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Abstract

Background: To implement the REDD+ mechanism (Reducing Emissions for Deforestation and Forest Degradation,
countries need to prioritize areas to combat future deforestation CO2 emissions, identify the drivers of deforestation
around which to develop mitigation actions, and quantify and value carbon for financial mechanisms. Each comes
with its own methodological challenges, and existing approaches and tools to do so can be costly to implement or
require considerable technical knowledge and skill. Here, we present an approach utilizing a machine learning
technique known as Maximum Entropy Modeling (Maxent) to identify areas at high deforestation risk in the study
area in Madre de Dios, Peru under a business-as-usual scenario in which historic deforestation rates continue. We
link deforestation risk area to carbon density values to estimate future carbon emissions. We quantified area
deforested and carbon emissions between 2000 and 2009 as the basis of the scenario.

Results: We observed over 80,000 ha of forest cover lost from 2000-2009 (0.21% annual loss), representing over 39
million Mg CO2. The rate increased rapidly following the enhancement of the Inter Oceanic Highway in 2005.
Accessibility and distance to previous deforestation were strong predictors of deforestation risk, while land use
designation was less important. The model performed consistently well (AUC > 0.9), significantly better than random
when we compared predicted deforestation risk to observed. If past deforestation rates continue, we estimate that
132,865 ha of forest could be lost by the year 2020, representing over 55 million Mg CO2.

Conclusions: Maxent provided a reliable method for identifying areas at high risk of deforestation and the major
explanatory variables that could draw attention for mitigation action planning under REDD+. The tool is accessible,
replicable and easy to use; all necessary for producing good risk estimates and adapt models after potential landscape
change. We propose this approach for developing countries planning to meet requirements under REDD+.
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Background
Deforestation and forest degradation are major sources of
greenhouse gas emissions [1]. To address this issue, the
16th and 19th Conference of the Parties (COP-16 & 19) to
the United Nations Framework Convention on Climate
Change (UNFCCC) agreed on a policy framework for the
implementation of the REDD+ mechanism (Reducing
Emissions from Deforestation and Forest Degradation)
[2,3]. Under this mechanism, countries need to be able to
identify areas at higher risk of future deforestation accord-
ing to patterns observed in historical deforestation so the
information may be used to target areas for mitigation
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action [3,4]. These areas of implementation are required
to prevent carbon emissions that are likely to occur in the
absence of REDD+ actions (ie, provide additional benefit
to carbon stocks compared with the status quo), and are
often defined in practice as high carbon density areas at
high risk of loss [4]. Countries also need to identify and
characterize the drivers of deforestation and conditions
most favorable for deforestation to occur around which to
develop mitigation actions, and quantify and value carbon
for financial mechanisms [3,5] (decision 15/19 UNFCCC).
Identification of areas at risk presents methodological

challenges. These include: measuring past rates of defor-
estation and degradation, circumstances and conditions
favoring deforestation and degradation in a given place, es-
timating current carbon stocks, and projecting how hu-
man activities and policies can evolve and affect rates of
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mmons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
inal work is properly cited.

mailto:Naikoa.Aguilar-Amuchastegui@wwfus.org
http://creativecommons.org/licenses/by/2.0


Aguilar-Amuchastegui et al. Carbon Balance and Management 2014, 9:10 Page 2 of 10
http://www.cbmjournal.com/content/9/1/10
change in the future [6,7]. Approaches and tools employed
in the past to assess areas of future deforestation risk have
been successful, but they can also be costly or require con-
siderable statistical knowledge or technical skills to imple-
ment [8-11]. It is, however, critical that approaches for
estimating deforestation risk be relatively easy to employ
and accessible so they can be run iteratively to produce a
good initial risk prediction and update the model as the
human landscape evolves, all within an adaptive manage-
ment framework [5,9].
Here, we propose and test a new approach for identify-

ing high deforestation risk areas, appropriate for national
and subnational scale REDD+ activity planning and inter-
vention. We test this approach in a subset of the Madre
de Dios region of Peru. In recent years, Madre de Dios has
undergone a sharp increase in deforestation rates after the
enhancement of the Inter Oceanic Highway and subse-
quent immigration of large numbers of people seeking
gold.
We employ a well-established tool and approach his-

