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Abstract 

Background:  Spatially explicit forest carbon (C) monitoring aids conservation and climate change mitigation efforts, 
yet few approaches have been developed specifically for the highly heterogeneous landscapes of oceanic island 
chains that continue to undergo rapid and extensive forest C change. We developed an approach for rapid mapping 
of aboveground C density (ACD; units = Mg or metric tons C ha−1) on islands at a spatial resolution of 30 m (0.09 ha) 
using a combination of cost-effective airborne LiDAR data and full-coverage satellite data. We used the approach to 
map forest ACD across the main Hawaiian Islands, comparing C stocks within and among islands, in protected and 
unprotected areas, and among forests dominated by native and invasive species.

Results:  Total forest aboveground C stock of the Hawaiian Islands was 36 Tg, and ACD distributions were extremely 
heterogeneous both within and across islands. Remotely sensed ACD was validated against U.S. Forest Service FIA 
plot inventory data (R2 = 0.67; RMSE = 30.4 Mg C ha−1). Geospatial analyses indicated the critical importance of forest 
type and canopy cover as predictors of mapped ACD patterns. Protection status was a strong determinant of forest C 
stock and density, but we found complex environmentally mediated responses of forest ACD to alien plant invasion.

Conclusions:  A combination of one-time airborne LiDAR data acquisition and satellite monitoring provides effective 
forest C mapping in the highly heterogeneous landscapes of the Hawaiian Islands. Our statistical approach yielded 
key insights into the drivers of ACD variation, and also makes possible future assessments of C storage change, 
derived on a repeat basis from free satellite data, without the need for additional LiDAR data. Changes in C stocks and 
densities of oceanic islands can thus be continually assessed in the face of rapid environmental changes such as bio-
logical invasions, drought, fire and land use. Such forest monitoring information can be used to promote sustainable 
forest use and conservation on islands in the future.
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Background
Aboveground carbon (C) stock assessments have become 
a mainstay of forest management [1]. In the past decade, 
the importance of such assessments has also grown in the 
climate change mitigation arena [2]. In step with these 
efforts, there has been increasing focus on developing 

quantitative methods to monitor forest C stocks over 
time, as a means to support policies that reduce emis-
sions from deforestation and forest degradation, and 
increase C storage in existing forests (REDD+) [3]. C 
storage has also become an important metric for assess-
ing forest habitat and condition in the broader conserva-
tion arena [4, 5].

Based on the increasing value in understanding the 
geography of forest C stocks, both field-based and 
remote sensing-assisted C assessments have been 
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undertaken over larger and larger geographic areas [6, 
7]. Far less attention, however, has been given to oce-
anic islands, likely due to their relatively small land area. 
Oceanic islands provide model socio-ecological systems 
with which to examine spatial patterns in forest C stocks, 
because islands are often comprised of highly heteroge-
neous ecosystems, where many of the drivers of C stor-
age (e.g., vegetation types, climate, fire, and land use) 
vary strongly over short distances [8, 9]. While C stocks 
on oceanic islands may be small in a global context, they 
provide unique opportunities to test fundamental con-
cepts on the landscape ecology, sociology, economics 
and management of forest C sequestration. Further, for-
ests on oceanic islands are quite important to the provi-
sioning of ecosystem goods and services, including fresh 
water supply, prevention and mitigation of soil erosion 
that can deplete upland soil resources and pollute aquatic 
ecosystems including coral reefs [10], and both timber 
and non-timber forest products. Island forests also play 
a strong cultural role as a locus of subsistence and rec-
reational activities [11, 12]. However, relative to conti-
nental ecosystems, forests on oceanic islands continue 
to undergo a much greater proportional extent and rate 
of change in cover and composition, which threatens the 
sustainability of forest-based good and services includ-
ing C stocks [13, 14]. Not only have islands been heavily 
deforested in some regions of the world, they have also 
undergone enormous change via introduced disturbance 
regimes, such as fire, and alien invasive species [15, 16]. 
The effects of these and other changes on forest C stocks 
remain poorly understood, despite numerous local- to 
landscape-scale assessments [17]. Without continuous 
and spatially extensive forest monitoring, patterns of 
change and/or opportunities for recovery of island for-
ests will remain a challenge to incorporate into conserva-
tion, management and resource policy initiatives.

Like most oceanic islands, aboveground forest C 
stocks within and across the Hawaiian Islands are poorly 
known, owing to extreme environmental heterogene-
ity combined with local inaccessibility and complex 
terrain. This has greatly limited efforts to develop and 
maintain operational, repeat forest inventory on the 
ground. Global remote sensing-based carbon mapping 
approaches generally yield lower spatial resolutions and 
C stock sensitivities [18–21], which are difficult to apply 
in regions of high ecological heterogeneity like islands. 
While high-resolution remote sensing methods, such 
as airborne Light Detection and Ranging (LiDAR) [22], 
are suitable for such settings [23], mapping remote or 
difficult-to-access areas with aircraft can be expensive. 
In particular, cloud cover is often persistent over higher-
elevation forests of key interest in forest C and water-
shed assessments. As a result, airborne campaigns can 

be prolonged and accumulate costs. An added challenge 
is that island forest assessments are needed on a repeat 
basis in response to the inherent vulnerability of many 
island landscapes to rapid change driven by land use, fire, 
storms (e.g., hurricanes), biological invasions and sea 
level rise. The issue of rapid change calls for the develop-
ment of a low-cost, repeatable forest monitoring method 
for island forests. Such rapid, high-resolution assessment 
capabilities must be sensitive to the drivers of forest C 
change, not only as a metric for climate change mitiga-
tion, but also as a measure of forest health and provision-
ing services.

