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Abstract 

Background:  Participatory forest monitoring has been promoted as a means to engage local forest-dependent 
communities in concrete climate mitigation activities as it brings a sense of ownership to the communities and 
hence increases the likelihood of success of forest preservation measures. However, sceptics of this approach argue 
that local community forest members will not easily attain the level of technical proficiency that accurate monitoring 
needs. Thus it is interesting to establish if local communities can attain such a level of technical proficiency. This paper 
addresses this issue by assessing the robustness of biomass estimation models based on air-borne laser data using 
models calibrated with two different field sample designs namely, field data gathered by professional forester teams 
and field data collected by local communities trained by professional foresters in two study sites in Nepal. The aim is 
to find if the two field sample data sets can give similar results (LiDAR models) and whether the data can be com‑
bined and used together in estimating biomass.

Results:   Results show that even though the sampling designs and principles of both field campaigns were different, 
they produced equivalent regression models based on LiDAR data. This was successful in one of the sites (Gorkha). At 
the other site (Chitwan), however, major discrepancies remained in model-based estimates that used different field 
sample data sets. This discrepancy can be attributed to the complex terrain and dense forest in the site which makes 
it difficult to obtain an accurate digital elevation model (DTM) from LiDAR data, and neither set of data produced 
satisfactory results.

Conclusions:   Field sample data produced by professional foresters and field sample data produced by professionally 
trained communities can be used together without affecting prediction performance provided that the correlation 
between LiDAR predictors and biomass estimates is good enough.
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Background
Greenhouse gas (GHG) emissions from tropical deforest-
ation and forest degradation contribute about 15–20  % 
of total annual global GHG emissions, making them the 
second largest source of greenhouse gases globally [1]. To 
reduce especially CO2 (carbon dioxide) emissions from 
the forestry sector, the United Nations has established 

a program that would provide payments for the reduc-
tion of emissions from deforestation and forest degrada-
tion (REDD+). REDD+ is a performance-based policy 
instrument aimed at reducing anthropogenic emissions 
of GHG [2, 3].

Nepal is one of the countries participating in REDD+. 
After successful implementation of a Community For-
estry programme, Nepal has taken another leap by 
piloting innovative REDD+ projects. The International 
Centre for Integrated Mountain Development (ICI-
MOD) is one of the first organizations to implement a 
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community-based REDD+ pilot at micro-watershed 
level. ICIMOD and its partners, the Federation of Com-
munity Forestry Users, Nepal (FECOFUN) and the Asia 
Network for Sustainable Agriculture and Bioresources 
(ANSAB) implemented a pilot project from 2009–2013, 
with support from the Norwegian Agency for Develop-
ment Cooperation (NORAD) climate and forest Initiative 
[4]. The major focus of the project was to develop and 
demonstrate an innovative benefit-sharing mechanism 
for REDD+ incentives using institutionally and socially 
inclusive approaches to address the drivers of deforesta-
tion and forest degradation and improve forest govern-
ance [5] in three micro-watersheds, namely Kayarkhola 
in Chitwan, Ludikhola in Gorkha and Charanawati in 
Dolakha districts. The pilot project focused on seques-
tering carbon through community-based forest manage-
ment. It is one of the first carbon offset demonstration 
projects in the world that involves local communities in 
monitoring the carbon in their forests and providing the 
necessary training for them to do so. Training on assess-
ing forest carbon pools was provided to the local com-
munities that manage the forest [6]. The trained local 
communities collected field plot data from 2010 to 2012. 
The results of this effort are summarized in [7].

In a joint effort, the Forest Resource Assessment Nepal 
project, Arbonaut Ltd. and ICIMOD carried out a wall-
to-wall airborne discrete-return light detection and rang-
ing (LiDAR) data and subsequent field plot collection in 
two watersheds in Chitwan and Gorkha. The main aim of 
the work was to estimate accurately and with a high spa-
tial resolution the forest above ground biomass (AGB)/
carbon in the watersheds. The field data was collected by 
professional foresters and technicians.

In measuring biomass for calculating REDD+ com-
pensation the measurements should be conducted in a 
biennial manner, as has been recently agreed at a UNF-
CCC meeting in Bonn [8]. As national measurements 
are required at such a high frequency, traditional sam-
pling-based methods become prohibitively expensive. 
We therefore propose to use a model-based strategy for 
biomass prediction, where field plots are only used for 
model calibration, i.e. model parameter estimation, and 
biomass prediction models are based on remotely sensed 
data, such as LiDAR, which is used in this study, or satel-
lite imagery.

