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Abstract 

Background:  Recent studies have shown that fragmentation is an increasing threat to global forests, which has 
major impacts on biodiversity and the important ecosystem services provided by forested landscapes. Several tools 
have been developed to evaluate global patterns of fragmentation, which have potential applications for REDD+. We 
study how canopy height and above ground biomass (AGB) change across several categories of forest edges deter‑
mined by fragmentation analysis. We use Democratic Republic of Congo (DRC) as an example.

Results:  An analysis of variance of different edge widths and airborne estimated canopy height found that canopy 
heights were significantly different in forest edges at a distance of 100 m from the nonforest edge. Biomass was 
significantly different between fragmentation classes at an edge distance of 300 m. Core forest types were found to 
have significantly higher canopy height and greater AGB than forest edges and patches, where height and biomass 
decrease significantly as the level of fragmentation increases. A change analysis shows that deforestation and degra‑
dation are increasing over time and biomass loss associated with degradation account for at least one quarter of total 
loss. We estimate that about 80 % of primary forests are intact, which decreases 3.5 % over the 15 year study period, as 
primary forest is either deforested or transitioned to forest edge. While the carbon loss per hectare is lower than that 
of deforestation, degradation potentially affects up to three times more area than deforestation alone.

Conclusions:  When defining forest degradation by decreased biomass without any loss in forest area, assessing tran‑
sitions of core forest to edges over time can contribute an important element to REDD+MRV systems. The estimation 
of changes between different forest fragmentation types and their associated biomass loss can provide an estimate 
of degradation carbon emission factors. Forest degradation and emissions due to fragmentation are often underesti‑
mated and should comprise an essential component of MRV systems.
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Background
Deforestation and forest degradation are global prob-
lems, significantly altering ecosystems, the services they 
provide, while contributing to carbon emissions and 
affecting regulation of global climate and terrestrial car-
bon storage [1–3]. International mechanisms such as the 
reduction of emissions from deforestation and degrada-
tion (REDD+) require complete, repeatable, conservative 

and transparent assessment and quantification of changes 
in forest biomass which emit greenhouse gases in order 
to mitigate impacts and develop robust measurement, 
reporting and verification (MRV) systems [4–7].

Deforestation is defined by a long term loss of canopy 
cover and area, notably a conversion to another non-
forest use, which been monitored effectively over time 
at multiple scales effectively for tropical forests using 
remote sensing technologies [8–14]. In contrast, forest 
degradation is a more poorly understood process which 
involves partial canopy loss with no clear reduction in 
forest area, but a reduction in ecosystem services, more 
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often described by a decrease in above ground biomass 
[15–19], and is the definition applied in this study. The 
associated decrease in carbon stock and biomass are key 
to forest degradation assessments with respect to climate 
change mitigation in the context of REDD+ and thus of 
essential importance for determining baseline rates of 
degradation, in the same manner baseline deforestation 
is assessed [19].

The main drivers of forest degradation are related 
to urban expansion, extraction of forest products for 
both industrial and subsistence markets and associ-
ated infrastructure and accidental or deliberate fires for 
small-scale clearing [20, 21]. Most remote sensing stud-
ies focusing on forest degradation are driver specific and 
aim to detect canopy gaps and clearings through direct 
approaches such as spectral mixing [22, 23], or indirect 
methods such as mapping roads or human settlements 
[24, 25] or fire monitoring [26]. Still, many nations are 
unable to effectively monitor forest degradation at large 
scale over time to meet their REDD+ goals. This is more 
often due to the lack of a consistent definition, few robust 
and transparent methods for general degradation moni-
toring, data deficiencies, low technical capacity and lim-
ited funding [15, 27, 28]. No accurate estimates of global 
degradation exist to date for the reasons stated above, yet 
the actual extent of degraded tropical forests and associ-
ated emissions could in fact be comparable to, or larger 
than actual deforestation, particularly in high forest/low 
deforestation (HFLD) countries [1, 19, 29–35].

