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Abstract

Background: Forest Inventory and Analysis (FIA) data may be a valuable component of a LIDAR-based carbon
monitoring system, but integration of the two observation systems is not without challenges. To explore integration
methods, two wall-to-wall LIDAR-derived biomass maps were compared to FIA data at both the plot and county
levels in Anne Arundel and Howard Counties in Maryland. Allometric model-related errors were also considered.

Results: In areas of medium to dense biomass, the FIA data were valuable for evaluating map accuracy by
comparing plot biomass to pixel values. However, at plots that were defined as “nonforest”, FIA plots had limited
value because tree data was not collected even though trees may be present. When the FIA data were combined
with a previous inventory that included sampling of nonforest plots, 21 to 27% of the total biomass of all trees was
accounted for in nonforest conditions, resulting in a more accurate benchmark for comparing to total biomass
derived from the LIDAR maps. Allometric model error was relatively small, but there was as much as 31% difference
in mean biomass based on local diameter-based equations compared to regional volume-based equations, suggesting
that the choice of allometric model is important.

Conclusions: To be successfully integrated with LIDAR, FIA sampling would need to be enhanced to include
measurements of all trees in a landscape, not just those on land defined as “forest”. Improved GPS accuracy of
plot locations, intensifying data collection in small areas with few FIA plots, and other enhancements are also
recommended.
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Background
Accurate, high resolution Light Detection and Ranging
(LIDAR) biomass maps facilitate decision making to se-
quester C, for example, by identifying areas for protecting
existing C stocks or planning for additional C accumulation
in other areas. However, biomass maps modeled from
LIDAR returns have uncertainty that should be assessed
for the maps to be more useful. Forest inventories such
as the U.S. Forest Service Forest Inventory and Analysis
(FIA) program can be valuable for evaluating LIDAR-
based and other remotely sensed biomass maps. FIA
plots are systematically arranged to provide spatially
unbiased estimates of forest biomass over an area, follow
well-documented measurement protocols, and are quality
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controlled. Thus, FIA plots have been successfully used to
calibrate remote sensing-based models [1-3] and provide
independent estimates of biomass stocks [4,5], and bio-
mass change [6]. The FIA plot design has also been used
specifically in calibrating and validating LIDAR-derived
biomass maps [7,8] and in optimizing sampling strategies
to train LIDAR biomass models [9].
There are also challenges with using FIA data for biomass

map evaluation since the program was not specifically
designed for this purpose. First, FIA defines forest land
based on both tree stocking or land usea, and does not
usually sample areas that are considered to be “nonforest”
(e.g. pastures, roads, suburban areas, parks and rights-
of-way) even if trees are present [10]. In Maryland,
about 25% of the aboveground carbon was estimated to
be stored in “nonforest land” [11] and this discrepancy
alone could account for considerable disagreement between
FIA data and LIDAR mapped results. Another issue is
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uncertainty in the estimation of biomass from field
measurements, specifically because of allometric model
error and choice of allometric model to apply [12]. Finally,
the FIA plot design and geolocation errors of FIA plots
complicate comparisons with biomass map pixels.
Maryland is one of several U.S. states with statewide

LIDAR available, and since 2011 the use of LIDAR-derived
biomass maps has been explored for carbon monitoring
purposes [13]. Unlike many large-area remote sensing bio-
mass mapping efforts [2,3], FIA plots in Maryland were not
used for the development of the LIDAR biomass prediction
models in this study. Instead the FIA data in Maryland
was used as an independent comparison to LIDAR-based
biomass maps trained from a separate field inventory. In
the current analysis we report key results about compar-
ing FIA data with two high resolution (30-m) biomass
maps, one using random forest and one using Bayesian
spatial regression (see Methods) at both the plot and
county scales in a case study of the Anne Arundel and
Howard counties in Maryland (Figure 1). Although we
include standard comparison statistics (R2, RMSE, etc.),
the purpose was not to determine which biomass map
was “better” for the two counties. Rather, we investigated
issues with integrating FIA data with LIDAR-based maps
by analyzing the consequences of incomplete tree data
(i.e. no measurements of “nonforest” trees) and measure-
ment error (i.e. allometric model choice and allometric
Figure 1 Aboveground biomass map created with LIDAR using the Ra
Counties. Also shown are the FIA plots and additional FIA-like plots measu
model prediction error). Finally, we recommend ways that
the FIA protocol could be enhanced for integration
with LIDAR-based carbon monitoring, and suggest some
approaches to efficiently combine the two observation
systems.

