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Abstract

Background: In agricultural regions, streamside forests have been reduced in age and extent, or removed entirely
to maximize arable cropland. Restoring and reforesting such riparian zones to mature forest, particularly along
headwater streams (which constitute 90% of stream network length) would both increase carbon storage and
improve water quality. Age and management-related cover/condition classes of headwater stream networks can be
used to rapidly inventory carbon storage and sequestration potential if carbon storage capacity of conditions
classes and their relative distribution on the landscape are known.

Results: Based on the distribution of riparian zone cover/condition classes in sampled headwater reaches, current
and potential carbon storage was extrapolated to the remainder of the North Carolina Coastal Plain stream
network. Carbon stored in headwater riparian reaches is only about 40% of its potential capacity, based on 242
MgC/ha stored in sampled mature riparian forest (forest > 50 y old). The carbon deficit along 57,700 km headwater
Coastal Plain streams is equivalent to about 25TgC in 30-m-wide riparian buffer zones and 50 TgC in 60-m-wide
buffer zones.

Conclusions: Estimating carbon storage in recognizable age-and cover-related condition classes provides a rapid
way to better inventory current carbon storage, estimate storage capacity, and calculate the potential for additional
storage. In light of the particular importance of buffer zones in headwater reaches in agricultural landscapes in
ameliorating nutrient and sediment input to streams, encouraging the restoration of riparian zones to mature
forest along headwater reaches worldwide has the potential to not only improve water quality, but also
simultaneously reduce atmospheric CO2.
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Background
A significant amount of global carbon can be seques-
tered in forests [1-3] and especially in forest soils [4,5].
This is particularly true for soils in wetlands where
decomposition is slower [6,7]. In agricultural regions of
the world, many forests along headwater streams, gener-
ally first to fourth order (sensu [8]), have been comple-
tely removed or severely reduced in extent in order to
maximize arable cropland. The alterations in buffer
zones resulting from forest removal and conversion to
agriculture have led to reductions in ecosystem services,
including a decline in water quality due to increased soil
erosion and a reduced capacity for nutrient uptake and

denitrification [9,10], a reduction in habitat quality [11],
a reduction in stream particulate organic carbon [12],
and an increase in atmospheric CO2 [13,14].
It is well known that the aboveground carbon pools of

forests gain biomass as they age [15-17] as do forest
soils [18,19,5]. However, there is still a paucity of field
data for estimating the amount of carbon sequestered as
riparian forests age or on how carbon is segregated
among various biomass compartments: living vs. detrital,
aboveground vs. belowground, or among strata. In order
to adequately estimate the potential effects of riparian
reforestation on the amount and rate of carbon storage,
it would be useful to know to how much carbon is
stored in various types of vegetation cover types, in for-
ests of various ages, and in soils as riparian forests
develop. Data from headwater riparian forests would be
particularly useful because restoration and regeneration
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of riparian forest not only sequesters atmospheric car-
bon, but also improves water quality.

Results and Discussion
The carbon content of riparian zone cover/condition
types ranged from 17.9 MgC/ha for Annual Rowcrop
agriculture to 241.7 MgC/ha for Mature Forest (> 50 y
old) (Table 1) [20,21]. Total carbon content of Mature
Forest is 7-13 times that of non-forest condition types
(Perennial Herb, Shrub/Sapling, and Annual Rowcrop).
The highest proportion of carbon is concentrated in liv-
ing trees, with 2.6 times as much in Mature Forest than
in Regenerating Forest (5-25 y old), while the highest
concentration of detrital-based carbon is concentrated
in forest soil. These values do not include the carbon
content of roots, which were not measured, or carbon
content of soil > 10 cm in depth. Roots would be
expected to provide 10-15% additional carbon [22] and
soil organic carbon to 1 m depth would be at least twice
the amount recorded [23].
The living and detrital pools of mature Coastal Plain

riparian forests are similar in magnitude to other mature
temperate forests studied. The 203 MgC/ha for above-
ground biomass in Mature Forest is within the range
exhibited by a 60-100 y old Pinus strobus-dominated
forest in Rhode Island, USA (185-301 MgC/ha) [24].
Average annual rate of ecosystem carbon accumulation
in the sampled riparian forests was approximately 2.6
MgC/ha y-1 over 80 y, which was a bit higher than
other temperate (upland) hardwood forest ecosystems
(1.3-2.1 MgC/ha y-1)[24], but reasonable considering the
riparian forests in this study are seasonally saturated
wetlands in a Humid Subtropical climate.
Once carbon values were established for condition

types, carbon status was extrapolated over the entire
Coastal Plain headwater stream network based on the
distribution of condition types along the sampled