Recent studies have addressed the impact of human 
activity on the fragmentation of forests through vari-
ous analyses [36–44] possible with the increase in avail-
able forest cover data and satellite imagery [12, 45, 46]. 
More recently, analyses have shown that core forests are 
more likely to be intact, providing greater ecosystem ser-
vices than those exposed to edges and fragmentation. 
The intact forest landscapes (IFL) approach differenti-
ates potentially intact and degraded forests worldwide 
[47–49] and has determined that forests are in fact struc-
turally different outside the hinterland area [50]. Haddad 
et  al. [39] identified fragmented forests globally as all 
forests within 1 km of forest edge and assessed the long 
term ecological consequences, including degraded eco-
system processes and declines in species richness. Riit-
ters et al. [38] report significant deforestation of interior 
core forests worldwide and the resulting transitions from 
core forest to edge types was shown to impact twice the 
area affected by deforestation alone. Chaplin-Kramer 
et al. [44] assessed a reduction of 25 % of forest biomass 
in edges [44] which shows that fragmentation may indeed 
be a key driver of forest degradation and often lacking 
from forest carbon emissions accounting.

In this study we use forest cover spatial pattern to 
classify several types of forest fragmentation, using the 
optimal edge distance for which degradation is affecting 
forest structure and biomass. We then identify degraded 
forests by their transition between core and fragmenta-
tion types and use mean AGB estimates per fragmenta-
tion class to determine the associated emissions, using 
the Democratic Republic of Congo as an example.

We classify primary forest into four fragmentation 
classes defined by pattern: core (intact forest), inner 
edge (or perforation), outer edge (bordering large non-
forest areas) and small forest patches, derived from 
the methods published by Vogt et al. [51]. The method 
involves a series of moving window analyses and union 
and intersection operations which determine the edge 
width, connectivity and holes of data in a binary for-
est/non forest image [52, 53]. The derivation of mul-
tiple types of edges, notably interior and exterior edge 
are an improvement over buffer methods which only 
define forests as either intact or edge, as we conclude 
that different types of fragmentation are demonstrated 
to be fundamentally and functionally different. The 
interior and exterior edges are in fact differentiated by 
the size of neighboring non-forest or forest. This anal-
ysis enables to differentiate between the impact of a 
small perforation within an area of intact forest which 
differs from for example, the edges created by a large 
non-forest patch which could be encroaching field or 
pasture. The fragmentation analysis provides insight 
into different patterns or drivers of degradation at for-
est edges, as interior holes are likely to be less accessi-
ble by anthropogenic impacts. Equally important is the 
appropriate distance used to assess forest edges. We 
use mean canopy height and AGB estimates to address 
this.

Assessing transitions between fragmentation classes 
over time allows to identification of degraded forests by 
the dynamic process of degradation, supporting a simple 
matrix approach to forest monitoring as recommended 
by Bucki et al. [67]. This proxy assessment is important to 
identify degradation by its dynamic process, which sup-
ports monitoring of forests as dynamic systems defined 
by their trajectories [54]. This analysis is also useful to 
identify degraded areas which still meet the forest cri-
teria and using AGB estimates to quantify the ability to 
provide ecosystems services, which are key functions of 
intact forests [55]. Here we propose to use the transition 
between different initial fragmentation classes in order 
to differentiate between primary and secondary degra-
dation and regeneration, which demonstrates the typi-
cal pathways of forest degradation and can inform forest 
condition.
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Methods
The DRC context
The Democratic Republic of Congo (DRC) possesses 
the largest continuous tract of remaining tropical for-
est in Central Africa (Fig.  1). It is known for its remark-
able natural resources and high biodiversity [56, 57] while 
ranking nearly last on the United National Development 
Programme Human Development index [58]. Poor govern-
ance has allowed extensive resource exploitation such as 
mining, timber harvesting, charcoal production, resulting 

in one of the highest deforestation and degradation rates 
in central African countries [49]. Compared to other 
countries, the DRC remains a high forest/low deforesta-
tion country (HFLD) [59] and recognizes the potential for 
sustainable and economic development through emerging 
governance structures and significant engagement in the 
United Nations Framework Convention on Climate Change 
(UNFCCC) process [27, 60]. The DRC has been build-
ing up political REDD+ capacity while increasing efforts 
to monitor and mitigate forest loss with satellite imagery, 

Fig. 1  The Democratic Republic of Congo possesses the largest tract of continuous tropical forest in Africa (forest cover data from [64]). The new 
Mai Ndombe province region is a target site for implementation of new REDD+ activities
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in addition to mapping forest carbon at the national scale 
using airborne LiDAR and satellite imagery [61–63]. Cur-
rent emissions reduction activities are focused in the Mai 
Ndombe region northwest of the capital, Kinshasa, which is 
used as a local scale test site in this study (Fig. 1).