Results
Allometric model and model choice errors
When simulated allometric model errors were propagated
to each plot, they were relatively small with an average
95% confidence interval of only 5 Mg/ha (11% of the total
biomass) for all the plots. One plot’s confidence interval
was 93% of its total biomass, though this plot also had low
biomass in absolute terms (22 Mg/ha). The mean biomass
calculated from the three different allometric model
choices was somewhat variable, although none of the
estimates was significantly different from the others
(P < 0.05). The highest estimate resulted from the Species
Specific approach (mean: 208 Mg/ha, std dev: 147 Mg/ha),
which was 31% higher than the CRM (mean: 159 Mg/ha,
std dev: 98 Mg/ha). The Jenkins equations also produced
estimates that were higher than the CRM, by 16% (mean:
184 Mg/ha, std dev: 119 Mg/ha). For the following com-
parisons to the LIDAR-modeled biomass map products,
the Jenkins estimate was used since the Jenkins equations
were applied to estimate biomass for the plot data used in
the training of the LIDAR-models.
ndom Forest Approach (RF) for Anne Arundel and Howard
red in 2011 used for map evaluations.
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Plot and pixel comparisons
Overall, the biomass estimates from the FIA +NFI and
FIA-like plots were moderately correlated with both
LIDAR maps. For the RF model, the R2 was 0.49 with a
slope of 0.94 (RMSE – 91.5 Mg/ha). For the BAY model,
the R2 was 0.52 with a slope of 1.34 (RMSE – 89.0 Mg/ha)
(Figure 2a,b). Both LIDAR maps predicted higher biomass
in areas where the plot biomass measured in the field was
very low or zero and yet also tended to predict lower
biomass for plots with very high biomass. For example,
disagreements were reflected in the comparisons of cu-
mulative distributions (Figure 2c). Half of the field
measured observations had biomass less than 1 Mg/ha,
whereas half of the predicted values at the same locations
were less than 68 and 81 Mg/ha for the RF and BAY
models, respectively. In contrast, the mean biomass of the
5 highest biomass plots was 434 Mg/ha, compared to 228
and 240 Mg/ha for the RF and BAY models, or about
half of the ground measurement. There was greater
disagreement between the distributions of the BAY
map (KS = 0.55) and the plot estimate than the RF map
(KS = 0.34).
When purely “nonforest” plots were removed, so that

only traditionally field-measured plots were included in
the regressions (n = 42), the agreement was poor. The
RF map R2 was 0.27 with a slope of 0.91 and the BAY
model R2 was 0.43 with a slope of 1.28. The BAY map
also included pixel-level 95% confidence intervals which
allowed for the comparison of 95% confidence intervals
(with propagated error) of individual plot measurements
(Figure 3). The mean confidence interval at the pixel
level for the LIDAR model was 246 Mg/ha and 84% of
the plots had a confidence interval that overlapped the
confidence intervals of the corresponding pixels.