torically used for species habitat modeling, the max-
imum entropy model available in Maxent, to assess the
relationship between deforestation and its assumed ex-
planatory variables [12] and to produce a map of defor-
estation habitat likelihood as a proxy to deforestation
risk under a business-as-usual (BAU) scenario. Model
performance was assessed using the Receiver Operating
Characteristic (ROC) Area Under the Curve (AUC)
score generated by Maxent [13]. The AUC Score repre-
sents how close the model is to achieve 100% discrimin-
ation between presence and absence estimation. The
values range from 0-1. If the score is no higher than 0.5
the model being assessed is no better than tossing a
coin. We next combined our estimates of deforestation
risk with information on past deforestation rates and
carbon stocks produced by [14] (which explains the shape
of the study area), to estimate potential CO2 (CO2) emis-
sions to the year 2020. The results are discussed according
to their implications for the region´s carbon policy devel-
opment as well as for better understanding the impact
that a successful REDD+ project could have in the region.

Results
Observed historical deforestation
Over 80,000 ha were lost between 2000 and 2009 inside
the study area (≈43,000 ha between 2000-2006 and ≈
37,000 ha between 2006-2009). This roughly corresponds
to 1.9% of the forest area that existed in the year 2000
(4,189,955 ha). Annual deforestation occurred at the rate
of r = 0.0021 or 0.21% between 2000-2009. Between 2000
and 2006 the deforestation gross rate was 0.17%, whereas
between 2006-2009 it almost doubled, reaching 0.30%
(Figure 1). The total estimated carbon emissions between
2000 and 2009 were 10,640,000 Mg C or 39,013,330 CO2.
Deforestation risk
When Maxent was used to evaluate the correlation
between observed deforestation and selected explanatory
variables for the years 2000-2006, accessibility and dis-
tance to previous deforestation emerged as the most im-
portant variables, positively correlating with deforestation
likelihood (Table 1). Land designation had a relatively
minor influence, with mining and public areas (without
clear tenure or administrative designation) demonstrating
a positive correlation with deforestation risk, and indigen-
ous reservations and protected areas demonstrating a
comparatively minor positive correlation (Additional file 1
and Additional file 2). When variables used to prepare the
accessibility index (Figure 2) (distance to roads, distance
to rivers, land cover, and slope) were used independently
in the model, the model performed similarly to when the
accessibility layer was used. Sensitivity analyses showed
that models produced similar results when land designa-
tion was run along with either the accessibility index or
distance to deforestation (as estimated with data we had
for the period 1990-2000). These results and visual inspec-
tion indicate that accessibility and previous deforestation
are highly correlated. But, because prior deforestation data
was not always available (e.g. due to cloud cover) or its
quality unknown (no assessment was carried out), we use
only the accessibility index and land designation for the
final predictive model, which had good predictive power
(AUC = 0.904 and SD= 0.008) (Table 1).
Visual inspection revealed considerable broad scale

agreement between deforestation risk and observed de-
forestation (Figure 3). When we compared the defor-
estation risk estimates generated in Maxent, based on
the 2000-2006 model, with deforestation observed be-
tween 2006-2009, we found patches > = 10 ha) that
were deforested between 2006-2009 had a significantly
higher (Mann-Whitney U test p-value <0.01) average
predicted risk of deforestation of 59% with standard
deviation (SD) = 29 than areas with no observed for-
estation from 2006-2009, had a predicted risk of defor-
estation of 10% (SD =19) (also see Figure 4). These
results were obtained even though the deforestation
risk estimates were generated based on 2000-2006 ex-
planatory variables, and do not include updated data
on new and/or enhanced roads from after 2005. We
expect using updated data for the prediction would
yieldbetter results. The model still performed signifi-
cantly well (AUC score >0.5) as exposed both by the
AUC scores as well as the risk estimates differences
observed for change and no-change locations.
When we generated a new deforestation risk model

based on 2006-2009 observed deforestation and environ-
mental layers, the model was once again deemed acceptable
(AUC= 0.912, SD = 0.012). As before, accessibility was the
variable with most explanatory power (93% contribution).
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Figure 1 Deforestation between 2000-2009. Deforestation has been observed mainly along the main road, in mining areas and close to
previously deforested areas.

