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Abstract

empirical data (e.g., annual forest inventory).

The U.S. has been providing national-scale estimates of forest carbon (C) stocks and stock change to meet United
Nations Framework Convention on Climate Change (UNFCCC) reporting requirements for years. Although these
currently are provided as national estimates by pool and year to meet greenhouse gas monitoring requirements,
there is growing need to disaggregate these estimates to finer scales to enable strategic forest management and
monitoring activities focused on various ecosystem services such as C storage enhancement. Through application of
a nearest-neighbor imputation approach, spatially extant estimates of forest C density were developed for the
conterminous U.S. using the US.'s annual forest inventory. Results suggest that an existing forest inventory plot
imputation approach can be readily modified to provide raster maps of C density across a range of pools (e.g., live
tree to soil organic carbon) and spatial scales (e.g., sub-county to biome). Comparisons among imputed maps
indicate strong regional differences across C pools. The C density of pools closely related to detrital input (e.g., dead
wood) is often highest in forests suffering from recent mortality events such as those in the northern Rocky
Mountains (e.g., beetle infestations). In contrast, live tree carbon density is often highest on the highest quality forest
sites such as those found in the Pacific Northwest. Validation results suggest strong agreement between the
estimates produced from the forest inventory plots and those from the imputed maps, particularly when the C pool
is closely associated with the imputation model (e.g., aboveground live biomass and live tree basal area), with
weaker agreement for detrital pools (e.g., standing dead trees). Forest inventory imputed plot maps provide an
efficient and flexible approach to monitoring diverse C pools at national (e.g.,, UNFCCC) and regional scales (e.g,,
Reducing Emissions from Deforestation and Forest Degradation projects) while allowing timely incorporation of
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Background

Forest ecosystems represent the largest terrestrial carbon
(C) sink on earth [1,2], such that the United Nations
Framework Convention on Climate Change [3] has recog-
nized their management as an effective strategy for offset-
ting greenhouse gas (GHG) emissions [4,5]. As part of the
Convention, the U.S. has been submitting national reports,
the National Greenhouse Gas Inventory (NGHGI), detail-
ing emissions and removals of GHGs [3] on an annual
basis for many years [6]. In addition to international
reporting requirements, GHG budgets are being developed
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at sub-national scales including states (e.g., California) and
ownerships (e.g, National Forest System climate change
scorecard). Forest C stocks in the U.S. are estimated using
data from the national forest inventory conducted by the
USDA Forest Service, Forest Inventory and Analysis (FIA)
program [7]. Broad forest ecosystem components (e.g.,
aboveground live biomass) have been delineated to
generalize C stocks to meet international reporting agree-
ments pursuant to refining understanding of global carbon
cycling [2,3]. Carbon estimates for the ecosystem compo-
nents of forest floor (inclusive of litter, fine woody debris,
and humic soil horizons), down dead wood, belowground
(BG) biomass, and soil organic matter are calculated by
FIA using models based on geographic area, forest type,
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and, in some cases, stand age [6,8]. Estimates of above-
ground (AG) standing live and dead tree C stocks are
based on biomass estimates obtained from inventory tree
data [6,9]. Although forest C stock estimates, such as those
from FIA, are readily available at national and regional
scales [6,7], there is increasing interest in disaggregating
these large-scale numerical estimates into maps of continu-
ous estimates to enable strategic forest management and
monitoring activities geared toward offsetting GHG emis-
sions [10] and advancing C dynamics research.

Secondary to the need for spatially continuous forest
C maps, numerous constituents (e.g., managers, policy
makers, and scientists, forest analysts) require an effi-
cient methodology for incorporating annual monitoring
information into C maps. Sophisticated approaches to
mapping forest C stocks may provide robust estimates
of stocks [11], but lack the flexibility to rapidly incorpor-
ate annual monitoring information. As numerous forest
C pools may change on annual time steps, especially in
response to stochastic disturbance events, temporal
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accuracy of C maps may often be of equal importance as
the need for spatial accuracy. Woodall et al. [12] found
that actual standing dead tree C stocks were often sig-
nificantly different than those modeled for the same in-
ventory plots. Despite the measurement/model error
associated with annual forest inventory programs, the
temporally dynamic nature of forest ecosystems (e.g.,
wildfires and wind events) necessitates the incorporation
of annual data into map products employed by scientists
and stakeholders alike.