Forest and nonforest county level estimates
County-level biomass estimated from inventory data was
higher in the FIA +NFI inventory than the FIA-only
inventory (Table 1a). In Anne Arundel biomass in “non-
forest” conditions accounted for 27%, or 1.42 Tg, of the
total. Similarly, “nonforest” biomass was 21%, or 1.35 Tg,
of the total in Howard County. The biomass in Howard
County was also higher than Anne Arundel for both es-
timates (Table 1a).
The mean and total biomass was also calculated from

pixel values at the plot locations for county level estimates
(Table 1a). In Anne Arundel County, the LIDAR-derived
value was 53 and 51% higher (about 3 Tg) than the FIA +
NFI estimate for the RF and BAY maps, respectively. In
contrast, for Howard County, the difference between the
LIDAR-derived valued and FIA +NFI estimate was small.
When all biomass map pixels were summed and com-

pared to total biomass estimated from field data, there
were even larger discrepancies in Anne Arundel County,
being well outside the 95% intervals of the FIA +NFI esti-
mate (Table 1b). The LIDAR maps were more than twice
as high in biomass, a difference of 6.95 and 5.99 Tg bio-
mass for the RF and BAY models, respectively. In contrast,
in Howard County all the LIDAR-derived county biomass
estimates were well within the FIA +NFI confidence inter-
val. Additionally, the summed pixel estimates were lower
than the FIA +NFI estimate for maps in Howard, 0.94
and 1.09 Tg for the RF and BAY maps, respectively.

Discussion
Anne Arundel and Howard county case study
When FIA data were combined with a “nonforest” inven-
tory, the plot data proved to be valuable for evaluation of
LIDAR biomass maps in Anne Arundel and Howard
Counties. Despite the low R2’s of both models, the com-
parisons still revealed that the RF model seemed to be less
biased with a slope closer to 1, but tended to more
severely underestimate plots with very high biomass
(the reason for the lower R2) compared to the BAY
model. Plots traditionally measured by the FIA program
(i.e. no “nonforest” inventory enhancement) were also
useful to evaluate LIDAR maps at the plot scale, but
only for densely forested plots not confounded by plots
that had both “forest and “nonforest” conditions. This
comparison was aided by including the 95% confidence
intervals of the LIDAR model for each pixel and the
propagated allometric model and sampling errors of the
plots (Figure 3).
There were significant discrepancies at the county

scale, indicating that the biomass maps are predicting
low biomass in areas where little or no biomass is mea-
sured. The consequence of predicting low biomass instead
of none for landcovers with no trees results in compara-
tively larger total biomass for the counties when the pixels
are summed because these areas are proportionately very
large. It is unclear why the difference in Anne Arundel
was so much greater than in Howard, though we note the
higher proportion of agricultural landcover in Howard
(30% v. 12%, determined from NLCD 2006 data). It is pos-
sible that the LIDAR biomass maps at 30-m resolution
may be more successful at delineating tree v. tree-less
areas in counties with higher agricultural landcover like
Howard, as opposed Anne Arundel that perhaps has land-
cover with more fragmented tree canopies.
Using the same allometric model for both inventory

and map estimates (the Jenkins equations [14]) resulted
in relatively small errors compared to the choice of the
LIDAR biomass model in this study. At the same time,
the different allometric models led to significantly variable
estimates. The CRM method has been shown to produce
substantially lower biomass estimates in a number of stud-
ies due to the incorporation of tree height. For example, the
16% difference between the Jenkins and CRM methods
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Figure 2 Comparisons of biomass map pixels and field plots
for the (a) RF and (b) BAY biomass maps. (c) Comparisons of the
cumulative distribution functions and respective Kolmogorov-Smirnov
statistics (KS stat.) for both maps. High KS stat indicates a higher
maximum difference between the distributions.