In this study, plot-level AGB values estimated from field 
measurements (labelled as “AGB field estimates” in this 
article) in given inventory areas are predicted (“predic-
tions”) in new validation plot locations (“validation set”) 
using linear model which is calibrated using field meas-
urements obtained from the respective areas (“training 
set”). The field measurements are collected by two types 
of forest inventory teams: a professional measurement 

team (“Prof”) and measurement teams trained from the 
local community members (“Comm”). The local commu-
nity members were trained to do forest inventory work 
by professionals from ICIMOD and its project partners 
that operated independently of the professional measure-
ment team. Inventory work, i.e., field sample plot selec-
tion and actual measurement work, is thus performed 
by two separate groups, which may lead to data sets with 
different characteristics, even when the measurements 
are conducted in the same area.

To justify the use of participatory forest monitoring 
and inventory work of local communities, it is important 
that there are no significant differences in AGB predic-
tions based on field measurements of both teams. Thus, 
it is needed to verify if different data sets from the same 
area lead to similar model based predictions, and if the 
datasets can be combined and used together in predict-
ing AGB for the areas in the future. In this study, we first 
analyse the field estimates measured by both teams and 
validate the correlation between the model auxiliary data, 
LiDAR predictors, and the corresponding field estimates. 
We then validate the robustness of high-resolution 
model-based biomass estimation against different sam-
pling designs from the same area. Models using differ-
ent sources of training set data but resulting in the same 
predictions with the same validation data are considered 
robust against the training set source.

Results
The model-based predictions and corresponding error 
analyses were performed using data collected from two 
inventory study sites located in Nepal, namely Gorkha 
(labelled as “Go”) and Chitwan (“Ch”), see Fig. 1 for the 
location of the sites. The scope in forest inventory by the 
different inventory teams was different. The professional 
team measured only closed canopy forest owned by both 
the state and by the forest communities. The local field 
teams measured both open and closed canopy forests 
but only those owned by communities. Only the field 
plots of similar forest types, plots from closed canopy 
forest owned by communities, were used in this study. 
The number of plots measured by the community teams 
located in closed type forests that are owned by the com-
munities is 151 in study site Gorkha and 151 in study site 
Chitwan, while the number of plots measured by the pro-
fessional teams located in closed type forests owned by 
the communities is 41 in Gorkha and 26 in Chitwan. See 
Fig. 1 for plot locations and Fig. 2 for the distribution of 
field estimates.

Examples of the combined distributions of LiDAR pre-
dictor values and AGB field estimates of each sample are 
shown in Fig.  3. The LiDAR predictor—AGB field esti-
mate correlation of both sample in Gorkha, the plots 
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measured by professional teams and the plots measured 
by the members of local communities, is higher than in 
Chitwan. The correlation of AGB and the LiDAR exam-
ple predictor in Gorkha is 0.66 for sample ProfGo, 0.59 
for CommGo, and in Chitwan it is 0.52 for ProfCh and 
0.45 for CommCh. With visual analysis, the LiDAR pre-
dictor—AGB distributions of different inventor teams 
are similar in both study sites. Similar properties hold for 
each predictor used in this study.

Results of study site Gorkha
The results for predictions in study site Gorkha are shown 
in Table 1 and Figs. 4 and 5. In the table, model predic-
tion precision and accuracy are evaluated by relative 
root mean square error (RMSE %) and relative mean dif-
ference (D %). The prediction error distributions in two 
validation sets (Comm and Prof ) resulting from three dif-
ferent model training set data (Comm, Prof and the com-
bined set of these plots, Comm + Prof ) are verified. The 

differences of the mean values (D %) between the self-val-
idation (validation set and training set are the same) and 
the cross-validation cases (training set is different than 
validation set) are tested by a two-sample t test with a 5 
% significance level against the case where the validation 
set and training set are the same. Similarly, the difference 
of the RMSE % values are tested with a two-sample F test 
for equal variances with a 5 % significance level. The tests 
show that distributions of prediction error among differ-
ent models in the validation set Comm are similar. The 
mean of the errors are the same as that for training set 
Comm (t test p values > 0.79 for training sets Prof and 
Comm + Prof ) and also the variance of the error distri-
butions are similar (variance test p values > 0.89 ). Simi-
lar results are shown for the AGB predictions in the plots 
measured by the professional teams. The statistical tests 
for the prediction error show no significant difference in 
error mean or error variance compared to the predictions 
estimated with training set Prof (t test p values are > 0.84 

Fig. 1  Maps of the study area showing the two watersheds in Chitwan and Gorkha. The map on top shows the ICIMOD plots used in this study
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and variance test p values are > 0.59 for training sets 
Comm and Comm + Prof ). Figure  4 shows that inde-
pendent of the training and validation set used, a rela-
tively good model fit is obtained for validation set Comm 
(r2 ≥ 0.46 for all training sets) and for validation set Prof 
(r2 ≥ 0.58 for all training sets).