While mapping of forest C stocks has been challenged 
by uncertainty and cost [7], recent progress at subna-
tional to national levels indicates that significant meth-
odological hurdles can be overcome at larger scales, 
especially through the fusion of ground, aircraft and sat-
ellite based measurements [21, 24]. These approaches can 
simultaneously increase map resolution in ways that ben-
efit forest managers, while reducing uncertainty to lev-
els acceptable to policy makers. Despite these advances, 
important methodological questions remain regarding 
how to provide high resolution, low uncertainty monitor-
ing at low cost in heterogeneous landscapes. A further 
need is the simultaneous assessment of the drivers of 
spatial variation in C storage.

We developed an approach for monitoring forest above-
ground carbon density (ACD; units  =  Mg or metric 
tons  C  ha−1) across island archipelagos at a spatial reso-
lution of 30 m (0.09 ha) using a combination of airborne 
LiDAR and freely available satellite data (Fig.  1). The 
approach involves initial use of high-resolution LiDAR 
sampling of a selected island within an archipelago to 
derive vegetation canopy height data. These data from the 
sampled island are then used to train a geospatial model 
that incorporates maps of multiple environmental factors, 
as well as forest canopy structural metrics derived from 
Landsat or comparable satellite imagery [25]. The resulting 
model is applied to all islands within the archipelago using 
as input the same portfolio of environmental and satellite-
based canopy structural maps used on the model-train-
ing island, thereby yielding a multi-island map of canopy 
height at 30-m spatial resolution. Finally a regionally-
tuned equation is applied to relate mapped canopy height 
to ACD [26], resulting in a carbon density map at 30-m 
resolution for the entire island chain. Critically, once the 
model is built for an archipelago, subsequent changes in 
ACD can be detected using only Landsat imagery, thereby 
greatly reducing longer-term monitoring costs [24].

For this study, we first sampled Hawaii Island, by far 
the largest island in the Hawaiian archipelago, with air-
borne LiDAR to assess forest top-of-canopy height 
(TCH) responses to natural environmental gradients 
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Fig. 1  Overview of the methodology used to map vegetation carbon stocks throughout Hawaii: a, b the Hawaii State GAP vegetation map [34] 
provided a geospatial guide for sampling Hawaii Island with airborne Light Detection and Ranging (LiDAR). The LiDAR data were converted to maps 
of top-of-canopy height (TCH). c A diverse array of satellite-based environmental maps were compiled to provide continuous geographic informa-
tion on vegetation cover, topographic variables, and climate. d The satellite and LiDAR data were processed through a geostatistical model based 
on the Random Forest Machine Learning (RFML) approach [54] to develop multi-island, statewide maps of TCH at 30 m spatial resolution. The state-
wide TCH map was converted to estimates of aboveground carbon density (ACD) using a universal plot-aggregate approach [26]. The modeling 
process included an estimate of uncertainty on each 30 m grid cell for the entire State of Hawaii
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and land use (Additional file 1: Figure S1). These LiDAR 
TCH data from Hawaii Island were used to calibrate a 
Random Forest Machine Learning (RFML) model, which 
was subsequently used to predict TCH at 30  m resolu-
tion on all islands from a portfolio of spatially explicit 
predictor maps (Additional file  1: Figures S2-S4). The 
resulting statewide model of forest TCH was then used 
to estimate forest ACD via a conversion equation devel-
oped for the Hawaiian Islands (Additional file  1: Figure 
S5). The resulting map was compared to US Forest Ser-
vice Forest Inventory and Analysis (FIA—http://www.
fia.fs.fed.us/) plot data for evaluation of mapped ACD 
precision. Finally, we used the new ACD map to assess 
aboveground forest C stocks within and among islands, 
in protected and unprotected areas, and among forests 
dominated by native and invasive plant species.

Results and discussion
Island carbon stocks and distributions
Total forest cover and aboveground carbon stock for 
seven main Hawaiian Islands was estimated at 550,065 ha 

and 36.0 Tg (million metric tons), respectively (Fig.  2; 
Table  1). A map of estimated uncertainty indicated 
greatest absolute uncertainties of 20–40 % in very high-
biomass forests, with much lower uncertainties in low-
to-moderate biomass conditions (Additional file 1: Figure 
S6). Forest ACD varied widely by island (Fig. 3). Hawaii 
Island contained 57  % of the total forest cover of the 
State, and almost 20 Tg of the State’s forest carbon. Kauai, 
Maui and Oahu islands collectively accounted for 36  % 
of the total forest cover and 14.7 Tg of aboveground C. 
Molokai, Lanai, and Kahoolawe together accounted for 
only 7 % of the State’s forest cover and less than 1.4 Tg C. 
The small northwest-most island of Niihau was not con-
sidered in this study.