Wilson et al. [13] developed a methodology (hereafter
referred to as Phenological Gradient Nearest Neighbor,
or PGNN, for convenience) for producing maps of tree
species occurrence and relative abundance over large
areas by utilizing information collected on FIA field
plots in conjunction with 250 m pixel resolution raster
data in a k-nearest neighbor (kNN) imputation frame-
work. The PGNN approach builds upon the Gradient
Nearest Neighbor (GNN) work of Ohmann and Gregory
[14], who integrated nearest-neighbor imputation of FIA
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Figure 1 Total forest ecosystem carbon density imputed from forest inventory plots, conterminous U.S., 2000-2009. Includes above- and
belowground live trees, downed dead wood, forest floor, soil organic carbon, standing dead trees, understory above- and belowground pools.
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plots with ecological ordination via canonical corres-
pondence analysis (CCA). PGNN is best described as a
hybrid of the ANN and GNN approaches, since it also
makes use of CCA but utilizes k nearest neighbors dur-
ing imputation rather than only a single neighbor. An-
other distinguishing characteristic is that it utilizes
vegetation phenology information derived from multi-
temporal satellite imagery, as well as climate, topo-
graphic, and ecoregion data compiled at a 250 m pixel
resolution. One of the most attractive features of this
approach is the efficiency with which a plot identifica-
tion map can be produced at the national scale. In
other words, every pixel is assigned a forest inventory
plot label as well as the attributes of the labeled plot’s
nearest neighbors, as defined by the CCA model. In the
case of forest C accounting, every pixel could be
assigned C stock estimates in a rapid fashion on an an-
nual time-step.

Given the need for C maps at the national scale and the
possible application of PGNN, the goal of this study was to
apply PGNN for imputing national forest inventory plots
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to a spatially continuous raster grid in order to produce
mapped estimates of the conterminous U.Ss forest C
density with these specific objectives: 1) to produce and in-
terpret maps of forest carbon density by individual pools
and combinations thereof (total forest ecosystem C density,
live tree AG, live tree BG, live understory AG and BG,
standing dead tree AG, downed dead wood, forest floor,
soil organic carbon, and the pool that has the highest
proportion of total forest ecosystem C density); 2) to con-
duct validation of the C mapping approach by comparing
map-based and field plot-based estimates using a variety
of metrics; and 3) to suggest future research directions
and applications.

Results

The imputed raster maps of total forest ecosystem C stocks
(i.e., sum of all pools) suggest a rather disparate distribu-
tion of large total C stocks across the U.S. (Figure 1). While
most forested areas of the U.S. have moderate C stock
density (< 100 Mg/ha) (e.g., lower elevations of the Rocky
Mountains, Central, and Plains states), there are other
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Figure 2 Live tree aboveground carbon density imputed from forest inventory plots, conterminous U.S., 2000-2009.
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areas that have C densities in excess of 200 Mg/ha such as
the Pacific Northwest and the upper Great Lakes. As total
C stocks are comprised of diverse forest ecosystem compo-
nents, examining the distribution of C stock density by
component can refine understanding of C density dynam-
ics at a national scale.