Table 1 Percent contributions of environmental variables
to the Maxent model based on 2000-2006 data

Model Variables Average percent
contribution

Average
AUC score

Average
SD

1 Accessibility index 32 0.923 0.017

Distance to
previous
deforestation

65

Land designation 3

2 Accessibility Index 94 0.904 0.008

Land designation 6

3 Distance to
previous
deforestation

94 0.920 0.013

Land designation 6

4 Distance to roads 26 0.904 0.019

Distance to towns 47

Distance to rivers 16

Slope 1

Land designation 10

5 Accessibility index 95 0.912 0.009

Land designation 5

(AUC = Area under curve, SD = Standard deviation).
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We identified 132,865 ha where deforestation is most
likely to occur by 2020, if 2006-2009 observed rates are
maintained, representing 15,013,700 Mg of carbon or
55,050,236 Mg of CO2 (Figure 5). These represent general
priority areas for REDD+ mitigation, as well as broad esti-
mates of the amount of CO2 that could be saved as a re-
sult of successful REDD+ mitigation actions.

Discussion
Historic deforestation and carbon loss
Deforestation rates in Madre de Dios increased signifi-
cantly from the early to the late 2000’s. This increase coin-
cided with the enhancement of the Inter Oceanic Highway
beginning in 2005, the subsequent influx of gold miners1,
and the construction of a new secondary, non-planned
roads diverting from the highway. Similar to other studies,
more accessible areas exhibited higher rates of deforest-
ation [15,16]. Deforestation rate estimates are affected by a
number of technical factors in many cases not well docu-
mented, including inconsistent definitions of forest used in
the three classifications, details of how data were proc-
essed, expert knowledge, etc. Our approach of combining
all three sources of deforestation data in which we sought
full agreement on deforested areas aimed at only using in-
put deforestation presence points that were 100% valid.
However, the net result is likely an underestimation of
actual deforestation rates in the study area and should not
be used as a reference as it does not constitute an official
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source. Carbon emissions rates may also be underestimated
due to the conservative deforestation rates, the fact that the
above-ground biomass estimates we used [14] are low com-
pared with other estimates [17], and because we omit other
carbon pools such as below-ground biomass, soil, dead and
decaying matter, and harvested wood products. However,
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Figure 3 Soft estimation of future risk of deforestation based on obs
deforestation observed between 2006-2009. Predicted deforestation ris
deforestation. Nonforest in 2006 is shown in white. Observed deforestation
between predicted and observed locations of deforestation.
above-ground biomass is the most important carbon pool,
contributing to the bulk of emissions as a result of defor-
estation in areas like Madre de Dios [18]. Despite these
limitations, and the spatial patterns of deforestation risk
produced by this analysis are likely to be useful for mitiga-
tion actions targeting on the ground.
erved deforestation between 2000-2005 overlaid with actual
k was based on 2000-2005 explanatory variables and observed
points are based on 2006-2009 data [14]. Note broad scale agreement
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Figure 4 Comparison between area predicted and area observed deforested 2006-2009. Black bars indicate that large observed deforestation
patches are more likely to be correctly predicted as having a high probability of deforestation (p > 0.59). Observed areas of no forest cover
change are more likely to be correctly predicted as having a low probability of deforestation (p < 0.10).