Also the distributions of the AGB predictions shown in 
Fig. 5 are close to each other. The lack of ability to predict 
accurately the largest AGB values in plots measured by 
the Community teams is similar when using any of the 
training sets (see the left sub-figure). Up to about 300 
Mg/ha, the AGB distributions of all predictions are very 
close to the distribution AGB field estimates of Com-
munity teams, the larger AGB values tend to be under-
estimated. In case of the AGB field estimates of the 
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Fig. 2  Boxplots of AGB field estimates in plots located in closed type community owned forests. Median, 25th and 75th percentiles and outliers are 
shown
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Fig. 3  An example of LiDAR predictor—AGB field estimate scatterogram

Table 1  Results with  different combinations of  training 
set–validation set in study site Gorkha

Training set Error stat. Test against baseline, p 
values

RMSE % BIAS % Variance test t test for mean

Validation set: Comm

 Comm (base‑
line)

59.2 0.0

 Prof 59.3 −1.8 0.994 0.794

 Comm + Prof 58.6 −0.2 0.888 0.977

Validation set: Prof

 Prof (baseline) 37.5 0.2

 Comm 34.4 1.9 0.586 0.839

 Comm + Prof 34.8 1.5 0.644 0.872
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Fig. 4  Scatterogram and prediction error analysis of AGB predictions and field estimates in study site Gorkha. VS validation set, TS training set



Page 6 of 14Junttila et al. Carbon Balance Manage  (2015) 10:29 

Professional teams, predictions estimated by different 
training sets of either of the teams result in quite correct 
AGB distributions. No big deviations can be seen up to 
400–500 Mg/ha.

Results of study site Chitwan
Results of AGB predictions in study site Chitwan are 
shown in Table 2 and Figs. 6 and 7. The variance test in 
Table 2 shows no significant difference between the pre-
diction precision (RMSE %) between the predictions 
obtained with different training sets for either validation 
sets (p values > 0.81 for validations set Comm, > 0.43 for 
Prof ). However, the t test for the average values of the 
average relative differences, D %, shows significant differ-
ence (p value 0.008 < 0.05) for prediction of community 

team plots using model calibrated with field estimates of 
professional teams. Similarly, predictions for professional 
team measured plots predicted with model calibrated 
using the community team plots, the p value is close to 
0.05 although not less than it. Thus, there is significant 
average error in predictions when the training set and 
validation set are different. Similar doesn’t hold when 
the training set consists also data from the validation set 
(Training set Comm + Prof ).

The one-to-one scatterograms in Fig.  6 shows that 
the correlation between AGB field estimates and model 
based predictions is poor in each cross-validation set. 
Even the predictions estimated using the same train-
ing set and validation set (self-validation: validation set 
Comm estimated with training set Comm and validation 
set Prof estimated with training set Prof ) fail. The RMSE 
of the predictions is large compared to the variation of 
the AGB values and the model fit is poor (r2 ≤ 0.33) in 
each case.

In Fig. 7 it can be seen that the models severely under-
estimate the cumulative probability distribution of AGB 
for values for AGB greater than 200 Mg/ha in validation 
set Comm (left sub-figure). This happens regardless of 
the training set used to train the model, also when the 
training set is the same as validation set. For validation 
set Prof, the model over-estimates the cumulative prob-
ability distribution of AGB for values of AGB less than 
400 Mg/ha regardless of the training set used to train the 
model (right sub-figure) and for values of AGB greater 
than 400 Mg/ha the model under-estimates the cumula-
tive probability distribution for each training set.
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Fig. 5  Cumulative distribution of plot-level AGB field estimates and plot-level AGB predictions estimated with models based on different training 
subsets in study site Gorkha

Table 2  Results with  different combinations of  training 
set–validation set in study site Chitwan

Training set Error stat. Test against baseline, pvalues

RMSE % BIAS % Variance test t test for mean

Validation set: Comm

 Comm (base‑
line)

72.1 −0.5

 Prof 74.2 −22.6 0.806 0.008

 Comm + Prof 71.7 −3.5 0.931 0.720

Validation set: Prof

 Prof (baseline) 55.5 −2.5

 Comm 52.9 23.6 0.433 0.079

 Comm + Prof 51.3 19.0 0.452 0.146
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Fig. 6  Scatterogram and prediction error analysis of the AGB predictions (“predicted”) and AGB field estimates in study site Chitwan
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Discussion
The results above show that the predictions in study site 
Gorkha are quite accurate and precise in each case in the 
cross-validation procedure and no significant difference 
occurs when different sources of training set data are 
used. However, there are severe problems in the predic-
tions of AGB in study site Chitwan. The cross-validation 
procedure shows that there is significant difference in the 
mean of prediction error when the training set and vali-
dation set are different. However, in this study site, the 
prediction precision overall is weak, the RMSE is large 
and model fit poor.