The highest forest ACDs were found on Hawaii Island, 
reaching 537 Mg C ha−1. Maui supported the next high-
est ACDs, reaching 294  Mg C ha−1. We also found 
extremely variable C stocks on each island (Additional 
file 1: Figures S7-S10). Aboveground forest C density var-
ied up to three fold among State Districts, which are the 
minimum State-level political units of civil governance 

Fig. 2  Spatial distribution of forest aboveground carbon density (ACD; Mg C ha−1) for the State of Hawaii at 30-m mapping resolution. A map of 
estimated uncertainty is provided in Additional file 1: Figure S6. The islands are displayed so that their relative sizes are preserved

http://www.fia.fs.fed.us/
http://www.fia.fs.fed.us/
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(Table 1). On Hawaii Island, for example, forest ACD val-
ues varied from means of 30–93 Mg C ha−1 across Dis-
tricts, yet within Districts, spatial variation in forest ACD 
ranged from 50 to 111 % of their District means. More-
over, three of nine Districts on Hawaii Island contained 
two-thirds of the entire island’s forest C stock. The island 
with the most variable inter-District forest C stocks was 
Maui.

Model comparison to FIA plots
Comparison of modeled ACD to values estimated 
from FIA plot inventory indicated good precision 
(R2  =  0.67) and accuracy (average root mean squared 
error or RMSE = 30.4 Mg C ha−1) (Fig. 4). Bias was just 
11.2  Mg  C  ha−1, and heteroscedasticity was similar to 
that derived in plot-inventory comparison studies [27]. 
These map performances were particularly strong relative 

Table 1  Forest cover and aboveground carbon stock and density for each island and the State’s Districts

Island Counties and districts Forest cover (ha) Aboveground carbon  
density (Mg C ha−1)

Aboveground  
carbon stock (Tg C)

Hawaii 311,977.0 64.0 + 43.7 20.0

Hawaii County

Hamakua 23,391.8 51.4 + 47.4 1.2

Kau 63,204.2 67.0 + 43.3 4.2

North Hilo 18,598.8 93.3 + 49.3 1.7

South Hilo 67,056.8 72.8 + 41.7 4.9

North Kohala 8341.1 65.9 + 47.9 0.6

South Kohala 7057.3 47.7 + 31.9 0.3

North Kona 28,391.2 30.0 + 35.7 0.9

South Kona 30,635.5 60.8 + 40.8 1.9

Puna 65,302.4 66.3 + 36.8 4.3

Maui 75,532.9 67.1 + 47.0 5.1

Maui County

Hana 29,763.6 78.7 + 41.4 2.3

Lahaina 22,113.8 33.5 + 40.7 0.7

Makawao 34,542.2 47.5 + 52.7 1.6

Wailuku 7543.5 61.1 + 39.5 0.5

Molokai 23,018.2 54.9 + 37.3 1.3

Molokai 23,018.2 54.9 + 37.3 1.3

Lanai 13,048.5 7.6 + 15.1 0.1

Kahoolawe 5391.1 3.0 + 2.5 0.02

Oahu 64,673.4 78.3 + 40.2 5.1

Honolulu County

I 3562.3 77.4 + 39.2 0.3

II 1648.4 92.4 + 33.3 0.2

III 2803.9 63.4 + 47.0 0.2

IV 6669.2 87.9 + 32.9 0.6

V 10,988.6 95.5 + 32.0 1.1

VI 14,449.8 80.2 + 38.9 1.2

VII 4812.6 85.3 + 36.3 0.4

VIII 5047.9 34.3 + 37.3 0.2

IX 14,407.3 74.0 + 38.8 1.1

Kauai 56,424.0 80.4 + 35.5 4.5

Kauai County

Hanalei 16,033.8 82.8 + 32.0 1.3

Kawaihau 9020.1 83.0 + 32.1 0.8

Koloa 3024.7 78.5 + 43.2 0.2

Lihue 8886.3 79.2 + 32.7 0.7

Waimea 19,449.3 78.1 + 39.2 1.5
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to the accuracy of the equation used for estimating ACD 
from canopy height (Additional file 1: Figure S5).

Here we note the challenges involved in compar-
ing the FIA plot data to mapped C densities based on 
remote sensing. First, there was an offset of about 6 years 
between the time the LiDAR flights were completed and 
the time the FIA measurements were taken in the field. 
Second, the FIA data in Hawaii were geo-located using 

non-differentially corrected global positioning system 
(GPS) instruments. This leads to plot location uncertain-
ties of up to 30  m. The combination of relatively small 
size (18 m radius), circular shape, and non-contiguity of 
the FIA plots (see “Methods”), explains higher uncer-
tainty when comparing to ACD estimates in 30 m × 30 m 
mapping cells. Asner et  al. [28] found that mismatches 
in location and plot shape alone account for up to 15 % 
uncertainty in field validation studies. Additionally, the 
allometric scaling applied to the FIA field measurements 
can result in additional uncertainties of up to 50 % of the 
plot mean value [29, 30].