Aguilar-Amuchastegui et al. Carbon Balance and Management 2014, 9:10 Page 5 of 10
http://www.cbmjournal.com/content/9/1/10
Predictors of deforestation and implications for REDD+
policy development
Accessibility is a key proxy of deforestation risk in Madre
de Dios. An increase in accessibility resulting from e.g.
newly constructed roads, can increase the deforestation
(because of actual cover loss to build the road) as well as
increase the risk of additional deforestation to occur from
e.g. agriculture and spontaneous settlements along the
road [15,16,19]. The first significant event in Madre de
Dios was the enhancement of the Inter Oceanic highway,
which enhanced access and spontaneous settlement by
gold miners as a result of an ongoing gold rush into the
Figure 5 Hard estimate of forest areas likely to be lost between 2009
period 2006-2009 (Hr = 0.3%) and data on accessibility and land use design
area. In August 2011, a new bridge, the final link in the
ocean to ocean connection provided by the Inter Oceanic
Highway, was inaugurated across the Madre de Dios River,
which should further improve accessibility to the region
and may lead to additional deforestation. Previous to that,
vehicles had to be ferried across the river. In both cases,
the historic deforestation and potential for future deforest-
ation is largely unplanned, emanating spontaneously from
improved access routes [5].
The fact that the human landscape here is rapidly evolv-

ing emphasizes the need for periodic updates to access and
deforestation data to subsequently update deforestation
and 2020. Prediction is based on the historical rate observed for the
ation for that same time period.
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risk maps and adapt mitigation strategies appropriately.
The results obtained in Madre de Dios provide support to
arguments of organizations such as the Verified Carbon
Standard (VCS) that advise using access data for estimating
unplanned deforestation risk, and designing mitigation
strategies around core access routes [5].
Land designation showed relatively low explanatory

power for deforestation risk when compared with accessi-
bility. While different land designations exhibited different
correlations with deforestation rates, we also noted land
designations with less restricted use or ease of transform-
ation of use (e.g. protected areas, conservation concessions
vs. public non-designated and mining concessions) also
appeared to exhibit higher associated risk ([20], Additional
file 1 and Additional file 2). It is unclear whether high risk
land zones are identified as such because they are close
to access routes, or are placed near access routes for
the intention of enabling resource extraction and non-
conservation uses. Vuohelainen et al. [21] suggest that con-
servation and ecotourism concessions are among the most
effective management types for combatting deforestation
in Madre de Dios, while indigenous territories are the least
effective. Conservation and ecotourism concessions both
allow research, education, ecotourism, and nontimber for-
est product collection with permit. They differ in that eco-
tourism concessions pay a fee to the government, but can
also exist for profit. Possible reasons for their success at
combatting deforestation are that they conduct monitoring
and surveillance activities while maintaining good relations
with the surrounding communities, all resulting in better
governance [21]. It follows from this that conservation and
ecotourism concessions (or similarly managed land use
zones as we lack data on ecotourism concessions in Madre
de Dios) in high or moderate risk areas may be effective at
preventing deforestation. However this type of results
needs to be carefully assessed as in many cases, such man-
agement schemes are implemented in areas of low accessi-
bility (see Figure 1 and Additional file 2), which according
to our results should imply a low deforestation risk to
begin with. However, implementation in high risk areas
could help tackle the intrinsic risk due to location.

The approach
The Maxent species habitat modeling algorithm was
useful for identifying forest areas most likely to be con-
verted and the most important factors associated with
deforestation. It enabled us to establish a clear link be-
tween observed deforestation rates, distribution of defor-
estation risk, and the amount of carbon at risk, while
achieving a reasonable level of confidence in our predic-
tion. This has clear implications for identifying areas
where REDD+ related mitigation actions should be im-
plemented. Other tools and approaches to facilitate
deforestation-likelihood modeling for REDD+ are either
available at-cost [22] or require a significant amount of
user expertise to implement [9,23,24]. The strength of this
approach is that the tool is freely available, relatively easy
to implement, can be applied in an iterative fashion to ac-
commodate better data and update after landscape changes
over time (such as new deforestation data deforestation or
new infrastructure development), requires presence-only
data on deforestation (as opposed to mandatory wall to
wall presence/absence data; which is particularly useful in
areas such as Madre de Dios that have persistent cloud
cover issues), and provides reasonably accurate predictions
as required under guidelines such as the VCS (2012).
We note a few limitations and assumptions that are