Datasets used
The fragmentation algorithm was executed first at 
the local scale in Mai Ndombe to evaluate the effect of 
edge distance on biomass and canopy height available 
from airborne LiDAR in order to select the scale for the 
national analysis (Fig.  2). The local scale study encom-
passes LiDAR plots collected Mai Ndombe province, 
which are part of a collection of LiDAR collected in a 
stratified random manner throughout the DRC, pro-
ducing an unbiased sampling of forest areas. LiDAR 
data were collected between October 2014 and 2015 in 
a series of 216 10× 2 km rectangular plots, with a mean 
point density of 2/m2. All pixels with a LiDAR mean 
canopy height greater than 3 m according to the national 
definition were classified as forest and resampled to 
10  m resolution as input for the local scale fragmenta-
tion analysis. AGB estimates derived from LiDAR in Mai 
Ndombe were produced for the Mai Ndombe Emissions 
Reduction program by the University of California, Los 
Angeles, using the VCS VT0005 method [65] along with 
field data calibrated LiDAR, while the national LiDAR 
biomass map is still being developed for DRC.

Primary forest cover for the entire DRC for the year 
2000 was derived from Landsat imagery by the Uni-
versity of South Dakota, the Observatoire Satellital 
des Forêts d’Afrique Centrale (OSFAC) and University 
of Maryland producing a dataset identified as Forêts 
d’Afrique Centrale Evaluées par Télédétection (FACET) 
[66]. This data is a pre-cursor to the Global Forest Cover 
Change product and uses similar techniques [12] pro-
ducing forest maps as a resolution of 60 m and identify-
ing primary, secondary and woodland dominated forest 
from 2000 to 2005 and 2010. Forest cover in the pri-
mary humid tropical forest category for 2000 was used 
for this analysis, as this class correlates best with moist 
tropical forest as defined by IPCC, while other FACET 
forest types mix secondary and dry forest [67]. Annual 
forest loss data for 2000–2014 from Global Forest Cover 
Change product from the University of Maryland [12] 
were then used to determine forest cover for 3 additional 
time intervals, 2005, 2010, 2015, which were combined 
based on the uncertainties of annual assessments of this 
data [68]. The gain data provided do not have a date of 
detection and about 20 % of gain pixels were also iden-
tified as loss, which could be due to changes in planted 
forests or agroforestry. In order to integrate areas of gain 
into the analysis, all areas of gain which overlapped with 
areas of loss were removed and the remaining pixels of 
gain were added to the final transition map to assess 
regeneration.
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Fig. 2  Flowchart of national scale analysis to develop fragmentation statistics and change in DRC from 2000 to 2005 and 2010 and 2015
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Forest fragmentation algorithm
We used modified outputs from the Landscape Frag-
mentation Tool (LFT) [69] derived from the research of 
Vogt [52] to identify and evaluate four forest fragmenta-
tion classes: core, inner edge, outer edge and patch forest 
which have varying degrees of fragmentation (Table 1).

The LFT processes a forest image using a defined 
edge width, which determines the edge effect distance 
between nonforest and intact core forest. A specific defi-
nition of edge effect for a particular locale can be used 
to adjust the analysis according to local information or 
expert knowledge on the forest of interest. We tested sev-
eral window sizes and determined the statistical differ-
ence between LiDAR estimated canopy height and AGB 
within fragmentation classes to identify the appropriate 
window sizes. With smaller window sizes, a greater per-
centage of in the landscape is classified as core than other 
types; and with larger sizes a greater estimate of edge 
occurs [7]. The fragmentation classes produced by edge 
distances of 50, 100, 150, 200, 250, 300, 350 and 500  m 
were evaluated for statistical differences in canopy height 
and AGB. A set 5000 points located randomly within the 
LiDAR footprints in Mai Ndombe were selected to assess 
canopy height and estimated AGB within each fragmen-
tation class produced with varying edge distances. The 
mean canopy height difference between samples in each 
fragmentation class was determined using an analysis of 
variance ANOVA for all sample points. A Tukey honest 
significant difference and Mann–Whitney pairwise tests 
for non-parametric data were performed to determine 
a significant of difference in mean canopy height and 
biomass between each fragmentation category pair. Sta-
tistics were performed using the R statistical package ver-
sion 2.14.0 and Past Version 3.10 [70].