Johnson et al. Carbon Balance and Management 2014, 9:3 Page 4 of 11
http://www.cbmjournal.com/content/9/1/3
found in this study was the same as that found on average
nationally [15], but lower than the 8% difference found for
Northeastern forests [16]. [12] suggested that model selec-
tion error introduced 20 to 40% to live biomass uncertainty,
a range that captures the 31% difference in mean biomass
between the CRM and Species Specific estimates of this
study. However, these differences are less important for
the purpose of map evaluation here, given that the maps
used the same allometric models as the inventory for their
training data.
In terms of whether the biomass maps are “accurate

enough” to be recommended for carbon management
purposes in these counties, it appears that one can obtain
reasonable biomass values in many, but not all, areas at
the plot scale (roughly 1.5 acres). Furthermore, as
mentioned above, county scale estimates were only useful
for Howard County, but not Anne Arundel, where more
work is needed. The current evaluations have already been
considered in the process of designing more effective field
collection strategies and modeling approaches for devel-
oping improved biomass maps in Maryland counties. For
example, newer random forest models exclude variable ra-
dius plot locations that had biomass detected by LIDAR
over a 30-m area (the pixel size) but that had no trees
measured in them. This can occur when trees are at the
edge of a pixel, too far away to be included in the variable
radius plot measurement, but still being observed by the
LIDAR. When these locations were excluded the resulting
model had better agreement with the FIA data because
there were fewer instances where biomass was predicted
in the FIA plot but there was no biomass measured
(R2 = 0.59, RMSE = 82.4 Mg/ha, slope = 1.1; compare
with Figure 2a). Another issue contributing to the poor
agreement was probably our combination of a single
plot design of the NFI and the regular FIA plot design,
resulting in inconsistent plot-pixel comparisons through-
out the sample. As “nonforest” biomass is important to
consider in Maryland and elsewhere, plot designs and
overall strategies for addressing the “nonforest” biomass
gap, are discussed below.

Conclusions
Enhancing the FIA protocol by sampling trees on
nonforest land
It is critical that field biomass data be both accurate and
complete for evaluating biomass maps in order to improve
the maps. Despite the uncertainty estimates and inconsist-
encies revealed by this case study, there are good reasons
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Figure 3 Comparison of field measured biomass (FIA and FIA-like) and mapped biomass at the plot level, including only plots with
“forest” conditions according to the FIA definition (i.e. purely “nonforest” plots were excluded). The vertical bars are the 95% confidence
interval of the mean of the field biomass values after propagating allometric and sampling errors. The horizontal bars are the mean 95%
confidence levels of the LIDAR biomass map pixels for the BAY model, sampled from the posterior predictive distribution that acknowledges
spatial dependence (see Methods).
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for integrating FIA data with LIDAR biomass maps in an
aboveground carbon monitoring system. A consistent
analysis would require an all-tree inventory enhancement
to the current FIA protocol. This enhancement greatly fa-
cilitates comparisons at both the plot and county scales,
especially in fragmented canopy landscapes that are com-
mon throughout the eastern United States. If both the
maps and FIA are composed of “wall-to-wall” biomass
estimates, then there is no need to distinguish “forest”
from “nonforest” areas for estimating total land biomass.
Table 1 County level comparisons of mean and total abovegr

Anne Arunde

Mean biomass

a. ESTMATES FROM SAMPLED DATA Mg/ha (95% CI)

FIA (2006-2010) 41.4 (18.0, 65.2)

FIA (2006-2010) + NFI (1999) 56.5 (30.5, 82.5)

LiDAR-RF sample 86.5 (62.3, 110.7)

LiDAR-BAY sample 85.2 (70.8, 99.6)

b. ESTIMATES BY SUMMING PIXELS

LiDAR-RF

LiDAR-BAY
The main barrier to enhancing FIA data collection to in-
clude “nonforest” trees is the additional cost. An all-tree
inventory would require field crews to sample trees in
“nonforest” areas that are currently monitored mostly with
aerial imagery. However, the cost may be lower than
expected because the pre-field work imagery analysis that
is already performed by FIA could screen out many plots
that have essentially no chance of having tree biomass
(e.g. plots located in agricultural fields). Furthermore,
FIA crews already visit many “mixed condition” plots that
ound biomass

l Howard

Total biomass Mean biomass Total biomass

Tg (95% CI) Mg/ha (95% CI) Tg (95% CI)