consistent with other modeling approaches of this type.
Predictive accuracy of the model is dependent on the
availability of updated data on roads and other factors
related to deforestation, as well as the accuracy of his-
toric land cover datasets or of input data. It follows that
accurate models require periodic data updates to ac-
count for new infrastructure changes in land tenure and
management and land use developments in particular, as
well as for recalibration [5]. Even with the most updated
data, the approach is best suited to situations in which
future patterns and rates of change do not vary remark-
ably from past trends. The approach also copes better
with explanatory variables of a spatial and local nature
(proximate drivers) than policy and socioeconomic fac-
tors affecting deforestation agents decision making (ul-
timate drivers) [19,25]. For example, the model can
better predict change in response to a new infrastructure
development than a change in government policy that
would affect incentives for people to immigrate to the
region. We believe our approach as other similar ones,
performs well capturing general patterns deforestation
risk, and should not be used to assess risk at the pixel
level [26]. Finally, we assumed here that all human
causes of deforestation, whether for cropland, develop-
ment, mining, timber, are a function of the same ex-
planatory variables. The model may perform even better
if these were broken out as separate models. It is, how-
ever, evident from this analysis that all of these factors
are predicted quite well on average using a single statis-
tical relationship.

Conclusions
We present a simple and practical approach for identifying
areas of high deforestation risk that can be considered
“additional” areas for REDD+ mitigation actions, and esti-
mating potential forest area loss and carbon emissions
under a BAU scenario. The maximum entropy algorithm
in Maxent provided an easy to use, freely available, broadly
tested algorithm (for species distribution models). In this
setting, it provided meaningful assessment of variables re-
lated with deforestation risk and meaningful estimates of
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risk of deforestation. It needs to be indicated, that periodic
updating of model fit as per incorporation of new defor-
estation data and explanatory variables is an ideal exercise
as to continuously assess risk behavior as a result of miti-
gation action implementation as well as to have a constant
wach for risk of e.g. leakage. For these reasons, we propose
this as a useful and adaptable approach for nations to use
for targeting of planning operational strategies to reduce
emissions from deforestation and degradation. Our results
support guidelines to include accessibility variables when
assessing deforestation risk [5]. We note that rapid devel-
opments in accessibility in the study area over its 10-year
period also emphasize the need for monitoring, reporting,
and verification (MRV) schemes that include frequent up-
dates to data and risk projections to ensure that mitigation
strategies continue to be effective. Such schemes should
identify areas of leakage that might result from REDD+ ac-
tivities. Additional work is still needed, especially for esti-
mating potential emissions reductions under different
development scenarios based on newland designations,
opportunity costs, and crop land suitability.

Methods
To identify areas at high risk of deforestation and car-
bon loss, we undertook the following four steps: 1) used
past land cover data to calculate the historic deforest-
ation rate, 2) used deforestation occurrence data and
accessibility-related land cover and land tenure vari-
ables in Maxent to prepare a soft prediction, or con-
tinuous map, of future deforestation risk; 3) produced a
hard prediction of deforestation risk by calculating the
expected area to be deforested by the year 2020 (based
on past rates of change) and selecting the highest risk
pixels from the soft prediction map; and 4) linked areas of
high deforestation risk to a forest carbon density map [14]
to estimate potential carbon emissions. During this process,
we evaluated the accuracy of our modeled predictions by
comparing them to observed deforestation.
The study area encompasses 4.3 million ha in the State

of Madre de Dios in the Amazon basin of Peru. We se-
lected this area due to its relevance to REDD+ (large forest
carbon stocks at high risk of loss, with high biodiversity
and important social values), and for the availability of
data to complete the study.