Additionally, a semivariogram analysis was used to 
assess heterogeneity in canopy heights to determine the 
best minimum mapping unit for forest cover data by 
estimating semivariance over progressively larger win-
dow sizes. Thus, forest cover at the national scale was 

rescaled to 1  ha resolution, informed from the LiDAR 
data analysis.

National scale analysis
The primary forest data were resampled to 100 m based 
on results from semivariography analysis of the LiDAR 
canopy height data. Fragmentation classes were assessed 
for each forest cover map and the transitions between 
fragmentation categories over time were identified as in 
Fig. 3. Mean AGB for each class of new degradation was 
used to provide the estimated biomass loss (emission fac-
tor) for all degradation transitions to calculate emissions 
from forest fragmentation at the national scale, based 
on a tier I stock difference approach, using biomass esti-
mates and the area of forest cover lost at each time period 
[67, 71, 72].

Results
Semivariogram spherical modeling parameters with bet-
ter fit averaged in the 110 ± 7 m range, which was used 
as a metric to estimate the spatial dimension of forest 
structural heterogeneity. Thus, a minimum mapping unit 
(MMU) of 100  m was used for mapping forest cover at 
national scale Fig. 4.

Forest fragmentation classes generated for the high 
resolution/small spatial scale analysis from LIDAR data 
collected in 2014 are shown in Fig. 5, with canopy height, 
forest cover and AGB derived from airborne LiDAR 
acquired during the study period. A subset of the FACET 

Table 1  Main fragmentation classes derived from  Vogt 
et al. [51]

Fragmentation  
class

Description Level of  
fragmentation

Core Interior forest pixels far from 
forest edge

Low

Inner edge Forest pixel on edge of small 
interior non-forest

↓

Outer edge Pixels that are between forest 
and large non-forest areas

↓

Patch Forest regions too small to  
contain core forest

High

Patch forest

Outer edge

Inner edge

Core

Nonforest

Primary Deforesta�on

Primary Degrada�on

Regenera�on

Fig. 3  Transition pathways between forest fragmentation types, 
using fragmentation classes to differentiate between primary and 
secondary deforestation and degradation. Reverse trends (from more 
degraded categories towards core) are recovering forests. Forests that 
remain in the same class over time are named “stable”
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landsat data and derived fragmentation classes show how 
forest edges occur around villages (Fig. 6). Forest heights 
were highest in core forest areas and decrease into sig-
nificantly lower averages as fragmentation increased.

Mean canopy height within forest fragmentation 
classes derived from LiDAR heights were found to be sig-
nificantly different at all scales in the ANOVA, however, 
the non-parametric tests for the differences between 
paired categories varied. Only at the scale of 100 m was 
the difference in canopy height between all fragmenta-
tion classes significant (Mann–Whitney p ≪ 0.005).

AGB estimates showed differences on a different spa-
tial scale than canopy height. While all edge distances 
showed significant differences, only an edge distance of 
300 m produced significantly different differences of AGB 
between each fragmentation class pair (Mann–Whitney 
p ≪ 0.005) (Fig. 7).

National scale temporal changes
Overall forest cover decreases over the study period. 
Core forest decreases 3.5 % over the study period, inner 
and outer edge increase and patch forest remains about 
the same (Table  2). The transitions between fragmenta-
tion classes on a 1 ha pixel basis from 2000–2005–2010–
2015 are reported in Table 3 and mapped for the entire 
DRC primary forest belt in Fig.  8. Core forest is most 
often transitioned to inner edge and outer edge is more 
often deforested than other fragmentation classes.

The largest transition in fragmentation classes observed 
from 2000 to 2015 was primary degradation, notably in 
the transition from core forest to inner edges, followed by 
degradation of inner to outer edges. The most significant 
observation at the national scale is that overall area of 
degradation increased nearly by 50 % in the time period 
and when associated with biomass estimates, resulted in 
a quarter of total forest related emissions (Table 4).

Inner edge increases much larger than the other classes, 
more than 40,000 km2. The total degraded area increases 
from 2000 to 2015, with a much greater increase in the 
2010 to 2015 time period. Primary forest loss increases 
over time and was highest in the 2010–2015 time period 
than the previous 5 year intervals.