3.90 (1.66, 6.14) 74.9 (26.4, 123.5) 5.24 (1.85, 8.64)

5.32 (2.87, 7.76) 94.1 (41.1, 147.1) 6.59 (2.88, 10.29)

8.14 (5.87, 10.42) 93.5 (60.6, 126.5) 6.54 ( 4.24, 8.85)

8.02 (6.67, 9.38) 89.4 (74.4, 104.3) 6.25 (5.21, 7.30)

12.89 5.65

11.93 5.5
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have “nonforest” trees and so the extra time spent could
be minimal, especially if only a subset of typical tree mea-
surements are needed. The FIA program would also need
to consider availability of capacity to accommodate this
demand for more detailed information, but we note that
cost-sharing agreements with other entities to this end
have already occurred [17,18]. When a current all-tree
inventory is cost prohibitive, another approach is to use
previous all-tree inventories, recognizing limitations as
was done in this study. For example, urban tree inventor-
ies are already available in many areas [19].
When designing an all-tree inventory to integrate into

the FIA protocol, there are several alternatives to con-
sider, each with their own set of limitations. One option
is to measure the trees in all the “nonforest” conditions
within the actual FIA subplots, without modifying the
plot design [18]. The advantage to this approach is that
newly collected data from purely nonforest plots can be
easily combined with existing FIA plot data. Nonetheless,
a major disadvantage to this approach is that in residential
areas the four subplots will commonly cover multiple
properties with different owners. Obtaining permission to
visit all the subplots would therefore be more difficult and
increase the chances of denied access and potentially bias
the study. An alternative plot design like the one used to
collect the NFI dataset of this study [20] reduces this
impact on field time by sampling one larger plot instead
of four. However, this design makes the total area sampled
smaller and less compatible with existing FIA measure-
ments and for relating to map pixels. A compromise
between the two options is one that FIA is currently
implementing in urban forest inventories, where every
tree is measured in a single circular plot, located at the
center of current FIA plots, and has the same area as
four FIA subplots (670 m2) (James Westfall, personal
communication). An advantage to the large continuous
area is that it is much more useful for comparing to
map pixels, though the design does not strictly comple-
ment the original FIA design.

Additional enhancements and modifications
Geolocation error was not evaluated in this study but
also contributes to confounding plot and pixel compari-
sons, especially near forest and agricultural field interfaces.
For example, GPS error with the current units used by
FIA is between 1 and 13 meters in heavy canopy in
northeastern forests (Richard McCullough, personal
communication). Thus, another enhancement to the FIA
protocol would be to obtain more accurate coordinates.
Though survey-grade GPS units would be ideal, even sub-
meter accuracy obtained from relatively inexpensive units
would be a great improvement.
In some situations it may be useful to intensify the

sample size to obtain more information in areas where
biomass is highest or lowest relative to the average. From
our experience, it is more useful to locate the additional
plots in a manner similar to the FIA design, so that the
additional data are complementary for county level es-
timates [17]. Instead, we somewhat opportunistically
located supplemental FIA-like plots in pixels indicated
as forest by NLCD maps, though its stratification is not
fully compatible with FIA definitions of “forest” and
“nonforest”. The unintended result was that the additional
FIA-like plots were located in homogeneous areas that
were higher in biomass than the average FIA sample.
Thus, to obtain the most information from plot intensifi-
cation, a systematic design throughout the area of interest
should be maintained.
Another common issue is the disparity of collection

years of the different types of data. Though the error
resulting from the difference in years is probably small
compared to, for example, the LIDAR-biomass model
error, efforts should be made to harmonize the date of
LIDAR collection and the date of field data collection.
Practically speaking, in the current study this would
have been difficult since we were using data available to
us at the time, but this should be considered in planning
FIA-LIDAR data integration.
For carbon monitoring purposes, it is important to