Live AG and BG (Figures 2 and 3) C stock density is
highest in the Pacific Northwest, northwest California,
northern Rockies, and Appalachian Mountains. The
highest live AG C stock density often exceeds 80 Mg/ha.
As BG C stocks are modeled as a function of AG C
stocks, their spatial distributions are closely aligned. Live
understory AG and BG C density follow spatial patterns
in allocation similar to live tree distributions, albeit at a
much lower density (< 1 Mg/ha) (Figure 4). Standing
dead tree C stock densities are highest (> 8 Mg/ha) in
the Olympic Mountains, Cascade Range, and North and
Central Rocky Mountains (Figure 5). In comparison to
the western U.S., eastern standing dead tree C stock
density is minimal with only the Adirondacks and iso-
lated areas of the Appalachian Mountains having a stock
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density exceeding 2 Mg/ha. The highest downed dead C
stock densities (> 12 Mg/ha) are almost exclusively
found in the Pacific Northwest and West Coast/Sierra
Nevada (Figure 6). The detrital components of forest
floor and SOC have spatial distributions fundamentally
different from woody biomass C stock distributions
(Figures 7 and 8). The highest C stock densities for
forest floor (> 15 Mg/ha) are found in the Pacific
Northwest, California, Rocky Mountains, upper penin-
sula of MI, and New England. The highest C stock
densities for SOC (> 80 Mg/ha) are found in the
upper Lake States, Pacific Northwest, northern New
England, and coastal areas of the Southeast. In order
to better appraise areas subject to varying C stock dy-
namics, each pixel was assigned to one of three cat-
egories, indicating where it had the largest proportion
of its total C stocks apportioned: 1) live biomass (live
tree and understory AG and BG), 2) SOC, and 3) dead
wood and forest floor (Figure 9). Live biomass is the
dominant C stock along the West Coast and Appalachian
Mountains. In contrast, SOC is the dominant C stock
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Figure 3 Live tree belowground carbon density imputed from forest inventory plots, conterminous U.S., 2000-2009.
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Figure 4 Live understory above and belowground carbon density imputed from forest inventory plots, conterminous U.S., 2000-2009.

along Southeastern coastal areas, New England, Great
Lakes, and Great Plain’s forests. The dead wood and for-
est floor is dominant in areas of the Rocky Mountains.
Validation metrics suggest good agreement between
map-based and field plot-based estimates of C density
across pools and spatial scales (Table 1). The strongest
agreement according to all three validation metrics is at
the coarsest spatial scale (200 km) with slight reductions
in agreement statistics down to the finer spatial scale
(50 km). At 25 km, most pools demonstrate a more sub-
stantial drop in agreement, albeit most statistics still in-
dicate strong agreement (e.g., agreement coefficient
above 0.90). The one exception is the standing dead tree
C pool which had good agreement at the spatial scale of
100-200 km, but demonstrated a marked decline in
agreement down to the finest spatial scale of 25 km (e.g,,
agreement coefficient =0.67). The distribution curves
and CI maps (Figures 10, 11, 12, 13, 14, 15, 16 and 17)
reinforce the fit statistics: there is fairly robust agree-
ment between the map-based and field plot-based esti-
mates of C density by pool at the finer spatial scale of

50 km (216,500 ha). The differences appear to be distrib-
uted in a rather spatially unbiased manner across the
conterminous U.S., although there is a tendency for the
model to overestimate forest C at the edges of the
forested extent. The same phenomenon was present and
discussed in the earlier study of species relative abun-
dance [13]. This is most likely an effect of the spatial
mismatch between pixels and plots, as well as a mis-
match between the “forest” stratum used during imput-
ation and the FIA definition of forest land, that includes
a component based on land use not readily detected
using remote sensing data.

Discussion

This study demonstrated that a spatially explicit imput-
ation approach may be applied to a standard forest in-
ventory to efficiently produce continuous maps of forest
C stock estimates in a timely manner. Across spatial
scales ranging from 25 to 200 km, imputed C stock esti-
mates closely matched those derived from the forest in-
ventory data that serve as the basis for the U.S’s
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Figure 5 Standing dead tree above ground carbon density imputed from forest inventory plots, conterminous U.S., 2000-2009.

NGHGI. Thus, the opportunity exists to down-scale a
NGHGI to finer scales (e.g., sub-county scale). As vari-
ous studies [5,10] have recently highlighted the role that
forest management may play in mitigating climate
change, the accurate carbon assessment of “project-
scale” forest management activities is paramount to fore-
casting potential mitigation benefits, if any. A project
scale C inventory that is consistent with regional and
NGHGTI’s may allow for robust verification, a desirable at-
tribute of forest C projects [15]. In addition, consistency
in monitoring forest C across spatial scales may be inte-
gral to fully understanding the dynamics of forest C from
stands to ecosystems [16]. Beyond the spatial scale, such
imputed maps may be rapidly updated annually to in-
corporate recent disturbance information. It is expected
that large scale disturbance events may increasingly
affect forest C stocks in the face of climate change [17].
Disturbance events may occur on annual time steps
such that forests become net emitters of C [18] over a
relatively short period of time. Recent wildfires and in-
sect outbreaks [19] in western North America have