Area calculations show increases in degradation in 
2005–2010, 2010–2015 compared with the first 5  year 
span, with the greatest transition occurring between 
core and edge classes. This results in more than double 
the area affected by degradation as deforestation in the 
second 5 year span; and a far greater proportion of asso-
ciated emissions. There is a larger increase in inner edge 
throughout the analysis. Several examples of this have 
been found, indicating that clearings may be increasingly 
further in the forest. Of the total 6295  km2 of primary 
deforestation, 2603  km2, or nearly a third transition to 
a degraded state before deforestation. As for secondary 
deforestation, which was overall greater than primary 
deforestation (14,420 km2), only 834 km2 transition to a 
degraded state before deforestation.

Emissions estimates
Table 4 shows the biomass losses estimated for the 5 year 
intervals from 2000 to 2015. Deforestation is steadily 
increasing, as is degradation. The overall area affected by 
degradation is shown to be much larger than that affected 
by deforestation, however, emission per hectare are 
lower, thus degradation contributes to a lower proportion 
of emissions, as most primary degradation is within inner 
edge and results in lower emissions.

Discussion
Bucki et al. [67] recommend the development of a matrix 
approach (i.e. the gross calculation of transitions from 
intact to non-intact forest lands) for forest monitoring to 
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Fig. 5  Sample 10 km x 2 km LiDAR plot used in the local scale analysis. From left to right: 10 cm aerial photo; mean canopy height from LiDAR 
returns at 15 m resolution; forest/non-forest map obtained by filtering mean canopy heights below 5 m (per country forest definition); Fragmenta‑
tion classification
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help countries with limited resources monitor and reduce 
emissions from degradation. Indirect approaches, includ-
ing the use of proxies applied over time may be useful and 
accurate for estimating areas of forest degradation and 
decreased carbon stocks, especially when direct detec-
tion by high resolution satellite imagery is problematic 
due to data costs, presence of clouds, or the area of inter-
est is large [73]. The assessment of forest fragmentation 
in the temporal domain by the detection of new forest 
edges can be useful in this respect, because forest edges 
have greater human access and associated anthropogenic 
effects and have been shown to have significantly less 
biomass, increased tree mortality and lower biodiversity, 
all characteristics of degradation [39, 44, 74–77]. Regard-
less of human intervention, forest edges will always have 
different properties and structure associated with edge 
environments, but the detection of new edges occurring 
next to deforested areas is essential to differentiating deg-
radation from secondary forests, which may be stable, or 
regenerating. In addition, as nearly one-third of primary 
degradation ends up as deforestation eventually, the frag-
mentation analysis presents an important assessment 
of potential future deforestation. A spatial assessment 
of edge and core forests and their transitions allow the 
assessment of forest dynamics, which should constitute a 
good proxy for forest degradation [38].

This research has shown how fragmentation classes 
defined by forest patterns have significantly different 
canopy height and biomass allowing their potential use 
as strata to discern or monitor forest uses or biomass 
dynamics required for national forest inventories [78], 
when other information on land use may be lacking [78]. 
Using forest cover maps from multiple time periods and 
deriving the associated transitions between fragmenta-
tion classes over time can be used to derive major forest 
cover changes and dynamics, such as primary and sec-
ondary deforestation, primary and secondary degrada-
tion and regeneration which provide more information 
on forest dynamics and uses than simply estimating for-
est cover [38, 54, 55]. Most importantly we show here 

Fig. 6  Example of fragmentation assessment in northern DRC. Top: 
True-color Red, Green, Blue Landsat 2005–2010 composite from Forêts 
d’Afrique Centrale Evalués par Télédétection (FACET) [66]; Bottom: For‑
est fragmentation is calculated for 2005 (green: core forest, light green: 
inner edge; orange: outer edge; red: patch)

Table 2  Total core and degraded forest types for 2000, 2005, 2010 and 2015, with percent of total forest area. Forest gain 
is included to the 2015 forest cover

Fragmentation class 2000 2005 2010 2015

Km2 % of forest Km2 % of forest Km2 % of forest Km2 % of forest

Core 827,824 79.4 814,319 78.4 798,604 77.4 775,755 75.9

Inner edge 81,785 7.8 90,946 8.8 98,170 9.5 108,012 10.6

Outer edge 97,399 9.3 97,483 9.4 97,953 9.5 98,675 9.7

Patch forest 35,156 3.4 35,584 3.4 36,629 3.6 39,006 3.8

Total forest 1,042,164 1,038,332 1,031,356 1,021,447
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that degradation at forest edges actually affects more 
area than deforestation. Combining this information with 
available AGB data allows for the estimation of biomass 

loss from these changes which is one of the required car-
bon pools for REDD+ reporting.