Given these, and other sources of uncertainty, we 
contend that the verification step undertaken here was 
successful in validating the map results. Nonetheless, 
validation with FIA or other plots could be significantly 
improved by more accurate GPS measurements of plot 
locations, and by employing plot and sampling design 
that is better suited to validating remotely-sensed esti-
mates of ACD. Specifically, plots should be similar in 
area to the final grid size and all trees >5 cm dbh should 
have height and diameter measured in each plot. Better 
allometry would also decrease uncertainty. Currently, 
we employ species-specific allometric equations only 
for the two most dominant native woody tree species 
(Metrosideros polymorpha and Acacia koa) and for four 

Fig. 3  Distribution of forest area and total aboveground carbon stock (Tg = million metric tons) for the main Hawaiian Islands. Percentages are 
given in terms of the entire State of Hawaii

Fig. 4  Comparison of Hawaii statewide map of forest aboveground 
carbon density (ACD) against plot inventory-based estimates of ACD 
from the US Forest Service FIA plot-inventory data
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non-native tree species. Aboveground biomass for the 
remaining 114 tree species encountered in FIA plots was 
estimated using a general model for tropical trees that 
incorporates diameter, height and wood density [31]. 
Species-specific allometry for large, widespread non-
native tree species, such as Falcataria moluccana, would 
almost certainly reduce uncertainty in estimates of their 
aboveground biomass.

Factors affecting carbon stocks
The geospatial analysis indicated that fractional can-
opy cover (FC) was the principal driver of spatial varia-
tion in forest carbon stocks throughout the Hawaiian 
archipelago, accounting for 27 % of the total variance in 
ACD (Fig.  5). Forest cover was closely followed by for-
est type, as defined using the vegetation-cover classifica-
tion, which accounted for an additional 24 % of variation 
in ACD. Other important factors included mean annual 
precipitation, vegetation structure, and cloudiness, 
which individually explained 6–8  % of the ACD varia-
tion throughout the islands. Finally, fire return factors, 
elevation and additional climate variables individually 
explained 1–4 % of the variability in carbon density.

Note that while the results presented in Fig. 5 account 
for co-variation in explanatory factors, many of them 
are ecologically and/or geospatially convolved with one 
another. For example, forest FC is broadly related to 
elevation and topographic aspect, with less forest cover 

often observed at high elevations and on leeward aspects, 
although low forest FC was also observed in deforested 
zones at lower elevations on windward aspects. Thus the 
factor rankings presented here indicate an additional 
effect of elevation and aspect not already explained by FC 
alone. Similar inter-factor co-variances occur among the 
model rankings in Fig. 5. Nonetheless, it is clear that FC 
and vegetation type explain much of the geographic vari-
ation in forest carbon stocks.

Effects of biological invasion on forest carbon
Although this study is limited to a single time step, the 
current Hawaii vegetation map allowed us to conduct 
the first statewide assessment of the large-scale effects of 
alien plant species on forest C stocks. Numerous plot- to 
landscape-scale studies have reported on this issue, with 
highly variable outcomes ranging from no effect of inva-
sion on carbon densities, to increases and decreases in 
ACD following invasion [17, 23, 28, 32, 33]. Such wide-
ranging results stem from underlying variability in the 
mediating factors, such as time-since-introduction, rates 
of invasion, relative changes in plant functional and 
structure types, and environmental filters such as soils 
and climate. There is thus a general need for large-scale, 
high-resolution assessments that go beyond local contex-
tual results.

The Hawaii State vegetation map was generated using 
manual and automated classification of Landsat imagery 

Fig. 5  Contribution of each potential explanatory factor determining aboveground carbon density (ACD) in the Hawaiian Islands. Fractional canopy 
cover (FC), non-photosynthetic vegetation (NPV) cover, and bare surface cover (soils, rock, infrastructure) were derived from sub-30 m resolution 
Landsat-based satellite mapping of the islands (see [25]). Vegetation type was provided by the Hawaii State GAP vegetation map [34]. MFRI mean 
fire return interval; RFS replacement fire severity; LFS low fire severity; MFS mixed fire severity
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against aerial photography [34]. Experience with this 
map in field studies indicates that the “alien-dominated” 
classes are comprised of mature stands of non-native spe-
cies, while “native-dominated” classes are comprised of 
mature stands of native species, particularly dominated 
by the keystone canopy species Metrosideros polymorpha 
and Acacia koa. We focused our analysis on these two 
groups because the Hawaii State vegetation map alone 
does not provide sufficient detail to partition the mapped 
C results into finer levels of invasion, particularly since 
the invasion process is ongoing and highly dynamic (in 
favor of alien invasive species dominance). We further 
partitioned the native- and alien-dominated groups by 
three major environmental filters known to mediate C 
stocks: annual precipitation, elevation and substrate age 
(from volcanic activity dating back to the early Pliocene) 
(Additional file 1: Table S1).