consider the discrepancies in biomass estimates from
different allometric model choices [21]. The impact of
allometric model choice depends on the objective for
making the biomass estimate. If the estimate is used to
quantify absolute biomass stocks for comparison to other
counties and states, then the same allometric approach
should be used in all cases. When biomass maps are used
as tools for estimating biomass change in a single county,
the negative consequence of choosing allometric models
that are different than neighboring areas is less serious,
though model selection will still have an impact. There is
also unknown error when applying allometric equations
developed for forestland trees, to trees located in yards
and parking lots that may have different growth forms
[22]. Thus, it is difficult to recommend one approach,
but it is important to recognize that different allomet-
ric models can produce significantly different results,
and therefore it would be useful to report estimates
from more than one method or validate the selection
of an allometric model with some additional field mea-
surements of tree biomass.
Another way to improve the comparability of FIA and

LIDAR estimations is to design mapping approaches
that are more consistent with the ground data. For ex-
ample, being careful to mimic the distribution of field
measured biomass at point locations will result in a
greater chance that the total biomass predicted by maps
will have better agreement. Furthermore, since FIA has
committed to providing biomass estimates using the
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CRM allometric approach, training data for making
LIDAR relationships should also use this method. Add-
itionally, providing meaningful pixel level confidence
intervals (e.g. the BAY model of this study), are useful
for analyzing agreement. Finally, when an all tree forest
inventory is not practical, a serviceable but less ideal
alternative is to exclude residential areas from LIDAR
biomass maps so that they are more comparable with
FIA measurements.
Finally, to achieve a robust and spatially explicit car-

bon monitoring system, it is most ideal for comparison
purposes to have independently sampled model training
and model evaluation field datasets, as was done in this
study. Nevertheless, we think it is worthwhile to exam-
ine other approaches that could represent a fully inte-
grated biomass inventory system, including assessing
the uncertainties and costs. For example, it could be sig-
nificantly less costly to collect all the field data needed
for training and verification of biomass maps at the
same time, rather than supporting two independent
field efforts.

Methods
Study area and datasets
The study area includes the Anne Arundel and Howard
counties composed mostly of oak-hickory forest [23].
The counties are almost cleanly divided by two different
physiographic regions. Anne Arundel belongs to the
Coastal Plain Province principally containing sandy
soils at low elevation (100 ft). In contrast, Howard belongs
to the Piedmont Province containing loamy and clayey
soils at somewhat higher elevations (100–500 ft).
There were three field inventory datasets used to

evaluate LIDAR biomass maps. Two of the inventories
followed the conventional Forest Inventory and Analysis
(“FIA”) plot design, that is four clustered subplots, each
168 m2, and spaced 7-m apart [10] (Figure 4). FIA tree
level data for 64 plots within the Anne Arundel and
Howard counties were downloaded from the FIA Data-
Mart website for the 2006 to 2010 cycle period. There
were a total of 72 forest plot locations, but 8 of these
plots were not visited due to denied access. Of the 64
visited plots, only 9 were recorded to have purely “forest”
conditions; that is, some proportion of the sample-plot
area was determined to be “nonforest”. Therefore, to aug-
ment the dataset for plot-level comparisons in forested
areas, an additional 20 forest plots of the same dimensions
were measured in the two counties in 2011 (“FIA-like”)
(Figure 1). The FIA-like plot locations were placed
within forest landcover indicated by National Land
Cover Database 2006 (NLCD; [24]). Finally, we took
advantage of a previously collected dataset - a Nonforest
Inventory (“NFI”) collected by [20] in Maryland in 1999 at
FIA plots. An important nuance of the NFI dataset is that
only the center subplot was measured, sampling a larger
subplot area, but overall the sampled area per plot chan-
ged from 670 m2 to 400 m2. Due to the disparity in inven-
tory years between the NFI and FIA inventories, the
locations of each plot were checked with imagery one by
one for evidence of clearing or forest ingrowth, but none
was found. Despite the difference in inventory years, and
recognizing the potential errors of combining different
plot designs, for some analyses we used the NFI dataset to
fill the “nonforest” biomass data gap when trees were
present but not measured in the regular FIA data collec-
tion (“FIA +NFI”).