The selection of edge distance is important to deter-
mine before the analysis and affects the estimation of 
area defined as degraded edge. Canopy height was shown 
to be different within fragmentation classes, which is evi-
dence of structural differences at forest edges. However 
if we look at forest height alone, we see that secondary 
forests can quickly reach similar heights as intact forests, 
which complicates optical remote sensing of degradation. 
Thus, biomass is the important measure and essential to 
defining forest degradation. The resolution of the bio-
mass estimates is also important as it would be difficult 
to discern edge effects at the sub-pixel scale, for this rea-
son Chaplin-Kramer et al. [44] suggest an edge distance 
that is much larger. Pelletier et  al. [7] however showed 
that edge distance is actually the lowest source of uncer-
tainty compared to other factors when estimating emis-
sions. Here we suggest a window size which effectively 
stratifies forests based on the available accurate estimates 
of biomass.

The fragmentation analysis employed is straightfor-
ward, repeatable and easily executed. A simple proxy 
indicator does not necessarily mean higher uncertainty, 
and this can be informed by field data, which are always 
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Fig. 7  Distribution of AGB estimated from airborne LiDAR for frag‑
mentation classes derived with an edge distance of 300 m; model 
p ≪ 0.005

Table 3  Transition matrices estimating change between fragmentation classes in km2 from 2000 to 2005 (top) and from 
2005 to 2010 (middle) and from 2010 to 2015 (bottom)

Transition to (2005)

Transition from (2000) Core Inner edge Outer edge Patch Nonforest Total

Core 814,298 11,339 1425 11 751 827,824

Inner edge 0 79,574 1348 54 807 81,783

Outer edge 94,698 979 1670 97,347

Patch 34,539 604 35,143

Nonforest 1,305,354

Transition to (2010)

Transition from (2005) Core Inner edge Outer edge Patch Nonforest Total

Core 798,605 12,405 2196 40 1073 814,319

Inner edge 85,764 3100 216 1865 90,945

Outer edge 92,656 1874 2952 97,482

Patch 85,764 1085 86,849

Nonforest 1,309,186

Transition to (2015)

Transition from (2010) Core Inner edge Outer edge Patch Nonforest Total

Core 775,753 17,833 3087 61 1870 798,604

Inner edge 90,176 4765 460 2765 98,166

Outer edge 90,822 3065 4063 97,950

Patch 35,418 1209 36,627

Nonforest 1,316,162
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Fig. 8  Forest fragmentation change from 2000–2010, showing transitions between fragmentation classes. Insets show areas of significant degrada‑
tion in North Kivu Province around Beni, and more diffuse degraded forest edges in the forest mosaic of Mai Ndombe around Mbandaka. Primary 
and secondary degradation appear to be concentrated around cities and access routes. The largest areas of forest undergoing degradation are in 
North Kivu province, with the most fragmented forests occurring in the transition to savanna landscapes in western DRC. Small recovery areas were 
observed where forest patterns areas change from outer edge to inner edge (less than 1000 km2 overall, not visible at the national scale map) which 
are due to consolidation of forest areas into more uniform shapes

Table 4  Contribution of deforestation and degradation of primary forests to total forest emissions

2000–2005 2005–2010 2010–2015

Def. Deg. Def. Deg. Def. Deg.

Area (km2) 3832 15,157 6975 19,832 9908 29,272

Biomass loss (MgC) 63,709,538 33,235,831 116,081,439 39,374,186 168,515,864 56,426,709

Tons CO2 equivalent 233,176,909 121,643,141 424,858,067 144,109,521 616,768,062 206,521,755

% of total CO2 emissions 65.7 34.3 74.7 25.3 74.9 25.1



Page 11 of 15Shapiro et al. Carbon Balance Manage  (2016) 11:11 

needed to improve algorithms to assess edge forest 
structure and transitions, also for biodiversity indices to 
inform comprehensive biodiversity safeguard monitor-
ing. Additionally, determination of appropriate analysis 
window size and resolution to define minimum map-
ping units (MMUs) by applying geospatial statistics 
approaches such as semivariography of carbon estimates 
or field data can inform the most suitable resolution for 
forest and biomass mapping.