Observed deforestation
Deforestation data
Deforestation data were obtained from three different
sources. In all cases, data were generated from Landsat
TM and ETM+ data acquired between 1999 and 2009.
Data sources included: 1) a classification produced by
the Carnegie Aerial Observatory (CAO) in collaboration
with the Peruvian Ministry of Environment (MINAM)
using the CLASlite spectral mixture algorithm tool and
automated classifier [14,27]; 2) a classification produced
using a combination of visual and automated classification
approaches produced by the Asociación para la Investiga-
ción y el Desarrollo Integral” (AIDER)2 (AIDER, Internal
Report, 2012); and 3) a classification produced by the
Madre de Dios REDD Consortium (MdDRC)3, whose data
were generated using CLASlite in combination with visual
interpretation, and with partial groundtruthing performed
by crews that regularly work in the area (MdDRC, unpub-
lished data, 2009). All processing approaches generated
slightly different outputs. This be can attributed to causes
ranging from the specifics of each processing approach to
the definition of forest that was used. Reported accuracies
for each land cover change map were above 90% [14]
(AIDER, internal report, 2012; MdDRC, personal commu-
nication, 2012). We decided that rather than choosing a
single method, to use only those locations for which defor-
estation was reported by all three approaches.
For practical purposes, deforestation data were ini-

tially divided into 3 periods: 1) 1999-2000 to study the
spatial autocorrelation of deforestation (influence of dis-
tance to previous deforestation in deforestation likelihood
modeling), 2) 2000-2006 for deforestation risk model fit-
ting, and 3) 2006-2009 for 2000-2006 based risk estimate
validation. Finally, deforestation data and explanatory vari-
able data from 2006 to 2009 were used to generate soft
and hard predictions of deforestation risk, and estimates
of potential carbon emissions and emissions reductions
under REDD+.

Deforestation rate
We estimated the deforestation rate following [28], using
the equation:

r ¼ 1
t2−t1

ln
A2
A1

ð1Þ

Where r is the deforestation rate in decimals, t2-t1 is
the difference between the years of the forest cover area
assessments (the assessment period), A1 is the forest
area at t1 and A2 is the corresponding area at t2.
We compared our results with those obtained using

FAO’s equation [29]. The estimates were very similar (dif-
ferences approximately 10−6) so we kept the rates estimated
with equation (1).

Deforestation risk model
Deforestation results from a set of spatially explicit human
behaviors or preferences that occur in response to both
local environmental conditions (biophysical and human-
made), in addition to larger scale conditions such as
market values for resources or government policy [19].
Patterns of deforestation are analogous to species geo-
graphic distributions. Species occupy habitat according
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to their innate preferences for particular habitat types
and the existing geography of environmental attributes.
Similarly, human-caused deforestation, occurring as a
result of the need for cropland, development, or re-
source extraction, is driven by suitability, access, and
other factors that are often geographic in nature. For
this reason, we tested the maximum entropy algorithm,
Maxent, which is one of the leading algorithms for spe-
cies habitat modeling [12,30-32], to map deforestation
likelihood. Maxent has also been used to map carbon
quartiles likelihood (e.g. [33]) and the probability of in-
vasive species infestation [34,35]. Here, we assumed
that future deforestation risk would occur according to
past patterns of change, and that the prevailing condi-
tions that facilitated or prevented deforestation would
not change significantly in the near future. Our model
captured deforestation risk [5] as it pertained to histor-
ical patterns of land cover change. We produced both
soft and hard deforestation risk estimates. The hard es-
timates were made up until the year 2020.

Deforestation occurrence
A random sample of 500 deforestation points observed
between 2000 and 2006 in all three deforestation data
sources were used as input presence data4 for model cali-
bration. Maxent performs well with at least 100 occur-
rence points when data have been collected without
sampling bias [31,36]. Since a random selection of defor-
ested points was made, the input data was deemed un-
biased. Random samples were selected using Hawth’s tools
extension for ArcGIS [37].

Explanatory variables
Explanatory variables selected for the analysis included:
distance to previous deforestation that occurred from
1999-2000, land use designation, roads, rivers, land cover
type and slope. As a comparison, we also combined roads,
rivers, land cover type, and slope into an accessibility
index that was calculated using the ArcView 3.0 Accessi-
bility tool [38]. The index calculates how surface type and
condition and distance to access networks affect the aver-
age speed one can move across the landscape. Average
speeds were estimated following [39] and the MdDRC
(Additional file 3). The Inter Oceanic Highway was im-
proved in 2005 from dirt to asphalt, which led to increased
travel speeds. For this reason, we created two accessibility
indexes, one for the 2000-2005 time period (for model fit-
ting, see Figure 2) and one for 2006-2009 (for model test-
ing and projecting future risk).
Land use designations included protected areas, indigen-

ous reservations, forestry concessions, Brazil nut conces-
sions, indigenous communities, ecotourism concessions,
and conservation concessions (Additional file 1). All ex-
planatory variables were projected to Universal Transverse
Mercator Zone 19 South to reduce distortion errors (see
[31]) and resampled to 1 ha cells. Economic and demo-
graphic data were not used as they were generally not read-
ily available and the quality of the available data was
difficult to assess.