LIDAR-derived biomass maps
Leaf-off LIDAR data collected by the Maryland Department
of Natural Resources (DNR) over Anne Arundel and
Howard Counties in 2004 were used to derive biomass
maps for this study. LIDAR first and last returns were
interpolated and differenced to obtain a normalized dif-
ference surface model (nDSM) with a resolution of 2 m.
Next, a high resolution tree cover map was created by
segmenting the LIDAR data and NAIP imagery [25,26]
and further used to mask out everything but tree crowns
on the nDSM. The resulting canopy height model
(CHM) was used to calculate height percentiles, density
metrics, canopy cover and other LIDAR metrics describing
the vertical and spatial distribution of vegetation structure
within 30 m pixels [13].
Field biomass data for developing LIDAR biomass

models were collected in 300 new variable radius plots
in the two counties, independently of the FIA program.
Variable radius sampling is typically used to estimate
basal area of a forested tract by sampling trees with
probability proportional to tree basal area and is known
to be a quick and accurate method for estimating stand
basal area and volume [27].We collected tree measure-
ments over variable radius plots using a model-based
stratified sampling approach based on the NLCD land
cover class and LIDAR height class. Field based allo-
metric estimates of biomass, calculated using equations
from [14], were then related to LIDAR variables to
predict biomass using Bayesian model averaging and
Random Forests regression (Figure 1).

Random forest model
Random Forests, (RF) [28,29] is a machine learning algo-
rithm in which a large number of regression trees are fit
to a dataset (~500). Bootstrap samples are used from the
data to construct each tree and at each node, a random
subset of predictors are tested. Response values from all
trees are averaged to provide accurate predictions and
“out-of-bag” error estimates are calculated using 37% of
the data in each regression tree, thus avoiding over fitting
and reducing the need for cross validation. Predictions



Figure 4 An example of the size of FIA subplots overlaid onto imagery and a biomass map of 30-m pixel resolution.
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from RF regression can be used to model linear/
non-linear relationships using a large number of pre-
dictor variables. The RF model of this study, using
the 300 variable radius plots, had an R2 of 0.67 and
RMSE of 73.5 Mg/ha and, similar to findings in other
studies for mixed forests [7,30].

Bayesian spatial regression model
Given ground data locations and coinciding LIDAR height
metrics, we used a Bayesian spatial regression model
(BAY) to make pixel-level biomass predictions. Explora-
tory variogram analysis showed that a non-spatial LIDAR
height metric regression model did not adequately explain
the spatial dependence in biomass observations, i.e., there
was spatial autocorrelation among the model residuals.
The presence of spatial dependence among residuals
violates model assumptions which can lead to incorrect
parameter and prediction inference [31]. The spatial re-
gression model includes spatial random effects that esti-
mate, and accommodate, this residual structure. Here, the
random effects arise from a spatial Gaussian process with
a covariance matrix constructed using an exponential
spatial correlation function. In addition to the slope coeffi-
cients associated with the LIDAR metrics and an inter-
cept, this model estimates a spatial correlation function
decay and variance parameter, as well as the non-spatial
residual variance parameter. The analysis was conducted
in the spBayes R package using the spLM function [32].
This modeling framework uses a Markov chain Monte
Carlo approach to generate samples from parameters'
posterior distributions. Given these posterior samples,
composition sampling is used to sample from the pos-
terior predictive distribution of biomass at unobserved
locations (pixels) [33]. From these pixel-level posterior
distributions any error statistic can be created by simply
summarizing the sets of posterior samples. In the current
study, the 95% confidence levels were used to map pixel-
level uncertainty in Anne Arundel and Howard Counties.
Fitted values for the BAY model yield RMSE of 34.67 and
an R2 of 0.91. Note that these values are not strictly com-
parable to those of the RF model because they reflect the
highly flexible Gaussian process used to specify the BAY
model's random effects for accurate interpolation of the
observed data.