Our results show that, on medium-to-older substrates 
in both drier and wetter conditions, the total area of 
alien-dominated forest exceeds that of native-dominated 
forest in lower-elevation zones (Fig.  6a). In contrast, 
the majority of wetter, higher-elevation and/or older-
substrate conditions remain dominated by native forest 
cover. Critically, however, we found that ACD is greater 
in native-dominated forests in low-to-medium elevation, 
dry-to-mesic regions of the islands, whereas alien-dom-
inated forests tend to have slightly higher ACD levels in 
wetter environments across the board (Fig. 6b). At these 
broad multi-island scales, substrate age played only a 
small role in determining the relative difference in alien- 
and native-dominated forest ACD. This suggests strong 
limiting effects of nutrient-poor soils on growth and bio-
mass accumulation for all species, independent of origin 
[35]. In contrast, higher biomass of native forest canopies 
in drier zones on older substrates may reflect evolution-
ary adaptation to these environments, as well as a lack of 
analog tree taxa in the current alien species pool on the 
islands.

Our results are also suggestive of how native biologi-
cal diversity intersects with C storage, and how alien 
invasive species alter those relationships. For example, 
higher-elevation, drier forests on older substrates may 
be dominated by alien forest cover (smallest solid green 
dot; Fig. 6a), but native-dominated forests in similar envi-
ronments support twice the stored C on a per-area basis 
(Fig. 6b). Thus actions to conserve and restore high-ele-
vation native ecosystems yield a co-benefit of increased C 
storage. On the other hand, higher-elevation, drier con-
ditions on younger substrates are areas currently domi-
nated by native forest cover (open small red dot; Fig. 6a), 
but alien species can double the ACD levels in these envi-
ronments (Fig. 6b). Forest managers and conservationists 
can use these landscape-scale relationships as trade-offs 

in planning efforts to increase C storage while managing 
for biological diversity [36, 37].

Forest carbon protections and opportunities
High-resolution C mapping also affords a way to assess 
current protections, threats and opportunities for seques-
tered carbon and generating healthy forests via land-use 
allocation and management [21]. Using land tenure data 
provided by the State of Hawaii, we quantified C stocks 
and densities on State, federal and private reserves. Of 
the total aboveground forest C stock found on the islands 
(36 Tg C), about 18.5 Tg C or 51 % is officially protected 
on State (e.g., Natural Area Reserves; Forest Reserves), 
federal (National Parks; Wildlife Refuges) and private 
(The Nature Conservancy; Kamehameha Schools lands) 
lands covering 257,691 ha (Fig. 7a, Additional file 1: Table 
S2). This is almost equally matched by forests outside 
of protected reserves, which in total cover more land 
area at 292,374 ha, but which contain 17.5 Tg of above-
ground C. This finding indicates that a large amount of 
forest C could be incorporated into more formal reserve 

Fig. 6  Distribution of a forest area and b forest aboveground carbon 
density (ACD) for native-dominated and alien-dominated forests 
throughout the State of Hawaii. The forests are reported here using 
the Hawaii State GAP Vegetation map [34] partitioned by lava sub-
strate age, elevation and mean annual precipitation
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protections. Moreover, we found that reserve ACD aver-
ages 61.8 ±  22.3  Mg  C  ha−1, whereas non-reserve for-
ests have carbon densities of 59.6 ±  34.2 3  Mg  C  ha−1 
(Fig.  7b). Combined, these results underscore the 
C-storage benefit of adding long-term protection status 
to remaining island forests; Total forest aboveground 
C stock increases linearly with increasing reserve area 
(Additional file 1: Figure S11).

On all islands, 189 State-managed reserves hold the vast 
majority of protected carbon stocks—14.8 Tg C, while 25 
federal and 14 private reserves contain just 2.8 and 0.9 
Tg C, respectively (Additional file  1: Table S2). Carbon 
densities are highest in State reserves (66.3 ± 23.2 Mg C 
ha−1), followed by private (56.1 ±  19.3 Mg C ha−1) and 
federal reserves (41.4  ±  17.6  Mg  C  ha−1). Differences 
in forest carbon densities are reflective of the location 
of the reserves (lowland vs. montane, wet windward vs. 
dry leeward) as well as species composition and manage-
ment. A desired outcome of this work is to provide forest 
managers and the public with information to compare, 
for example, carbon stocks on a reserve-by-reserve basis 
against environmental maps, to identify opportunities for 
increasing C densities through conservation and man-
agement actions.