In model-based prediction, the correlation between 
the response, AGB field estimates, and the auxiliary data, 
LiDAR predictors, define whether the auxiliary data can 
be used to accurately predict the response over the whole 
spatial area. In this study, the plot-level prediction map 
in Fig.  6 and the LiDAR predictor—AGB field estimate 
correlation in Fig.  3 (right sub-figure) show the basic 
problem in Chitwan data—the signal (or correlation) 
between the LiDAR predictors and AGB field estimates is 
not good enough for precise prediction, and total lack of 
fit ensues independently of the training set source. Even 
the predictions of community team plots obtained using 
community team plots as the training set of the model 
show no correlation with the field estimates, as seen in 
the middle left sub-figure in Fig. 6. Even though the error 
mean is nearly zero, the model fit is poor (r2 = 0.27). 
Similar results can be seen for the predictions for pro-
fessional team plots that are obtained using professional 
team field measurements as the training set (bottom 
right sub-figure).

With the lack of LiDAR predictor—AGB field estimate 
correlation, the predictions in study site Chitwan are 
dominated by the average values of the field estimates in 
the training sets. In community team measurements the 
average of the field estimates is larger than in the profes-
sional team measurements. The community plot AGB 
field estimates are thus heavily under-estimated (22.6 % 
of the average AGB field estimates) when using the train-
ing set of professional team measurements as training 
set, and overestimated in the opposite case.

It is plausible that the lack of fit of model predictions 
between different training sets in Chitwan is due to dif-
ferent forest populations used in their sampling. The 
samples generated separately for each population are not 
necessarily probabilistic samples on the intersection of 
the populations, i.e. on closed canopy community forests 
and bias may ensue. However, the prediction analysis of 
the various models do not support such an interpreta-
tion. In both Gorkha and Chitwan model fit is similar, 
acceptable in Gorkha and very poor in Chitwan, with all 
combinations of teaching set and validation set, whether 
these are cross-validated or self-validated. It seems there-
fore that the reason to the lack-of-fit in Chitwan is caused 
by some other effect and not inappropriate sampling.

Model-based prediction of biomass uses field plots for 
model calibration but they can also be used for model 
validation. When plot collection is conducted by ran-
domly sampling individual plots or plot clusters, such 
field campaigns can also be used to test model-based pre-
dictions for possible lack of fit.

In the current tests between 50 and 200 plots were 
measured for two areas of roughly 10,000 hectares each. 
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In heterogeneous forests it is plausible that not every 
forest type gets an adequate statistical coverage with 
such a sample. However, even this sampling density far 
exceeds the cost per area of any foreseeable field sample 
for nationwide estimates, and is much higher than com-
mon sampling densities in national forest inventories. We 
therefore have to try and use the randomness of sampling 
as a guarantee against bias at least over sufficiently large 
forest areas. Once lack of bias has been attained for a 
model-based estimation method, it becomes much more 
feasible to provide even high-resolution biomass updates 
using remote sensing data alone.

Conclusions
The lessons from this study are positive towards using 
participatory field measurements. The analyses above 
show that the LiDAR-data based models calibrated with 
in situ field estimates conducted by professional foresters 
or by trained community forest members that use differ-
ent field sample selection methods, different field sample 
plot sizes and different methods at the field work itself 
can be used together without degrading model prediction 
performance, if the correlation between LiDAR predictors 
and field estimates is good enough. This was evident in 
study site Gorkha. In Chitwan, the correlation was poor 
independent of the source of field measurements lead-
ing to imprecise predictions. The combined distributions 
of AGB field estimates with respect to LiDAR predictors 
were visually assessed to come from the same distribu-
tion in both study sites with both field data, Comm and 
Prof, see Fig. 3. Thus, there is no evidence that the error in 
Chitwan predictions is caused by the use of different sam-
ples, but from the lack of correlation between LiDAR pre-
dictors and AGB field estimates. Thus in both study sites, 
the prediction results were equally good or bad for both 
participatory and professional field plot measurements.