highlighted the need to provide temporally continuous
monitoring of forest C stocks. Whether the PGNN ap-
proach or alternative is used, spatially explicit imput-
ation approaches enable the use of annual forest
inventories to inform real-time and real-world C man-
agement situations.

Although an imputed forest C map may provide a
reasonable down-scaling of a NGHGI, the situation
remains that most NGHGI’s have high variability at
fine scales such that the statistical power to detect
stand-level change is limited [20]. Therefore, while
an imputed C estimate for an individual pixel may
be consistent with a NGHGI, the level of uncertainty
associated with that one pixel will be very high. It
may not matter how consistent a map is with a
NGHGI, if the NGHGI itself contains tremendous
uncertainty. Another limitation to imputing NGHGI
data to maps is that dedicated analytical staff is
needed to produce these outputs on an annual time
step. Indeed, if the value in such an approach is its
sensitivity to recent disturbance events, then likewise
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Figure 6 Downed dead wood carbon density imputed from forest inventory plots, conterminous U.S., 2000-2009.
.

forest analysts will need to develop and apply imput-
ation models within the same time frame. Finally, an
important component of the PGNN approach used in
this study is that the live tree attribute of basal area
was a central dependent variable [13]. The imputed
maps of standing dead tree C density had the poorest
agreement with the empirical inventory present in
the NGHGI. It has already been demonstrated in the
U.S’s NGHGI that detrital C models based on live
tree attributes may substantially over/under-estimate
actual C stocks at finer scales (e.g., plot-level) [12].
This may likewise occur with spatial imputation models
and it is suggested that future research explore alterna-
tive imputation models for the non-living C stocks in
forest ecosystems. There was reasonable agreement
between the imputed estimates of SOC and the forest
floor C densities compared to the NGHGI because
the NGHGI currently uses models based partially on
live tree attributes to estimate these stocks [6]. How-
ever, a comparison between the first empirical inven-
tory of forest floor C stocks across the U.S. [21] and

the map in this study (Figure 7) highlights the reduced
uncertainty that could be realized by both adopting em-
pirical measurements of C pools within a NGHGI and
adapting imputation models to fit those unique ecosys-
tem components.

Can imputed forest C maps inform our knowledge
regarding the dynamics and attributes of C across the
U.S.? Perhaps the dynamics of forest C is best illustrated
by Figure 9. It is obvious that the predominant forest C
pool varies by ecosystem across the U.S.. While at high
latitudes or in coastal/wetland areas it may be the SOC
and forest floor pools that require the most attention
when it comes to management and monitoring, it can be
the AG biomass (whether dead or alive) that should be a
focal point in most other areas. Most telling was the
dominance of detrital forest C pools in most areas of the
Intermountain West. The value of imputed forest C
maps may be beyond monitoring C monitoring efforts at
scales ranging from national to sub-county, rather it
may be in identifying emerging research areas and eco-
logical “hotspots” [21] such as areas where forest C
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Figure 7 Forest floor carbon density imputed from forest inventory plots, conterminous U.S., 2000-2009.
.

stocks may be responding to climate change events or
how detrital and soil organic C stocks may be related.

Conclusions

Down-scaling forest NGHGI’s to finer scales (i.e. project
level) is needed to provide project verification that is re-
gionally consistent while at the same time refining the
science of forest C monitoring. A map-based imputation
approach, such as the PGNN technique applied in this
study, affords an efficient and timely method for produ-
cing spatially continuous maps of diverse forest C pools
that are consistent with a NGHGI. The uncertainty asso-
ciated with each imputed pixel is dependent on not only
the imputation model, but also on the models that
underlie the NGHGI. We suggest that further research
in both modeling areas be undertaken to refine forest C
maps in the future. Until such refinements occur, the
maps produced in this study can only provide rough
guidance for forest C projects while highlighting the re-
gional differences in various C pools and their associated
dynamics that in turn may guide future research.