Replication on oceanic island chains
The approach we have developed and tested here for 
high-resolution mapping of aboveground forest carbon 
density is intended for replication on oceanic islands 
worldwide, but also any set of highly heterogeneous land-
scapes. The methodology is based on a previously estab-
lished strategy that relies on airborne LiDAR sampling of 
forests found across a range of ecological conditions, but 
limited to one island [23]. Here we greatly advanced the 
approach by extending the initial LiDAR sampling of a 
single island, via a machine-learning algorithm [38, 39], 
to the multi-island or archipelago scale using a suite of 
environmental maps and satellite data that is, in combi-
nation, sufficiently sensitive to variation in the LiDAR-
based estimates of canopy height. Shared environmental 
characteristics among neighboring islands usually include 
geology, climatic zones, and dominant vegetation types. 
Satellite-based metrics of forest structure, derived from 
Landsat-based spectral mixture analysis, are time-variant 
and key to the linkage with the LiDAR data. Strategically, 
these Landsat-based metrics can be updated through 
time using the fully automated CLASlite software [25].

The conversion of either LiDAR-scale or modeled can-
opy height to estimates of ACD requires plot-aggregate 
allometric equations [40]. This worked well in Hawaii, 
relative to plot-estimated ACD from U.S. Forest Service 
inventory data. The universal or regional plot-aggregate 
allometric equations proposed by Asner et  al. [40] have 
also worked reasonably well in other regions [17, 41, 42], 
and they tend to result in mismatches between LiDAR-
based and field-based estimates of ACD of 10–15  % 
when applied at 1-ha spatial resolution [26]. Nonethe-
less, application of these conversion equations to oceanic 
islands requires further validation, particularly for iso-
lated islands in which vegetation types (and thus allomet-
rics) may diverge from general databases.

There is an initial cost for installing a forest C monitor-
ing program on any given island chain or archipelago. It 
includes an initial airborne LiDAR survey of one island 
or part of the archipelago, which varies widely in cost 
depending upon whether the data are sourced from non-
profit, government, or commercial organizations. Our 
LiDAR data collection and processing cost was approxi-
mately $150,000 for the Island of Hawaii, but costs have 
greatly declined since the data acquisition was made for 
this study [43]. The LiDAR component was followed 
by personnel and computing costs required to link the 
LiDAR data to the satellite imagery and for validation 
work. However, the satellite imagery was free of charge, 
and CLASlite is also currently available at no charge 
[44], thereby providing us with a low-cost way to com-
plete the initial carbon map. Moreover, the free imagery 

Fig. 7  Distribution of forest a aboveground carbon stock and b 
aboveground carbon density on protective reserves managed by 
State, federal and private organizations, as well as unprotected 
forested lands
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and software makes updates to the map extremely cost-
efficient, likely requiring the effort of a single geospatial 
technician for the State of Hawaii. Even if field invento-
ries could be done at large geographic scales on a spatially 
contiguous basis, which is not possible, the recurring 
costs would be extremely high for each monitoring step 
through time.

Conclusions
We have shown that a combination of one-time airborne 
LiDAR data acquisition, and freely available satellite data 
with automated analysis, can provide effective forest C 
mapping and monitoring of oceanic islands. The method 
is highly replicable and cost-effective. From the first map 
generated, and with regular updates using satellite data 
over time, assessments of C storage can be derived by 
political entity (e.g., State Districts), land-use allocation 
(e.g., protected vs. unprotected areas), or any other unit 
of governance or management. Moreover, changes in C 
stocks and densities can be continually assessed in the 
face of rapid environmental changes, such as climate, fire 
and biological invasion. The resulting information is spa-
tially explicit, allowing for actions that promote sustain-
ability of forests and the services they provide to island 
biodiversity and societies. High-resolution monitoring 
approaches also provide a geography of forest C stock 
that facilitates the inclusion of multiple stakeholders 
ranging from individual landowners to national govern-
ments. The resulting empowerment afforded by this type 
of ecological information will be important to the protec-
tion, enhancement and/or restoration of island ecosys-
tems in the future.

Methods
Our mapping approach is summarized in Fig. 1. The nec-
essary technologies are airborne Light Detection and 
Ranging (LiDAR), which yields highly detailed measure-
ments of forest canopy height and vertical canopy profile, 
and satellite-derived maps of environmental variables 
and forest canopy fractional cover. A second component 
relies on machine learning algorithms to scale airborne 
LiDAR samples of one island up to multi-island or archi-
pelago maps. Several studies have employed a Random 
Forest Machine Learning (RFML) algorithm to model the 
relationship between LiDAR-based estimates of forest 
structure or biomass and a suite of satellite data sets [19, 
21, 45, 46]. RFML fits multiple environmental datasets 
(predictors) to estimates of vegetation structure or bio-
mass (response), as described later. In doing so, a direct 
scaling of LiDAR samples to full-coverage maps can be 
derived without artificial boundaries between ecosys-
tems that often occur using traditional stratification 
approaches.

