 10.8 35.9 –

Ficus sp. 21 0.440 0.607 0.528 (0.010) 8.6 52.7 –

C. febrifuga 18 0.518 0.778 0.704 (0.016) 5.6 30.5 –

E. africana 15 0.556 0.688 0.631 (0.010) 8.4 27.6 –

P. biglobosa 23 0.566 0.689 0.630 (0.006) 8.6 62.4 0.525c

V. paradoxa 23 0.608 0.950 0.838 (0.016) 8.0 53.8 –

A. indica 16 0.619 0.886 0.763 (0.018) 8.8 50.5 0.660d; 0.620e

A. occidentale 25 0.512 0.625 0.569 (0.006) 9.2 57.9 0.431c; 0.500e
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by 1.82 %. Levy et al. [64] estimated the biomass expan-
sion of coniferous species in Great Britain as a function 
of tree height of stand tree. An application of Levy’s BEF 
to our data overestimated the total biomass of our sam-
pled tree species to on average by 4.46 %. Magalhães and 
Seifert [65] used BEF as a function of DBH when estimat-
ing AGB of Androstachysjohnsonii Prain in Mozambique. 
The application of the BEF of Magalhães and Seifert [65] 
to our data underestimated the total biomass of our sam-
pled tree species on average by 62.54 %.

Given the small sample size (13 individual trees within 
seven species) and the limited range of DBH (<25  cm) 
care should be taken not to extrapolate results. However, 
the sampled trees represent the common size distribution 
of trees in the human influenced ecosystems of the study 
region. Therefore, our results can be assumed to provide 
a good estimate for BEF assessments in the region.

Alternatively, BEF could be estimated based on DBH of 
the 13 trees assessed by the destructive approach (Fig. 6, 
right panel).The model based on DBH was slightly supe-
rior to the model based on stem dry biomass if compared 
by means of the small sample size corrected AIC (AICc) 

or a likelihood ratio test and it explained 75 % of the vari-
ance in the BEF (Table 4).

If this model was used to predict total biomass, the 
values derived by the destructive approach were overes-
timated on average by 2.27 %—a bit higher compared to 
the model based on stem dry mass. We therefore stuck to 
the estimation based on stem dry biomass.

Aboveground biomass (AGB) models at the watershed 
level
All models indicated a high goodness of fit expressed 
by the explained deviance as well as by the pseudo-R2 
by Nagelkerke [66]. While the AICc clearly favoured the 
more complex models (cf. Fig.  7 even the models using 
only DBH as a predictor provided a high goodness of fit. 
An analysis of the effects of LUCa as an additional pre-
dictor on all sample points indicated significant differ-
ences between the coefficients across LUCa. This is also 
visible when comparing regression coefficients per model 
type across LUCa (cf. Fig.  8). Expectedly, the generic 
landscape model could not capture this variability. How-
ever, inside a model class, coefficients always were of 
same sign and of the same order of magnitude. For mod-
els of type II, the inclusion of the interaction between 
DBH and total height were always selected based on the 
lower AICc. For the other categories wood density was 
included in the models in addition to the other two main 
effects and the interaction between DBH and total height. 
For forest land and grassland, the interaction between 
DBH and wood density was also selected based on AICc. 
The basic wood density (ρ) was not a good predictor for 
the estimation of AGB in agroforestry system (cashew 
plantation). This can be explained by the fact that cashew 
was the only tree species in that LUCa and that wood 
density measurements for that species had a relatively 

Table 4  Coefficients for  the BEF–stem dry biomass rela-
tionship and for the BEF–DBH relationship fitted

Both regressions were fitted based on the 13 trees available for the destructive 
method and non-destructive assessment

Coefficient SE p value

BEF–stem dry biomass relationship

 Intercept 1.24155 0.09253 3.66 × 10−8

 ln(stem dry biomass) 0.14701 0.02968 0.000434

BEF–DBH relationship

 Intercept 1.25801 0.07697 4.61 × 10−9

 DBH 0.0314 0.00543 0.000122

Fig. 6  a Estimated relationship between stem dry biomass and biomass expansion factor modelled for the 13 trees that were available for the anal‑
ysis by the destructive approach (left panel). The dashed lines represent the 95 % confidence band. b Comparison between total biomass derived by 
the destructive and the non-destructive method (centre panel). The grey line represents the 1:1 line to aid interpretation. c Estimated relationships 
between DBH and biomass expansion factor modelled for the 13 trees that were available for the analysis by the destructive approach (right panel). 
The dashed lines represent the 95 % confidence band
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low variance. In cashew plantations big trees—i.e. cashew 
trees older than 45 years—tend to lose their wood igni-
tion followed by the observed decrease of wood density 
for bigger cashew trees. In the available 25 cashew trees 
wood density was high for cashew trees with an age of 
10–20 years.

