# Table 3 Actual, refitted, and recovered covariance matrices of regression coefficients in weighted least squares equations in Table 1

Eq.
#
Actual Refitted Recovered Recovered
(robust)
P 1
×100
P 2
×100
P 3
×100
3 $$\left( {\begin{array}{*{20}c} {2.62 \times 10^{ - 3} } & { - 0.132} \\ { - 0.132} & {8.67} \\ \end{array} } \right)$$ $$\left( {\begin{array}{*{20}c} {2.15 \times 10^{ - 3} } & { - 0.249} \\ { - 0.249} & {4.11} \\ \end{array} } \right)$$ $$\left( {\begin{array}{*{20}c} {2.66 \times 10^{ - 3} } & { - 0.0995} \\ { - 0.0995} & {5.00} \\ \end{array} } \right)$$ $$\left( {\begin{array}{*{20}c} {3.54 \times 10^{ - 3} } & { - 0.175} \\ { - 0.175} & {10.4} \\ \end{array} } \right)$$ 0.1 0.2 0.0
4 $$\left( {\begin{array}{*{20}c} {0.268} & { - 0.747} \\ { - 0.747} & {2.25} \\ \end{array} } \right)$$ $$\left( {\begin{array}{*{20}c} {0.203} & { - 1.60} \\ { - 1.60} & {1.26} \\ \end{array} } \right)$$ $$\left( {\begin{array}{*{20}c} {0.300} & { - 0.723} \\ { - 0.723} & {1.90} \\ \end{array} } \right)$$ $$\left( {\begin{array}{*{20}c} {0.493} & { - 1.28} \\ { - 1.28} & {3.51} \\ \end{array} } \right)$$ 13 8 0.0
7 $$\left( {\begin{array}{*{20}c} {0.816 \times 10^{ - 3} } & { - 0.0336} \\ { - 0.0336} & {1.66} \\ \end{array} } \right)$$ $$\left( {\begin{array}{*{20}c} {3.78 \times 10^{ - 3} } & { - 0.115} \\ { - 0.115} & {4.37} \\ \end{array} } \right)$$ $$\left( {\begin{array}{*{20}c} {1.36 \times 10^{ - 3} } & { - 0.0417} \\ { - 0.0417} & {1.61} \\ \end{array} } \right)$$ $$\left( {\begin{array}{*{20}c} {0.578 \times 10^{ - 3} } & { - 0.0251} \\ { - 0.0251} & {1.27} \\ \end{array} } \right)$$ 1 0.8 29
8 $$\left( {\begin{array}{*{20}c} {0.139} & { - 0.328} \\ { - 0.328} & {0.813} \\ \end{array} } \right)$$ $$\left( {\begin{array}{*{20}c} {0.521} & { - 1.01} \\ { - 1.01} & {2.11} \\ \end{array} } \right)$$ $$\left( {\begin{array}{*{20}c} {0.192} & { - 0.381} \\ { - 0.381} & {0.82} \\ \end{array} } \right)$$ $$\left( {\begin{array}{*{20}c} {0.297} & { - 0.630} \\ { - 0.630} & {1.41} \\ \end{array} } \right)$$ 0.0 7 4
11 $$\left( {\begin{array}{*{20}c} {5.53 \times 10^{ - 4} } & { - 0.0322} \\ { - 0.0322} & {2.19} \\ \end{array} } \right)$$ $$\left( {\begin{array}{*{20}c} {2.13 \times 10^{ - 3} } & { - 0.0778} \\ { - 0.0778} & {3.46} \\ \end{array} } \right)$$ $$\left( {\begin{array}{*{20}c} {5.78 \times 10^{ - 4} } & { - 0.0213} \\ { - 0.0213} & {0.959} \\ \end{array} } \right)$$ $$\left( {\begin{array}{*{20}c} {1.40 \times 10^{ - 3} } & { - 0.0549} \\ { - 0.0549} & {2.30} \\ \end{array} } \right)$$ 0.0 16 0.5
12 $$\left( {\begin{array}{*{20}c} {7.84 \times 10^{ - 2} } & { - 0.227} \\ { - 0.227} & {0.698} \\ \end{array} } \right)$$ $$\left( {\begin{array}{*{20}c} {0.153} & { - 0.342} \\ { - 0.342} & {0.813} \\ \end{array} } \right)$$ $$\left( {\begin{array}{*{20}c} {8.96 \times 10^{ - 2} } & { - 0.202} \\ { - 0.202} & {0.485} \\ \end{array} } \right)$$ $$\left( {\begin{array}{*{20}c} {0.202} & { - 0.457} \\ { - 0.457} & {1.06} \\ \end{array} } \right)$$ 0.0 38 4
1. Actual covariance matrices are based on a sample size of 50. P i (i = 1, 2, 3) is the probability under H 0 of: (1) actual = refitted; (2) actual = recovered; (3) actual = robust.