Methods

Data

The FIA program is the primary source for information
about the extent, condition, status, and trends of forest
resources in the United States [22]. FIA applies a nation-
ally consistent sampling protocol using a systematic de-
sign covering all ownerships across the U.S., at a base
national sample intensity of one plot per 2,428 ha. Land
area is stratified using aerial photography or classified
satellite imagery to increase the precision of estimates.
Remotely sensed data may also be used to determine if
plot locations are forested and should be measured in
the field. FIA defines forested land as areas that have at
least 10 percent tree canopy cover, are at least 0.4 ha in
size, and are at least 36.6 m wide [23]. FIA inventory
plots consist of four, 7.32-m fixed-radius subplots spaced
36.6 m apart in a triangular arrangement with one sub-
plot in the center [8,24]. All trees (live and standing
dead) with a diameter at breast height (dbh) of at least
12.7 cm, are inventoried on forested subplots. Within
each subplot, a 2.07 m microplot offset 3.66 m from
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Figure 8 Soil organic carbon density imputed from forest inventory plots, conterminous U.S., 2000-2009.

subplot center is established where only live trees with a
dbh between 2.5 and 12.7 cm are inventoried.

The field data for this study were taken entirely from
the FIA database [8] using the most recent annual col-
lection (what FIA refers to as an “evaluation”) of forest
inventory plots available at the time of the study for the
conterminous 48 states (N.B., annual plots from western
Oklahoma, New Mexico, and Wyoming were not avail-
able at the time of this study). The data collection period
for the annual inventories conducted in most of the
states used in this study was initiated since 2000 and ran
through 2009, with a full cycle of plots being collected
over a 5-year period in the East (roughly 2005-2009) and
a 10-year period in the West (roughly 2000-2009). The
collection of annual plots used for each state in this
study contained all plots associated with that “evalu-
ation” from the FIA database. This includes non-
forested plots and, by definition, only the data collected
from the most recent observation of each plot. Sample
intensities vary by state, since some have not yet com-
pleted data collection for a full cycle of plots, while

others have chosen to intensify their sampling intensity
by 2-3 times the base intensity. FIA field data, with ap-
proximate plot locations, are freely available for down-
load from the program’s website [25].

These field data were used in conjunction with data
extracted at each plot location from a 250 m pixel reso-
lution raster stack. This predictor dataset included vege-
tation phenology information derived from a time series
of vegetation indices based on MODIS satellite imagery
(2002-2008), mean monthly climate characteristics from
the Daymet climatological model of interpolated climate
station observations (1980-1997) [26], topographic metrics
from the Elevation Derivatives for National Applications
digital elevation model, and Omernik’s Level III ecoregions
(or ecological zones) [27]. For a more complete description
of these datasets and how they were used in the study, see
Wilson et al. [13].

Plot-level carbon estimates
Plot-level estimates of forest C stocks are a combination
of empirically measured tree/site attributes combined
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Figure 9 Major forest carbon pools with the plurality of total forest carbon stock for each pixel imputed from forest inventory plots,
conterminous U.S., 2000-2009. Major pools are: 1) living biomass (aboveground, belowground, and understory), 2) dead wood and forest floor