For model type I regression coefficients for DBH dif-
fer by around 40 % with lowest estimates for agroforestry 
and highest values for forests and grasslands. For model 
II agroforestry and settlements have clearly distinct coef-
ficient estimates from the other land use classes. Model 
coefficients for model type III are hard to compare since 
the interaction between wood density and height was 
only significant for forest and grasslands. Effects plots (cf. 
Additional file 1) indicated, that the differences between 
regression coefficients across the LUCa led to important 
changes in prediction.

Comparing the equations to previously published 
equations
We could only compare our allometric models for forest 
lands with previous published allometric equations due 
to the lack of allometric equations for cropland, grassland 
and settlements. We therefore compared only the models 
for forest land and the generic model with results from 
Brown [67], Chave et al. [22], Chave et al. [3] and de Jose 
[45]. We choose equations developed by these authors 
in the global dry forest region for the comparison. Our 
results were in line with all mentioned equations in terms 

of mean deviation of the observed AGB at the stand tree 
level (Table 5). Our model type I which was only based on 
DBH differed on average by 21.67  % from the observed 
AGB for forest land. Results from the equations based on 
DBH for Brown [67] and de Jose [45] differed on average 
by 25.02 and 26.41 % respectively. The same analysis was 
done with the model type II and III in comparison with 
the previous studies when DBH was not the only predic-
tor. Model type III differed on average by 4.77 % for forest 
land whereas Chave et al. [22] and Chave et al. [3] respec-
tively differed by 9.04 and 14.78  %. This highlights the 
importance of allometric models adjusted to the regional 
conditions in the Sudan Savannah ecosystems in West 
Africa.

Aboveground biomass density and stocks at the watershed 
level
The results for biomass density in Savanna Woodland 
and riparian forest were in the same magnitude with 
those obtained by Sidzabda et  al. [80] in forest land of 
the Sudan Savannah zone of Burkina-Faso. The mean 
biomass density and attached standard error varied 
from 3.28 ± 0.31 to 204.92 ± 57.69 Mg ha−1 across the 
LUCas (Fig. 5; Table 6) with the lowest biomass density in 
cropland and the highest biomass density in plantations 
emphasizing the potential of plantations as a mitigation 
strategy for the climate change. Biomass density dif-
fered however strongly between the different trees used 
in plantations. High uncertainty of biomass estimates for 

Fig. 7  Goodness of fit assessment for the allometric models by land use class for each of the three levels of model complexity analysed. The left 
panel shows the Nagelkerke pseudo-R2 while the right panel shows the AICc. Please not that AICc values cannot be compared across land use 
classes and that a delta AICc of >2 indicates that the models clearly differ in respect to their likelihood
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Fig. 8  Regression coefficients of the allometric models by land use class for each of the three levels of model complexity analysed. The filled circle 
represents the estimate of the coefficient the triangles indicate the standard error of the estimate. For the effect plots please see the figures in the 
Additional file 1. The data were fitted for the generic model (all watershed) and for each land-use category (LUCa). The coefficients are provided 
at the link scale. The log-link was used for fitting the gamma glm. The ‘:’ operator represents the interaction between both involved variables. The 
sample size differed by land use category: agroforestry: 25, forest: 181, cropland: 178, settlements: 63, grassland: 90. Aboveground biomass is based 
on dry weight (kg tree−1). For agroforestry model type III was reduced to the same model structure as model type II—i.e. wood density had no 
significant effect on the estimation of above ground biomass here. See Additional file 2 for the details
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plantation and agroforestry system might be due to the 
different age of plots data; since biomass increases with 
stand age [81]. Since our LULC data classification could 
not separate between young and old cashew tree planta-
tions we have unfortunately to deal with this high uncer-
tainty. This highlights the need for additional data to 

assess the potential of agroforestry and plantations as a 
mitigation strategy to climate change.