Our results support the findings of Zhuravleva et  al. 
[49] and Molinario et  al. [43]. Both studies estimate a 
greater area of forest that is affected by degradation than 
deforestation, with an increase in degradation observed 
in 2005 to 2010, compared to the previous 5 years. How-
ever, the areal estimates are different and difficult to 
compare directly, because Zhuravleva et  al. combined 
degradation with deforestation, estimating that 40  % of 
primary forests are degraded. On the other hand, Moli-
nario et  al., present very similar results for changes in 
fragmentation, but they do not specifically refer to deg-
radation. Zhuravleva et al. did observe a decrease in frag-
mentation rate in the 2005–2010 time period than 5 years 
prior, while we observe an increase in the second 5 year 
span, due to the fact that we assess changes between suc-
cessively degraded classes as degradation, whereas with 
IFL degraded forests remain in the same class and thus 
secondary degradation is not entirely accounted for. This 
is an important distinction, as degradation is a process, 
resulting in various levels of degradation and further deg-
radation of secondary forests can still result in further 
loss of ecosystem services and emissions. Small perfora-
tions within intact forest have been shown to increase. 
These create interior edges which have a higher AGB 
than outer edges, which demonstrate how fragmentation 
and associated degradation can vary in degree [40, 74]. 
Many examples of this phenomenon have been observed 
(Fig. 9), showing that people may be entering deeper in 
the forest to either clear forests with better timber or per-
haps to evade detection.

Given the significant difference in biomass between 
fragmentation classes and the observed transitions 
and associated emissions, this method shows a distinct 
advantage over other approaches which lump degrada-
tion into one class, define degradation at one point in 
time, or identify fragmentation as deforestation or shift-
ing cultivation [39, 43, 44, 50]. The assessments which 
assess only intact and edge forest may ignore the differ-
ent possible degraded states and prevent differentiating 
forests which are being degraded from those which may 
be regenerating. It is clear in this example that forests 
are experiencing several degraded states in the degrada-
tion, deforestation or regeneration process and the for-
est fragmentation method applied to subsequent forests 

maps allows one to distinguish, or even stratify forests 
by these transitions, which is an important element for 
monitoring of dynamic forest systems [54].

It is also important to consider the aspects of spa-
tial scale, especially given the common misconception 
that higher resolution is necessarily better. The aggre-
gation of data to a 1  ha MMU for canopy height, and 
300 m scale for AGB is an important consideration here, 
as studies have shown how forest biomass estimates 
change with scale [79]. Degradation has a spatial dimen-
sion which must be considered at a scale of the forest, 
rather than trees and in this case, biomass is being used 
as the definition for degradation. The difference in DRC 
degradation estimates between other published results 
demonstrate the importance of a universal definition of 
degradation including the element of spatial scale.

Sources of uncertainty
The main limiting factor to this method is ultimately the 
quality of the forest cover map. In this example we use data 
from FACET [66], which was considered best available at 
the time and considered a benchmark product for DRC and 
was derived specifically for DRC. Higher resolution, global 
algorithms which use temporal mosaics to reduce cloud 
cover may contribute to improve the quality of the analy-
ses [12], however this annual data has been found to suf-
fer from low accuracy in some key locations [68, 80], which 
is why the Google Forest Cover change products were 
merged to 5 year intervals. The element of forest gain may 

Fig. 9  An example of a conversion of core forest to a perforation 
with inner edge
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be underrepresented here, due to the lack of date associ-
ated with this information. As a result, regeneration overall 
was found to be negligible compared to other transitions. 
Lastly, persistent forests, which may act as carbon sinks 
and potentially offset carbon emissions [81] are another 
unknown contribution to the carbon accounting in DRC.