Table 1 Validation metrics by scale and forest C stock

Metric Scale Total Above-ground Below-ground Understory Standing dead Down dead Forest Floor Soil organic
Agreement 200 km 09911  0.9942 0.9944 0.9909 0.9399 0.9932 0.9947 0.9828
Coefficient” 100 km 09943 09926 09925 0.9866 09379 09924 0.9943 09933
50 km 0.9866 0.9785 09785 0.9697 0.8635 0.9844 0.9850 0.9850
25 km 09610 09295 0.9300 0.9220 0.6707 0.9534 0.9605 0.9639
KS Statistic® 200 km 00364 00424 0.0485 0.0364 0.0485 0.0364 0.0364 0.0424
100 km  0.0274 00316 0.0316 0.0247 0.0521 0.0288 0.0233 0.0288
50 km 0.0866 0.0882 0.0882 0.0863 0.1135 0.0866 0.0863 0.0863
25 km 0.1246  0.1260 0.1260 0.1244 0.1591 0.1244 0.1244 0.1244
RMA Slope® 200 km  1.0073  1.0039 1.0050 0.9941 1.1515 1.0122 1.0003 1.0089
100 km  1.0012  1.0025 1.0027 0.9995 1.0466 1.0050 1.0059 0.9987
50 km 1.0102  1.0171 1.0174 1.0140 1.1405 1.0151 1.0114 1.0073
25 km 1.0248  1.0405 1.0411 1.0403 1.2158 1.0319 1.0271 1.0206

@ Agreement Coefficient (larger values indicate better agreement, min =0, max = 1).
P Kolmogorov-Smirnov Statistic (smaller values indicate better agreement, min =0, max = unbounded).
€ Reduced Major Axis Slope (values closer to 1 indicate better agreement, min, max = unbounded).
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Figure 10 Scatterplot, (a), cumulative distribution, (b), and map of confidence intervals of differences (c), between map-based and
plot-based estimates of live tree aboveground carbon. Results are based on C density at the spatial scale of 50 km (216,500 ha hexagons).

with a series of individual tree/site models. Both
standing live and dead tree AG C stocks are estimated
using the Component Ratio Method (CRM) [9].
Briefly, the CRM facilitates calculation of tree compo-
nent biomass (e.g., tops and limbs) as a proportion of
the bole biomass (determined through field measured
species, diameter, and often height measurements)
based on component proportions from Jenkins et al.
[28]. Structural deductions (e.g., loss of limbs) and
wood density reductions [29] are applied to standing
dead trees to account for their inherent loss of wood
density and tree components through decay processes
[12]. The live BG C stocks are a modeled function of
the AG live tree C stocks. Understory (both AG and
BG) are modeled as a proportion of the live tree AG
and BG stock. The remaining forest C stocks (i.e.

forest floor, downed dead wood, and SOC) are mod-
eled as a function of a plot’s forest type, stand age,
and ecoregion . While a series of empirical measure-
ments (e.g., tree diameter and species composition)
are independent variables employed by a series of
models (i.e., live tree volume models to soil organic
carbon models) to determine plot-level C stocks by
pool, these resulting estimates are used as the empir-
ical basis for imputation in this study. As the meas-
urement/model details vary by individual pool, the
NGHGI documentation should be referenced for spe-
cific model variables and coefficients [6].

Phenological gradient nearest neighbor technique
To briefly summarize the methodology described in Wilson
et al. [13], CCA models were developed, based on a 1/8th
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Figure 11 Scatterplot, (a), cumulative distribution, (b), and map of confidence intervals of differences (c), between map-based and
plot-based estimates of live tree belowground carbon. Results are based on C density at the spatial scale of 50 km (216,500 ha hexagons).
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Figure 12 Scatterplot, (a), cumulative distribution, (b), and map of confidence intervals of differences (c), between map-based and
plot-based estimates of downed dead tree carbon. Results are based on C density at the spatial scale of 50 km (216,500 ha hexagons).

subsample of the plots, that related the multivariate re-
sponse variable measured on the field plots (live tree
basal area by species) with the associated 21 predictor
variables extracted from the raster stack at each plot lo-
cation. For this study, two separate CCA models were
constructed: one each for the eastern and western con-
terminous United States, using only the plots and pixels
found within the respective states and with the central
states from North Dakota to Texas being included in
each model. The resultant predictor variable loadings
(coefficients) were used to transform the predictor vari-
ables into a featurespace of “canonical variates” that
maximized the inertia in the response data that could be
explained by the predictor data. This featurespace was
then used to measure proximity between pixels and plots