Maxent model development and performance assessment
We developed a deforestation risk model using 2000-
2005 data, running several iterations with different sets
of variables to identify the best performing combination
of explanatory variables. The different sets of variables
tested are described in Table 1. Maxent was run with de-
fault settings, using 100 runs with random seeding [31].
We referred to area under curve (AUC) to assess model
performance, standard deviation to assess uncertainty,
and variable percent contribution for power. Sensitivity
tests included removing variables one by one to test the
model performance and sensitivity.
In order to assess how well the deforestation risk model

performed and the strength of explanatory variables, we
also compared areas of observed deforestation and no
change in forest cover from 2006-2009 with deforestation
risk estimates produced using 2000-2006 data for model
fit. Observed deforestation points were identified as the
centroid of deforested patches > = 10 ha that occurred be-
tween 2006 and 2009. Observed areas with no change in
forest cover were identified by randomly generating 500
points over the study area and selecting locations where
our deforestation layer indicated forest cover in 2006, and
no change from 2006-2009. We produced statistics on the
average and standard deviation of predicted deforestation
risk estimates for both observed deforestation and un-
changed forest cover from 2006-2009. We also produced a
histogram to compare observed and predicted deforest-
ation risk (Figure 4).

Deforestation risk and predicted carbon emissions to
2020
We modeled deforestation risk to 2020 based on 2006-
2009 explanatory variables and deforestation occurrence,
selecting only those variables identified as most import-
ant during model testing and development (described
above). We first produced a soft (continuous) prediction
of deforestation risk. To produce a hard prediction of
forest cover at high risk of loss between 2009 and 2020,
we combined the soft prediction with information on
rate and amount of predicted loss. We defined the BAU
future deforestation rate to be the same as 2006-2009
rates, assuming that the effects of the Inter Oceanic
Highway improvement would continue into the future.
Using Puyrevad’s deforestation rate equation [28], we
calculated the area of forest and forest loss by the year
2020, compared to the baseline year 2009. We produced
a map of the areas most likely to be deforested by 2020
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by selecting the highest p of deforestation values in the
Maxent output to where the total area selected matched
the area predicted lost, rounding the selection to the
nearest whole p value.
Finally, we calculated the amount of carbon and CO2

emissions by multiplying the area expected to be lost by
the median carbon density of forest (113 Mg/ha) [14].
CO2 emissions were further calculated using the conver-
sion factor -3.67 CO2/Mg C.

Endnotes
1The estimated number of miners increased from 90 to

20,000 in one part of the study area in 2 years (Govern-
ment of Madre de Dios, personal communication, 2012).

2AIDER generates accumulated deforestation data up-
dated on a yearly basis rather than forest/non-forest data

3MdDRC is an alliance of local and international NGOs
and academic institutions working together to support the
development of an MRV system for the State of Madre de
Dios in Peru. Founding members include WWF Peru,
Government of Madre de Dios (GOREMAD), Conserva-
tion International, AIDER, Asociación para la Conservación
de la Cuenca Amazónica (ACCA), Universidad Nacional
Amazónica de Madre de Dios (UNAMAD), Carnegie Insti-
tution for Science, among others.

4This restriction was applied due to the fact Maxent has
a limit of 1024 KB of memory to run and use of all occur-
rences made the software crash.
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Additional file 1: Land designation observed within the study area.

Additional file 2: Deforestation likelihood as it relates to land use
designation. Public areas are those without clear management designation.

Additional file 3: Access friction coefficients used to calibrate the
accessibility index [38] analysis.
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