Previous studies, e.g. [9], concluded that it is possible 
to utilize data collected with participatory approaches for 
traditional forest inventories. The authors of [9] studied 
the feasibility of participatory REDD+ MRV processes in 
Tanzania. Their study compared the field estimates from 
the community forest user groups and professional teams 
and showed that the mean of AGB field estimates differed 
by no more than 7 % and mostly by 5 %. The variance was 
higher in the community measurements, therefore indi-
cating that even though the accuracy was as good as pro-
fessional measurements the precision was weaker.

These types of participatory inventories are limited 
in the geographic representativeness [10], especially 
when the aim is the estimation of carbon resources for 
the remuneration of local communities, since the Com-
munity Forests are relatively small compared to the land-
scape scale.

The present study is the first attempt of its kind to uti-
lize field data collected by community people in LiDAR-
based biomass inventories within the REDD+ context. 
The implementation of participatory methods for the 
monitoring  & measuring, reporting and verification 
(M&MRV) of forest carbon credits with high accuracy 
and resolution is a fundamental step for the implementa-
tion of REDD+ projects in community forestry level.

The results of this study support the conclusions of a side 
event on evolving requirements and solutions for REDD+ 
monitoring, with community focus, at the UN climate 
change conference in Warsaw in 2013 (COP19) [11]. The 
side event concluded with the agreement that community 
monitored data can be scientifically accurate and support 
also new technology, such as LiDAR. But concerns were 
raised on whether community monitoring of carbon per-
formance can form the basis for broader financial rewards 
for REDD+ and whether the data can be integrated into a 
broader national forest monitoring systems.

This study agrees with the study by [12]. They reported 
that the overall aboveground biomass estimated by com-
munity members differed only slightly from the estimates 
by the professional foresters. The results of this study 
therefore show that it is possible to use calibration plots 
measured by community people in model-based predic-
tions of above-ground biomass. They also show that a 
model-based analysis can be used to validate the accu-
racy of field plots by calculating predictions with a model 
based on different subsets of the plots. If the model pre-
dictions thus obtained are compatible and consistent, the 
field estimates can be regarded as reliable. This approach 
gives ownership of verified data to different stakeholders 
which is key to implementing performance based financ-
ing mechanism.

The approach described here will hopefully be 
helpful for unbiased monitoring, reporting, and veri-
fication under a result-based payment mechanism 
in which plot data collected by local communities 
are integrated with advanced remote sensing-based 
measurements.

Methods
Study area
The study area consists of two separate sites, Kayarkhola 
watershed in Chitwan (labeled as Ch) and Ludikhola 
watershed in Gorkha (Go) located in Nepal, see Fig. 1 for 
the site locations. The sites are located quite near each 
other, the distance from northernmost part of Chitwan 
area is about 20 km to the southernmost part of Gorkha 
area. The study area in Chitwan is about 12.2 km from 
west to east, 8.0 km from south to north. The distances in 
Gorkha are about 10.6 km from east to west, 6.5 km from 
south to north.
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The Kayarkhola watershed is located in Chitwan dis-
trict, which is a part of the Central Development Region 
of Nepal. Its total area is 8,002 hectares (ha) and it con-
sists of tropical to sub-tropical forests, covering an altitu-
dinal range of 245–1944 m [5] with 16 Community Forest 
User Groups (CFUGs) managing this forest. The water-
shed consists of three different types of forest namely Sal 
forest, mixed hardwood forest and Riverine forest [13]. 
The watershed is inhabited by socially and ethnically 
diverse forest-dependent indigenous communities such 
as the Chepang and Tamang [14]. These ethnic groups 
are some of the most marginalized ethnic groups in the 
country. Chepang and Tamang communities practice 
shifting cultivation which puts severe pressure on forest 
resources. The REDD+ pilot project implemented in the 
area plays a major role to address the issues of forest deg-
radation and deforestation by promoting sustainable for-
est management practices and linking it with the REDD+ 
incentive mechanism [13].

The Ludikhola watershed in Gorkha district is located 
in the southern part of Gorkha. The watershed is located 
in the Hill region characterized by sub-tropical broad 
leaved forests, ranging from 318 to 1714 m above sea 
level. The total area of the watershed is 5750 ha, out of 
which 4869 ha is forest area, 632 ha is agricultural land 
and the rest is barren, grassland and natural water bod-
ies. There are 31 CFUGs managing an area of 1888 ha of 
forests as Community Forests (CFs). The forest in Gorkha 
represents sub-tropical forests. The watershed was heav-
ily deforested in the past and this has been controlled 
through sustainable community forest management and 
conservation through REDD+.