(more precisely, the pixels containing plots), and thereby
to assign a plot label to each pixel in the study area. In
an effort to predict a value for each pixel while minimiz-
ing the root mean squared prediction error, a small
number of k nearest neighboring plots were used to im-
pute a weighted mean value to each label plot, with the
weight assigned to each neighboring plot based on its
proximity to the label plot as measured in the feature-
space of canonical variates. As in [13], a value of k=7
and an inverse distance weighting exponent of 1.75 were
used to produce the maps in this study. Furthermore, to
account for the mismatch in spatial resolution between
plots and pixels, a finer spatial resolution dataset of esti-
mated tree canopy (i.e, 30 m pixel resolution National
Land Cover Database tree canopy cover) was used to
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Figure 13 Scatterplot, (a), cumulative distribution, (b), and map of confidence intervals of differences (c), between map-based and
plot-based estimates of forest floor carbon. Results are based on C density at the spatial scale of 50 km (216,500 ha hexagons).
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Figure 14 Scatterplot, (a), cumulative distribution, (b), and map of confidence intervals of differences (c), between map-based and
plot-based estimates of standing dead tree aboveground carbon. Results are based on C density at the spatial scale of 50 km (216,500 ha

stratify the plots into “forest” (> =25% tree canopy cover)
and “non-forest” (< 25% tree canopy cover) strata during
the imputation step. Finally, the predicted value for each
pixel was calculated as the weighted mean of the
imputed values assigned to the corresponding label plot,
based independently on “forest” and “non-forest” plots,
and the relative proportion of each of these strata present
within the pixel.

For the purposes of the current study, all of the model
outputs from the earlier study [13] were used: the plot
identification (label) raster map, list of neighboring “forest”
and “non-forest” plots, plot weights, and strata weights by
pixel. These components were used in an analogous fash-
ion to compute estimates of forest C stocks for each pixel
using the associated plot-level measured or modeled

values, restricting the k plots used for each estimate to the
2nd through 8th nearest neighboring plots.

Map validation

Validation metrics used in this study were similar to
those employed by Wilson et al. [13] and described
in more detail by Riemann et al. [30]. First, map-
based and field plot-based estimates were compared
at 4 spatial scales (for convenience, these are indi-
cated as 25, 50, 100, and 200 km) based on their
spatial resolution, which is the distance between the
centroids of a spatially continuous mesh of hexagons,
using three validation metrics: agreement coefficient
(AC), Kolmorogov-Smirnov statistic (KS), and the
slope of the reduced major axis (RMA) regression
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Figure 15 Scatterplot, (a), cumulative distribution, (b), and map of confidence intervals of differences (c), between map-based and
plot-based estimates of soil organic carbon. Results are based on C density at the spatial scale of 50 km (216,500 ha hexagons).
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J

line. The AC statistic [31] is symmetric and standar-
dized describing the agreement in both datasets
about a y = x line. A value of “1” indicates perfect
agreement. The KS statistic quantifies the agreement
between the distributions of the two datasets in
terms of maximum distance between their empirical
distribution functions. The KS statistic makes no
assumptions about the distribution of the data and is
independent of scale changes. The RMA regression
line is calculated in a similar way to the ordinary
least squares regression line, but with the assumption
that there is error in both the x and y axes and is
thus symmetrical regardless of ordering of axes. Fi-
nally, scatterplots and cumulative distribution func-
tions of map-based versus field plot-based estimates

of C density were determined for each C pool at the
spatial scale of 50 km (216,500 ha hexagons). For
each C pool, a corresponding choropleth map was
constructed that depicts where the map-based estimate
for each hexagon falls relative to plot-based confidence
intervals (CI). These hexagonal choropleth maps indi-
cate which CI (i.e., 90%, 95%, 99%, or greater) the map-
based estimate falls within and whether or not the
map-based estimate is an overestimate (in the upper
half of the CI) or an underestimate (in lower half of the
CI) relative to the plot-based estimate. Map-based esti-
mates falling within narrower confidence intervals (e.g.
90% CI) suggest better agreement with the associated
plot-based estimate than those falling within wider
confidence intervals (e.g. greater than 99% CI).
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Figure 17 Scatterplot, (a), cumulative distribution, (b), and map of confidence intervals of differences (c), between map-based and
plot-based estimates of total forest carbon. Results are based on C density at the spatial scale of 50 km (216,500 ha hexagons).
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