Analysis of measurement error
To investigate allometric errors, functions for standard
errors were derived by simulating a population of 10,000
data points around the regression lines of each species
group published by [14]. For each species group, popula-
tions were created until the R2 from the regression line
from the simulated points matched the R2 from the original
equation. Next, points equaling the number of observations
used in the original equations were randomly drawn from a
Weibull distribution and a new standard error function was
fit to the subset, where at least 100 subsets and associated
standard error functions were generated. Tests of this
method with actual destructive harvest data from Canada’s
Energy from the Forest (ENFOR) dataset [34] showed
consistent results and reflected increasing uncertainty in
biomass estimates of larger trees (Figure 5). The mean of
all the standard error functions for each species group was
then applied on a tree by tree basis using a Monte Carlo
simulation technique to calculate plot level 95% confi-
dence intervals of the plot mean (see [35] for further
details). Thus, the final plot level 95% confidence interval
depended on the mixture of species groups found on the
plot and their diameters.
For investigating differences in mean biomass for differ-

ent allometric approaches, three sets of equations relating
biomass to diameter at breast height (DBH) were applied.
One set of equations was derived using the Component
Ratio Method (CRM), the method used by the FIA pro-
gram to report biomass stocks. The CRM equations
calculate bole volume as a first step and so require
“bole height” (height of the stem to 4 in diameter) in



Figure 5 The comparison of raw destructive harvest data from the ENFOR dataset and simulated biomass results (top panel) and the
associated standard error function (bottom panel). This example is for the “mixed hardwood” species group from [10].
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addition to DBH measurements, and the relationships
are region-specific [36]. In contrast, equations applied
from [14] require only a DBH measurement, are gener-
alized for 10 species groups, and are not region-specific.
Finally, yet another set of local equations, not volume-
based, for species found in Maryland was used (“Species
Specific”) [37-39]. In the case that no specific equation
was available for a species in the Species Specific approach,
the general Jenkins equation was substituted.
For comparing FIA plot measurements to mapped bio-

mass, we chose to use the biomass equations from [14]
because they represented mid-level biomass values (of the
three equation types we tested) and because they were
also used in the separate inventory used for the LIDAR
biomass models. At the plot level, biomass map values
were extracted for the coordinates of each FIA subplot
from which an average of the four pixel values was cal-
culated and compared to the ground measurement
(Figure 4). The cumulative distribution functions and
Kolmogorov-Smirnov (KS) statistic were calculated and
compared for both the FIA observations and the biomass
map observations. The KS statistic a metric of the max-
imum distance between the field and mapped cumulative
distribution functions, where higher values reflect poorer
agreement [40]. At the county level, we used two com-
parison approaches with the FIA + NFI data. First, we
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calculated the mean biomass from the pixel values ex-
trapolated from the plot locations (in units of Mg/ha),
and then multiplied the mean by the area of the county
(ha) to get total biomass. This approach allowed us to
mimic the FIA sample design to investigate disagreement
at the plot locations. In the second approach, we calcu-
lated total biomass by simply summing the map pixels
and then multiplying by 0.09 to adjust for the 30-m and
1 ha difference. We did not include the “FIA-like” plots in
county level comparisons in order to maintain a system-
atic random sample. We also note, but do not consider in
this analysis, the discrepancy between the area sampled in
the field (670 m2) and the pixel area extracted for 4 sub-
plots (3600 m2) which leads to additional errors [40]. All
statistical analyses were performed using JMP [41].

Endnote
aLand at least 120 feet wide and 1 acre in size with at
least 10 percent cover (or equivalent stocking) by live
trees of any size, including land that formerly had such
tree cover and that will be naturally or artificially re-
generated. Tree-covered areas in agricultural production
settings, such as fruit orchards, or tree-covered areas in
urban settings, such as city parks, are not considered
forest land.
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