The biomass density map (Fig.  5) was generated 
based on the best model for each LUCa. The map in 
Fig.  5 shows the LULC types and the biomass density 
at the watershed level specifically for each LULC class. 

Table 5  The average deviation of various models compared to the models type of the present study in each LUCa

LUCa Previous studies Present study

Brown [67] Chave et al. [22] José [45] Chave et al. [3] Models type

I II III

Average deviation δ (%)

Forest land 25.02 9.04 26.41 14.87 21.67 8.64 4.77

Grassland 34.23 6.54 35.73 12.69 11.88 5.00 2.34

Cropland 29.30 10.21 30.77 14.74 24.50 10.06 5.26

Agroforestry – – – – 8.00 3.75 –

Settlements 60.93 9.70 62.77 15.46 12.40 7.30 6.35

Generic – 9.00 – 14.19 – – 5.34

Table 6  Aboveground biomass density (Mg ha−1) and total biomass stocks (Mg) with the sample plots data and attached 
uncertainty

Words in italic indicate the plantation type

Value within the parenthesis indicate the standard error and percentage error

The age of plantations and agroforestry system varied from 5 to 45 years which explained the large standard and percentage errors obtained from their plots data. 
The minimum (min.) and maximum (max.), the mean biomass density and its stand error (SE), the percent error and the total biomass at each LULC type/LUCa were 
illustrated

LULC/LUCa Descriptive statistic

Range of biomass 
density (Mg ha−1)

Mean biomass density (SE) Percentage error 
(% error)

Total biomass stocks (Mg) and its SE

Min. Max.

Forest land 340,534.70 ± 36,445.4

 Riparian forest and woodland 76.29 120.22 94.58 (4.98) (10.33) 32,271.87 ± 334.74

 Savanna Woodland 27.22 69.84 45.29 (2.51) (10.89) 24,8050.22 ± 27,019.98

 Shrub Savanna 6.47 25.14 14.05 (0.72) (10.11) 60,212.61 ± 6090.67

Grassland 349.66 ± 68.81

 Savanna grassland 0.06 9.20 3.62 (0.36) (19.68) 349.66 ± 68.81

Cropland 26,409.82 ± 5024.04

 Cropland and fallow 0.07 9.32 3.28 (0.31) (19.02) 26,409.82 ± 5024.04

Settlements 2375.84 ± 988.13

 Settlements 0.86 9.60 4.86 (1.03) (41.59) 2375.84 ± 988.13

Agroforestry 1132.73 ± 584.46

 Cashew plantation 10.74 211.19 46.06 (14.40) (61.28) 1132.73 ± 584.46

Plantation 3138.20 ± 1777.35

 E. grandis 7.69 695.20 204.92 (57.69) (55.17) 2819.78 ± 1556.44

 T. grandis 32.41 232.75 162.00 (64.88) (78.50) 145.80 ± 114.46

 A. indica 64.45 240.53 179.62 (57.61) (62.86) 129.33 ± 81.30

 G. arborea 10.39 34.39 25.17 (7.46) (58.09) 43.29 ± 25.14
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Information on the uncertainties of the biomass density 
estimation is provided in Table 6.

Conclusion
The results from this study help to close the existing 
knowledge gap with respect to biomass estimation in the 
Sudan Savannah environment. The derived empiric equa-
tions fitted to local data should be useful for further work 
in the Sudan Savannah environment which is character-
ized by the main species of the present study. The esti-
mation of biomass density and AGB in each LUCa are of 
great importance for carbon balance calculations in the 
Sudan Savannah in West Africa. Results include data on 
wood density of the main species of the Sudan Savannah 
zone, the related BEF and the biomass density in each 
LUCa. Our results highlight the importance of model 
parameters adjusted to the regional conditions in the 
eco-zone. Plantations and agroforestry system could be a 
useful mitigation option to battle climate change—how-
ever, the differences between the species and the effect of 
age which could not be satisfyingly handled in our study 
call for additional research activities. Still, the results 
provide important information for the carbon accounting 
programme related to the implementation of the Kyoto 
Protocol and REDD+ initiatives.
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