Skip to main content

Table 2 Established vegetation indices used in this study

From: Multi-predictor mapping of soil organic carbon in the alpine tundra: a case study for the central Ecuadorian páramo

Index/references

Formula

Formula with specific L8 bands

Normalized Difference Vegetation Index—NDVI [69]

\(\mathrm{NDVI}=\frac{\mathrm{NIR}-\mathrm{R}}{\mathrm{NIR}+\mathrm{R}}\)

\(\mathrm{NDVI}=\frac{\mathrm{B}5-\mathrm{B}4}{\mathrm{B}5+\mathrm{B}4}\)

Soil-Adjusted Vegetation Index—SAVI [70], L value according [71]

\(\mathrm{SAVI}=\frac{\mathrm{NIR}-\mathrm{R}}{\mathrm{NIR}+\mathrm{R}+\mathrm{L}}\left(1+\mathrm{L}\right)\)

\(\mathrm{L}=0.15\)

\(\mathrm{SAVI}=\frac{\mathrm{B}5-\mathrm{B}4}{\mathrm{B}5+\mathrm{B}4+0.15}\left(1+0.15\right)\)

Wide Dynamic Range Vegetation Index—WDRVI [72], a value according [71]

\(\mathrm{WDRVI}=\frac{\mathrm{aNIR}-\mathrm{R}}{\mathrm{aNIR}+\mathrm{R}}\)

\(\mathrm{a}=0.05\)

\(\mathrm{WDRVI}=\frac{0.05\mathrm{ B}5-\mathrm{B}4 }{0.05\mathrm{ B}5+\mathrm{B}4}\)

Enhanced Vegetation Index 2—EVI2 [73]

\(\mathrm{EVI}2=2.5 \frac{\mathrm{NIR}-\mathrm{R}}{\mathrm{NIR}+2.4\mathrm{ R}+1}\)

\(\mathrm{EVI}2=2.5 \frac{\mathrm{B}5-\mathrm{B}4}{\mathrm{B}5+2.4\mathrm{ B}4+1}\)

Normalized Difference Water Index—NDWI [74]

\(\mathrm{NDWI}=\frac{\mathrm{G}-\mathrm{NIR}}{\mathrm{G}+\mathrm{NIR}}\)

\(\mathrm{NDWI}=\frac{\mathrm{B}3-\mathrm{B}5}{\mathrm{B}3+\mathrm{B}5}\)

Visible Atmospherically Resistant Vegetation Index green—VARIg [75, 76]

\({\mathrm{VARI}}_{\mathrm{G}}=\frac{\mathrm{G}-\mathrm{R}}{\mathrm{G}+\mathrm{R}}\)

\({\mathrm{VARI}}_{\mathrm{G}}=\frac{\mathrm{B}3-\mathrm{B}4}{\mathrm{B}3+\mathrm{B}4}\)

Normalized Difference Snow Index—NDSI [77]

\(\mathrm{NDSI}=\frac{\mathrm{SWIR}1-\mathrm{NIR}}{\mathrm{SWIR}1+\mathrm{NIR}}\)

\(\mathrm{NDSI}=\frac{\mathrm{B}6-\mathrm{B}5}{\mathrm{B}6+\mathrm{B}5}\)

Bare Soil Index- BI [78]

\(\mathrm{BI}=\frac{\left(\mathrm{SWIR}1+\mathrm{R}\right)-(\mathrm{NIR}+\mathrm{B})}{\left(\mathrm{SWIR}1+\mathrm{R}\right)+(\mathrm{NIR}+\mathrm{B})}\)

\(\mathrm{BI}=\frac{\left(\mathrm{B}6+\mathrm{B}4\right)-(\mathrm{B}5+\mathrm{B}2)}{\left(\mathrm{B}6+\mathrm{B}4\right)+(\mathrm{B}5+\mathrm{B}2)}\)

Normalized Difference Moisture Index—NDMI [79, 80]

\(\mathrm{NDMI}=\frac{\mathrm{NIR}-\mathrm{SWIR}1}{\mathrm{NIR}+\mathrm{SWIR}1}\)

\(\mathrm{NDMI}=\frac{\mathrm{B}5-\mathrm{B}6}{\mathrm{B}5+\mathrm{B}6}\)

Normalized Burn Ratio—NBR [81]

\(\mathrm{NBR}=\frac{\mathrm{NIR}-\mathrm{SWIR}2}{\mathrm{NIR}+\mathrm{SWIR}2}\)

\(\mathrm{NBR}=\frac{\mathrm{B}5-\mathrm{B}7}{\mathrm{B}5+\mathrm{B}7}\)

Normalized Burn Ratio 2—NBR2 [82]

\(\mathrm{NBR}2=\frac{\mathrm{SWIR}1-\mathrm{SWIR}2}{\mathrm{SWIR}1+\mathrm{SWIR}2}\)

\(\mathrm{NBR}2=\frac{\mathrm{B}6-\mathrm{B}7}{\mathrm{B}6+\mathrm{B}7}\)

TOA Brightnees Temperature [57]

\(T=\frac{\mathrm{K}2}{\mathrm{ln}\left(\frac{K1}{{L}_{\lambda }}\right)+1}\)

T = TOA Brightness Temperature

Lλ = spectral radiance

K1 y K2 = thermal conversion constants

\(B10, B11 TIRS sensor\)