Random Forest Machine Learning also provides quan-
titative information on which predictors (e.g., satellite 
data) are most important in determining the response 
variable (LiDAR-derived canopy height) [47]. Here 
the importance of a predictor to the RFML model was 
assessed by randomly permuting the values of the factor 
within a validation dataset, and processing the validation 
data through the regression trees. In our implementa-
tion of RFML, a temporary validation dataset is created 
to build each regression tree, and is chosen as a randomly 
selected set of 250 samples left out of the full training 
dataset. To assess the importance of a single factor, we 
compared the mean square error (MSE) values of the 
validation data both before (MSEi) and after (MSE*i) ran-
domly permuting the values of the factor for each tree 
[48]. For each tree i, the difference between MSEi and 
MSE*i, divided by MSEi, was collected. The importance 
of the given factor was then taken to be the mean of these 
relative difference values across all trees. By repeating the 
above procedure for each explanatory factor, the relative 
importance of each factor could be compared.

LiDAR data acquisition and analysis
LiDAR data were collected using the Carnegie Airborne 
Observatory [49]. Flights covered 379,337  ha of Hawaii 
Island (Additional file  1: Figure S1) including all major 
forest types (Additional file  1: Figure S2b) [23]. LiDAR 
data were collected at 1000 or 2000  m above ground 
level, using two corresponding configurations: higher 
resolution with 0.56  m on-the-ground laser spot spac-
ing, 24° field of view (FOV) and a 70 kHz pulse repetition 
frequency; low resolution with a 1.12 m spot spacing, 30° 
FOV and a 50  kHz pulse repetition frequency, respec-
tively. Ground cover was sampled along parallel flight 
lines with 50 % overlap to ensure LiDAR coverage of no 
less than 4 laser shots m−2.

Mean top-of-canopy height (TCH) was calculated for 
each 30 m × 30 m grid cell of LiDAR coverage on Hawaii 
Island (Additional file 1: Figure S1). To create this layer, 
the laser range measurements from the LiDAR were 
combined with the embedded high resolution Global 
Positioning System-Inertial Measurement Unit (GPS-
IMU) data to determine the 3-D locations of the laser 
returns. This calculation produced a ‘cloud’ of LiDAR 
data. The LiDAR data cloud was processed to identify 
where the laser pulses penetrated the canopy volume, 
reaching the ground surface, from which a digital terrain 
model (DTM) was produced. This was achieved using a 
10 m × 10 m filter kernel throughout the LiDAR cover-
age, and the lowest elevation in each kernel was deemed 
as possible ground detection. These filtered points were 
then evaluated by fitting a horizontal plane through 
each point. If the closest unclassified point was <1.5  m 
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higher in elevation, the pre-filtered point was finalized 
as a ground-classified surface point. This process was 
repeated until all potential ground points within the 
LiDAR coverage were evaluated. A digital surface model 
(DSM), which is essentially the top-most surface (e.g., 
canopies, buildings, exposed ground), was also generated 
based on interpolations of all first-return points at 1.12 m 
spatial resolution. The DTM and DSM were combined as 
a tightly matched pair of data layers. The vertical differ-
ence between them resulted in a model of top-of-canopy 
height (TCH) at 1.12 m spatial resolution throughout the 
379,337  ha LiDAR sampling coverage. Validation stud-
ies of this CAO LiDAR TCH estimation approach have 
shown it to be highly accurate across a wide range of for-
ests including extremely densely foliated, tall tropical for-
ests exceeding 60 m in height [28, 42].

Environmental predictor variables
We used 17 environmental predictor variables from co-
aligned spatial datasets covering State of Hawaii to model 
canopy height based on the LiDAR TCH measurements 
made on Hawaii Island (Additional file 1: Figure S2-S4). 
All predictor variables were gridded at 30-m spatial reso-
lution. Three predictor variables were fractional cover 
of forest canopy (FC), non-photosynthetic vegetation 
(NPV), and bare surfaces. These were determined from 
nine primary Landsat-8 images collected in 2013 and 
2014. The mosaic of nine images included a few small 
cloud-covered areas, so those areas were backfilled with 
Landsat-7 and Landsat-8 data going back to 2010. The 
Landsat mosaic was run through a probabilistic spectral 
mixture analysis algorithm embedded in the CLASlite 
forest monitoring software package [25]. These fractional 
cover images have been validated and used in numerous 
studies in Hawaii and elsewhere [e.g., 23, 50].

An important additional predictor variable was the 
Hawaii State GAP vegetation map, which provides the 
highest resolution and most widely used vegetation cover 
type information for the State of Hawaii. The version 
used was based on Gon et  al. [34], with improvements 
based on high-resolution satellite images and other more 
recent vegetation mapping information [51]. Three addi-
tional predictor variables were derived from 30-m Shuttle 
Radar Topography Mapping (SRTM) mission data: eleva-
tion, slope and aspect. In addition, mean annual precip-
itation (MAP), mean wind speed at 2  m above ground, 
vapor pressure deficit, total solar radiation, mean relative 
humidity, and cloud frequency data were acquired from 
http://climate.geography. http://hawaii.edu/downloads.
html. Finally, we used four fire-related predictor vari-
ables: low fire severity (LFS), mixed fire severity (MFS), 
replacement fire severity (RFS), and mean fire return 

interval (MFRI) provide by http://www.landfire.gov/fir-
eregime.php.