Dominant forest types in the study area are hill sal 
(Shorea robusta) forest, and Schima-Castanopsis forest. 
Even though Shorea robusta mixed subtropical hill decid-
uous forest forms the major forest type in Kayarkhola 
(Chitwan) and Ludikhola (Gorkha), associated species 
varies between these two watersheds. Lagerestroemia 
parviflora, Mallatus phillipinensi and Terminelia tomen-
tosa are dominant associates in Kayarkhola (Chitwan) 
whereas Schima wallichii and Castanopsis indica are the 
most common associates in Ludikhola (Gorkha). Accord-
ing to broader climatalogical categorization of forests, 
forests in Kayarkhola fall under tropical broadleaved 
forests and in Ludikhola the forests are of sub-tropical 
broadleaved forest mostly, with Shorea robusta and 
Schima wallichi (sal and chilaune) as principal dominant 
species.

LiDAR data
Airborne discrete-return LiDAR data was acquired in 
February/March 2011 from the two watersheds. The 
two watersheds were scanned in full coverage from 2200 

m average height above ground using a local helicopter 
equipped with a Leica ALS50-II lidar-scanner device. The 
helicopter flight path was east-west strips at 1 km dis-
tance. The scanning parameters are presented in Table 3. 
The collected LiDAR data were evaluated after each 
flight, and supporting scans were conducted if data gaps 
or other problems occurred.

Raw LiDAR data were classified by the vendor into 
three categories: ground, vegetation and error returns. 
Further pre-processing included calculation of a digital 
terrain model (DTM) from the ground returns, removal 
of overlaps from the raw data, and conversion of height 
coordinates (zvalues) of the vegetation returns from 
absolute elevation into distance-to-ground using the 
DTM [15]. Overlap removal is a procedure to ensure uni-
form density of points for estimation by the area-based 
approach (ABA). ABA methods use quantized vertical 
histograms as the regression variables and it is seen as 
desirable that their sampling noise, i.e. density of LiDAR 
points per square meter, is uniformly distributed. From 
the pre-processed LiDAR data, several LiDAR features 
were estimated in order to serve as the LiDAR-predictors 
in the AGB prediction model. The features have been 
taken from [16] and are an extended and modified ver-
sion of those published by [17]. They include: (1) differ-
ent height percentiles for the first-pulse and last-pulse 
returns, (2) mean height of first-pulse returns above 5 
m (high-vegetation returns), (3) standard deviation for 
first-pulse returns, (4) ratio between first-pulse returns 
from below 1 m and all first-pulse returns, and (5) ratio 
between last-pulse returns from below 1 m and all last-
pulse returns. These features were estimated from LiDAR 
points within the plot footprints described below.

Field samples
Field sample plots were selected with two different meth-
ods, depending on the inventory team. The professional 

Table 3  Specifications for the LiDAR scanning data

Parameter Value

Average flying altitude above ground level 2200 m

Flying speed 80 knots

Sensor pulse rate 52.9 khz

Sensor scan speed 20.4 lines per second

Nominal outgoing pulse density at ground 
level

0.8 points per square meter

Scanning field of view (FOW) half angle 20°

Swath width at ground level 1601.47 m

Point spacing on the ground (across-track / 
along-track)

max. 1.88/2.02 m

Geometric accuracy (horizontal and verti‑
cal)

max. 1 m
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forest measurement teams and forest measurement 
teams coming from the local communities collected the 
field data during the year 2011. The selection criteria for 
the field plots were different among the two groups of 
forest measurement teams.

Field plot center coordinates were recorded using Dif-
ferential GPS (DGPS) with ProMark 3 and MobileMap-
per CX devices, and corrected in post-processing mode 
(GNSS Solutions software and MobileMapper Office 
software). Plots were located with a family of GPS devices 
where one device is left stationary for all day and it pro-
vides differential correction to all other GPS devices used 
in positioning the plots within a cluster of plots. Subse-
quent off-line DGPS post-processing was also used and 
plot geo-location error was estimated to be less than 1 m.

The professionally collected plots were collected as a 
part of a much larger campaign addressing the REDD+ 
program in Nepal. This larger program requires sampling 
from a national, officially accepted forest mask. Since that 
nationally accepted forest mask does not admit auxiliary 
information, such as vegetation index, elevation or aspect, 
clustered random sampling with uniform probability on 
the area of interest covered with LiDAR was used.