There are several potential sources of error at many 
scales, particularly when measuring proxies which need to 
be considered. Errors from LiDAR derived estimates are 
identified as outliers and easily corrected. However, there 
remain uncertainties, in both the LiDAR derived biomass 
and the global biomass map. In the LiDAR data, errors were 
found to be similar to errors in field plots, which can be as 
high as 20 %. The global biomass map is accompanied by an 
uncertainty map, which can be used to estimate confidence 
intervals in emissions estimates. Pelletier et al. [7] provided 
a thorough review of the large potential errors and uncer-
tainties in estimating emissions using the matrix method 
in Panama. Of particular attention are the sensitivities and 
uncertainties related to buffer width in determining area 
of degradation and the biomass estimates. The latter will 
be significantly reduced in DRC with the production of a 
new national LIDAR-derived biomass map with a resolu-
tion of 1 ha, which will allow detection of biomass changes 
in more detail and more conservative estimates of degrada-
tion. The authors also recommend increasing tier level with 
more localized information, accuracy assessment of proxy 
results and adhering to principles of consistency and con-
servativeness which should also apply for DRC and includ-
ing a critical assessment of model uncertainties and how to 
apply them conservatively and consistently over time.

Biodiversity safeguards
Carbon emissions aside, what is potentially a more use-
ful application of forest fragmentation analysis is the 
impacts of increased forest degradation on habitats. As 
the additional requirements to operationalize biodiver-
sity safeguards are implemented, this degradation proxy 
can be used in combination with biodiversity informa-
tion to assess ecosystem services and risks to biodi-
versity, which are based on the principles of landscape 
ecology, which have demonstrated important relation-
ships between habitat area, quality, with biodiversity. The 
effects of fragmentation have been shown to critically 
impair the ability of an ecosystem to provide viable habi-
tat through decreased area, increased isolation and edges 
[39]. These are propagated throughout the ecosystem, 
affecting species richness, persistence, community com-
position among other effects and along with an increase 
in anthropogenic access can provide a solid basis to use 
fragmentation to evaluate essential habitat indicators for 
biodiversity safeguards in REDD+ projects. An intact 
forest can then support not only increased biomass for 

climate mitigation, but the ecosystem services that local 
communities require—pollination, non-timber forest 
products, water regulation etc.…which will improve live-
lihoods and reduce pressure to deforest and degrade for-
est resources.

Conclusion
As global deforestation and degradation increase, there is 
an even greater need for accurate data for assessing forest 
cover change and associated emissions [82]. The results 
of this forest pattern analysis show extensive forest frag-
mentation and degradation of forest edges in DRC, which 
is greater than the area affected by deforestation alone. 
This can result in adverse and long-lasting effects on bio-
diversity and ecosystem services [39]. Many attempts to 
develop sub-jurisdictional REDD+ programs and define 
baselines for relative emissions levels have opted to avoid 
estimates or calculations of unplanned degradation from 
their baselines and reductions targets. This research 
demonstrates a transparent, repeatable and simple 
method for including degradation in MRV systems for a 
matrix method approach to forest monitoring, using any 
available forest cover map, which should support coun-
tries with limited resources and vast forests [67].

This analysis has allowed a more detailed look at a 
fragmentation algorithm and the correlation between 
degraded forests and above ground biomass. Degrada-
tion is an especially relevant and important aspect of 
emissions reduction and conservation activities and 
when little information is available for mapping forest 
condition, this proxy can serve as a cost-effective tool 
in assessing degradation over time. Using forest cover 
maps derived for different years, the analysis enables 
one to assess reference condition, change over time and 
the trajectory which is a required component for moni-
toring degradation for REDD+ [15]. The benefit of the 
approach proposed here is the ability to separate degrad-
ing or regenerating forests by their trajectories between 
degraded classes. This helps assess potential hotspots of 
degradation, as well as the existence of secondary forest 
carbon sinks to drive management interventions to pro-
mote regeneration.

The effect of carbon map resolution may have an 
important role here. The DRC is currently mapping 
national forest carbon stocks via integrated field, satel-
lite and airborne LiDAR, an initiative funded by the Ger-
man Ministry of Environment and Nuclear Safety (BMU) 
International Climate Initiative and the KFW Develop-
ment Bank [63]. This work has included the collection of 
more than 400,000 ha of airborne LiDAR throughout the 
country, enabling a more detailed look at canopy struc-
ture, biomass, degradation and producing better esti-
mates of forest carbon in areas with little available data to 
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data, or areas with particularly high error. This data will 
greatly improve access to reliable and unbiased biomass 
data.

Future steps for quantification of forest degradation 
will include an assessment of causes, notably from the 
addition of information on drivers of degradation [62] 
and higher resolution biomass. This will enable corre-
lation of auxiliary data to model degradation based on 
human factors such as infrastructure, fire, distance to 
population centers which can support the development 
of future baselines of forest degradation for REDD+ in 
DRC.
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