These 17 predictor maps and the 30-m LIDAR-derived 
TCH map were applied to the RFML model for Hawaii 
Island to develop the prediction-based regression trees. 
The regression trees were then used to predict TCH val-
ues across the entire State of Hawaii using the 17 predic-
tor maps as input.

Estimating aboveground carbon density
We estimated ACD from the statewide TCH map using 
a plot-aggregate allometric scaling approach [26]. A bio-
physical link was previously developed to quantitatively 
link mapped TCH to field estimates of ACD by applying 
regional plot-aggregated estimates of vegetation wood 
density and diameter-to-height relationships. To develop 
a TCH-to-ACD calibration for Hawaiian forests and 
other vegetation types throughout the State, we used 209 
field plots located on Hawaii Island for which ACD was 
measured using field plot-based inventory measurements 
as detailed by Asner et al. [23]. The resulting calibration 
between TCH and ACD is shown in Additional file 1: Fig-
ure S5, with in R2 = 0.82 and RMSE = 78.7 Mg C ha−1. 
The final calibration equation for relating TCH to ACD 
was: ACD = 3.744 * TCH1.391.

Uncertainty map
The uncertainty of the mapped ACD estimates was esti-
mated by developing a relationship between the mapped 
ACD values and the RMSE of ACD for those areas on 
Hawaii Island covered by the LiDAR data [21]. These 
RMSE values were partitioned into 30 bins across the 
range of RFML-modeled ACD values. A polynomial was 
fit to model the RMSE of an ACD estimate as a function 
of its predicted ACD value. The polynomial was then 
applied to the ACD map to produce an estimate of ACD 
uncertainty (Additional file 1: Figure S6).

Map validation
To evaluate the accuracy of the final carbon map, we 
compared data from the map to georeferenced plots 
surveyed across the Hawaiian Islands in 2011 and 2012 
by the United States Department of Agriculture Forest 
inventory and Analysis (FIA) Program. The FIA Pro-
gram is a national network of plots designed to repre-
sent all forest conditions across the United States [52]. 
Each FIA plot is a cluster of four circular 7.32-m radius 
subplots arranged in a fixed pattern. All trees and tree 
ferns ≥12.7  cm diameter at breast height (dbh; 1.37  m 
above the ground) had diameter, height, and species 
recorded in each subplot. Trees and tree ferns <12.7 cm 
dbh had diameter, height, and species were recorded in 

http://climate.geography
http://hawaii.edu/downloads.html
http://hawaii.edu/downloads.html
http://www.landfire.gov/fireregime.php
http://www.landfire.gov/fireregime.php
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microplots, which are 2.07 m radius plots located within 
each subplot. Macroplots, which are 17.95 m radius and 
immediately surround each subplot, are usually reserved 
for destructive sampling. However, FIA plots sampled 
in Hawaii in 2011–2012 using the ‘experimental forest’ 
(EXPFOR) protocol (n = 96) had all trees ≥12.7 cm dbh 
measured in Macroplots as well, greatly enlarging the 
sample footprint of each plot. We used data from these 
96 EXPFOR FIA plots to validate the accuracy of the final 
carbon map.

We estimated ACD for each tree measured in the 96 
FIA plots using a combination of species-specific and 
general diameter-to-ACD and height-to-diameter mod-
els. We used locally derived, species-specific diameter 
to ACD models for eight species, including the two most 
common species in the FIA dataset: Metrosideros poly-
morpha and Acacia koa (Additional file 1: Table S3). For 
all other species, and for large trees that exceeded the 
diameter range of species-specific diameter-to-ACD 
models, we used a general allometric model for tropical 
trees developed by Chave et  al. [31] that uses diameter, 
height, and wood density to estimate ACD (Additional 
file 1: Table S4). When the Chave model was employed, 
we used species-specific wood density values from 
Hawaii [23] and a global wood density database [53]. If 
a species-specific wood density value was unavailable, 
we used a mean value for the genus, and if this was not 
available we used a default value of 0.5 (Additional file 1: 
Table S5). We note here that wood densities are difficult 
to find for some commonly occurring oceanic island spe-
cies, and thus we encourage research and measurement 
in this area. Occasionally, a height measurement was 
lacking for trees requiring the general Chave model. In 
these instances, we used locally derived, species-specific 
diameter to height models from Asner et al. [23]. When 
no species-specific diameter-to-height model was avail-
able, we used a general diameter-to-height model devel-
oped by Chave et al. for tropical trees that incorporates 
an environmental stress E parameter. Plot-level ACD was 
estimated by (1) estimating aboveground biomass (AGB) 
per unit area of microplots and macroplots within each 
FIA plot; (2) summing AGB per unit area within each 
FIA plot (n = 96); and (3) multiplying plot-level AGB per 
unit area by 0.48 to estimate ACD. The ACD of the 96 
FIA plot locations were extracted from the statewide car-
bon map and averaged in a 3 × 3 pixel window (~1 ha) 
centered on each plot location.

Additional file

Additional file 1. Supporting figures and tables.
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