Sampling design and field plot design used by community 
teams
A stratification was done where forests with more than 
70 % of canopy cover were considered as dense strata (i.e. 
closed canopy) and less than 70 % as sparse strata (i.e. 
open canopy). In a post-processing step the classification 
between open and closed canopy was revisited based on 
LiDAR pulse density so as to obtain a uniform classifica-
tion of closed canopy for both sets of field plots. Plots 
deemed not to fall on closed canopy forest were elimi-
nated from the sample by a 70 % canopy cover criterion. 
The 70 % canopy cover was used as a surrogate variable 
for selecting as similar a sample of community plots as 
possible to the professional plot exclusion policy. This 70 
% canopy cover was computed as the proportion of veg-
etation points of all LiDAR points. Since plot sampling 
was clustered or simple random sampling for profes-
sional and community plots, respectively, it was assumed 
that the plots satisfying the canopy cover criterion reflect 
different AGB classes in their respective statistical pro-
portions and the estimates are therefore unbiased.

Forest stratification was carried out using high resolu-
tion remote sensing imagery (GeoEye image) in ERDAS 
and ArcGIS software. The random permanent plots that 
were established during baseline survey were measured 
for the purpose of monitoring. A total of 365 permanent 
plots were measured in the field. There were 298 plots 
in closed canopy forests and 67 plots in open canopy 
forests.

The size of the plot was fixed to a circle of 8.92 m 
radius. A sub-plot of 5.64 m radius was established for 
saplings and a sub-plot with 1 m radius was established 
for counting regeneration.

Sampling design and field plot design used by professional 
teams
Before the field campaign, the location of sample plots 
was designed using a systematic clustered random sam-
pling method. Each cluster contained eight sample plots. 
Within the clusters, the sample plots were aligned in two 
parallel columns in North-South direction, with four 
plots per column. The distance between plots was 300 m, 
both between columns and rows. The original sampling 
design generated 16 clusters for the Kayarkhola water-
shed with a total number of 112 plots while it included 
15 clusters for a total of 115 plots for the Ludikhola 
watershed. The actual number of plots available for the 
purpose of the study is less than that because some plots 
were either placed outside the area of study or in non for-
ested areas (water, agricultural and bare soil areas). The 
total number of plots available for the study was therefore 
57 for Kayarkhola and 92 for Ludikhola. The plots were of 
fixed circular shape with a 12.62 m radius, equivalent to 
an area of 500 m2.

The field data were collected in April/May 2011. All the 
sample plots that were located in forest with at least 10 % 
canopy cover were measured in the field. The measure-
ments at tree-level included all living trees and shrubs 
above 5 cm diameter within the plot area.

Above ground biomass measurement estimates
Within each plot, individual tree diameter at breast 
height measurements for both live and dead trees were 
taken and used in allometric equations given in [18] to 
estimate above ground biomass, AGB (stem, branch and 
foliage biomass). The individual tree AGB field estimates 
were totaled for each subplot and converted to AGB Mg/
ha.

Large AGB field estimate values (over 1500 Mg/ha) are 
assumed to be outliers, caused by e.g., plot-level AGB 
estimation errors or measurement errors. At plot level, 
with relatively small plots, it sometimes occurs that one 
or a few very thick trees cause the polynomial formula 
for plot level volume computation to become unstable 
because of extrapolation. This extrapolation error may 
cause the volume of a single exceptional tree to be esti-
mated so high that a timber volume of more than 2000 
m3 per hectare is attained, which is not realistic. There is 
no adequate statistical data available to quantify this phe-
nomenon and revisiting the plots for validation is not fea-
sible either. We therefore resorted to manual removal of 
probable outliers that are detected as statistical outliers 
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of AGB field estimate distribution and also by visual 
interpretation from LiDAR predictor—AGB field esti-
mate scatterograms.

In field measurements of the local teams, there were 
two plots in which the estimated AGB was very high, 
2202.6 Mg/ha and 3257.6 Mg/ha, respectively, and could 
be assumed as outliers. Visual assessment of the LiDAR 
predictor—AGB field estimate distribution supported 
this decision. Thus these two plots were discarded as out-
liers. Otherwise, the estimated AGB values of the plots 
are treated as the ground truth. After deletion of outliers, 
a total of 372 field plots measured by local forest meas-
urement teams (182 in the study site Chitwan, 190 in the 
study site Gorkha), and a total of 149 field plots by the 
professional measurement teams (57 in Chitwan, 92 in 
Gorkha) were available for this analysis.

Figure 8 shows the variability of AGB field estimates in 
each dataset without outliers. Especially data collected by 
the local forest inventory teams in the study site Chitwan 
(CommCh) contain a significantly larger range of values 
than the other subsets. Also, the averages of the ABG 
field estimates in the field plots measured by local meas-
urement teams were larger than those estimates by the 
professional inventory teams in both study sites, Gorkha 
and Chitwan.

Differences between field estimates due to different 
sampling designs
Different sampling designs affect the distribution of AGB 
field estimates due to different characteristics of the for-
est in which the sample plots are located. In particular, 
the ownership of the forest affects the distribution aver-
age and median values, see Table 4 and Fig. 2. The sample 
collected by local community teams contain fewer plots 
from privately owned forests compared to samples col-
lected by professional teams. After discarding those plots 
from the sample of local community teams, i.e., consid-
ering only plots within community owned forests, the 

average and median values of AGB are larger compared 
to AGB values obtained by considering all the plots in the 
professional teams’ sample. This effect does not happen 
in the sample of local community teams. Also, in the case 
where only plots within closed canopy forests are consid-
ered, the average AGB values are slightly larger than in 
the case where all the measured plots are included.

When only the plots in dense community owned for-
ests are considered, the average AGB values obtained are 
the largest. The sizes of these subsets are relatively small 
(only 26–41 field plots). This small sample size may cause 
problems in the model-based prediction of AGB.

Validation procedure
In this study, a method based on a linear model to pre-
dict the AGB values, namely a Bayesian linear model with 
orthogonal predictors resulting from truncated singular 
value decomposition is used [19]. This model is designed 
to give accurate and precise predictions when using a 
small training set size compared to the number of pos-
sibly correlated predictors. It utilizes the singular value 
decomposition of the normalized predictors, and allows 
bigger deviation from zero to the regression parameters 
of the orthonormalized predictors which are known to 
explain the original predictor variability most, i.e., have 
biggest singular values. With this method, the effective 
number of predictors is cut down according to the given 
data and predictor explanation ratio, and thus it performs 
better especially with small training sets.

The characteristics and distributions of the AGB field 
estimates vary among the subsets, e.g., subset CommCh 
contains data with highest values of AGB, subset ProfGo 
the lowest values. Variation can be seen also in the 
LiDAR predictor values among different subsets. If the 
data can be considered as samples from the same distri-
bution, i.e., there are no significant differences in the for-
est characteristics nor in the field sample measurement 
routines, a common model based on all these data should 
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Fig. 8  Boxplots of the AGB field estimates
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perform well. That is, the prediction model where model 
parameters are estimated with all the data (in this study 
Comm + Prof ), or with some subset of data (Comm or 
Prof ), should give equally accurate estimates, both in the 
data belonging to the teaching set subset, or to the other 
subsets [20]. Thus, to validate whether the data come 
from the same distribution and if data from one subset 
can be used to predict the AGB field estimates of another, 
cross-validation procedure is used. Each subset (Comm 
and Prof ) at time serve as the validation set and the pre-
dictions estimated with different subsets (Comm, Prof 
and Comm + Prof ) are validated.

To verify the prediction performance of different data 
validation subset of size Nv on different models, root 
mean square error,

mean difference,

relative RMSE (RMSE% = RMSE× 100% /yv) and 
relative mean difference (D% = D× 100% /yv) are 
used. Here ỹv,i is the the predicted AGB value for plot 
i, yv,i is the corresponding field estimate (“truth”), and 
yv =

∑Nv
i=1

yv,i/Nv.
The error statistics are calculated using both leave-one-

out cross-validation (LOOCV) procedure and straight 
cross-validation, depending on the case. In a case, where 
the training set contains the same plots as the validation 
set, for example in the full dataset case (Comm + Prof ) 

(1)RMSE =

√

∑Nv
i=1

(

ỹv,i − yv,i
)2

Nv
,

(2)D =

∑Nv
i=1

(

ỹv,i − yv,i
)

Nv
,

and self-validation cases (training and validation sets are 
the same), LOOCV is used. In LOOCV, one plot of the 
training set, i, at a time is used as the validation plot, and 
the rest of the training set is used to estimate the model 
parameters which are then used to predict the validation 
plot AGB. With the predicted values ỹv,i, i = 1, 2, . . . ,Nv 
the error statistics are calculated using formulas  (1) 
and (2). In case where the AGB field estimates of one sub-
set are predicted using a model calibrated with another 
subset (e.g. validation set Comm plots are predicted 
using training set Prof ), the calibrated model is used as 
such to predict all the values of the other subset and the 
error statistics are calculated in a straightforward manner 
using the given formulas.
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