networks (Table 2) [25,22]. Because the ratio of head-
water network length to watershed size in the sampled
watersheds was 1.008, the total length of headwater
streams in the Coastal Plain was estimated to be about
57,227 km.
An average of 95 MgC/ha occurred along the 60-m-

wide riparian zone of the three sampled Coastal Plain
stream networks. This is far less than a potential 242
MgC/ha that would be stored if the entire riparian zone
were Mature Forest. Assuming that the three sampled
stream networks represent all other rural, headwater,
stream networks in Coastal Plain North Carolina, then
headwater riparian zones in the Coastal Plain currently
store 16.5 to 32.8 TgC, depending on whether the ripar-
ian zone is defined as being 30-m wide (16.5 TgC) or
60-m wide (32.5 TgC). These carbon amounts are about
40% of what is possible (Table 2) [25,22] and represent
a shortfall of 25.0 to 50.5 TgC (depending on riparian
zone width) based on the carbon storage capacity of
Mature Forest. This means that if buffer zones of
Coastal Plain stream networks are similar, on average,
to the condition of sampled networks, then there is
potential for storing an additional 25 to 50 TgC (from
30- and 60-m-wide buffers, respectively). Fifty TgC is
equivalent to the average annual carbon emissions of
about 36,000 homes or 16,000 passenger vehicles (see
[26] for other equivalencies). Focusing carbon offsets on
riparian zones, particularly in agricultural landscapes,
has the advantage of improving water quality of rivers
and the estuaries they feed.
Studies that finely compartmentalize living and detrital

carbon pools are rare. Even fewer studies provide a
chronosequence to depict change in carbon storage
among compartments through time. This study is the
first to define riparian forest carbon storage by broad
cover/condition types related to a forest development
sequence and then extrapolate the relative areal extent

Table 1 Mean stored carbon (MgC/ha) of living and detrital components for condition types in headwater riparian
zones

Condition type
(n)

Tree Shrub Sapling Herb Woody
Seedling

Vine Litter Snag Large Down
Wood

Soil Total
Live

Total
Detrital

Total Carbon
Stored

Mature Forest (5) 155.7 0.1 0.2 0.1 - 0.2 34.4 8.3 3.6 39.2 156.3 85.4 241.7

Young Forest (5) 59.4 0.0 0.3 0.1 0.1 0.2 20.6 2.4 11.9 33.4 60.1 68.2 128.4

Regenerating
Forest (6)

59.2 0.1 0.4 1.3 0.1 0.2 6.8 1.1 4.5 28.6 61.3 41.0 102.3

Recently Clearcut
(3)

1.2 0.0 0.1 0.6 0.2 0.1 15.5 4.0 19.3 41.4 2.2 80.3 82.5

Perennial Herb
(3)

- 0.2 0.2 3.9 0.4 1.3 0.7 - - 29.1 6.1 29.8 35.8

Shrub/Sapling (2) - - - 3.6 - 0.0 4.3 - - 21.0 3.6 25.3 28.9

Annual Rowcrop
[21]

- - - 0.8 - - 0.8 - - 16.3 0.8 17.1 17.9

Mature Forest (> 50 y old), Young Forest (26-50 y), Regenerating Forest (5-25 y), Recently Clearcut (0-5 y). Data derived from [20].
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of those condition types to a larger region to estimate
the potential gain in carbon storage that could accrue
following full reforestation to mature forest.

Conclusions
Headwater riparian zones are particularly important hot-
spots for influencing water quality because 90% of the
interface between uplands and aquatic systems occurs in
headwater reaches. This makes headwater reaches the
major recipient of nonpoint source pollution in agricul-
tural landscapes. However, most headwater reaches in
agricultural landscapes are poorly buffered, i.e., either
buffers are narrow and/or remnant buffers represent
young developmental stages. This situation likely arose
from efforts to maximize arable cropland and manage
streamside forests as woodlots. Poor riparian buffers
have exacerbated water quality problems because the
reduction in living and detrital biomass associated with
deteriorated buffers has allowed for increased soil ero-
sion and nutrient input in combination with reductions
in nutrient uptake and denitrification. By measuring
organic matter stored in various condition classes found
along streams and randomly sampling headwater
reaches to identify the relative distribution of those con-
dition classes along streams, this study found that ripar-
ian buffer zones of headwater streams in Coastal Plain
North Carolina store only 40% of the carbon they could
potentially store if mature forest buffered all streams.
Many headwater streams in the agricultural landscapes
worldwide are also poorly buffered. Encouraging the
development of older-aged forests, particularly mature
forest, in headwater reaches of agricultural regions has
the potential to improve ecosystem services like water
quality and habitat quality, while simultaneously

sequestering a huge amount of atmospheric carbon.
Thus, restoration of riparian forest buffer zones in agri-
cultural landscapes, particularly in headwater reaches,
should become a priority worldwide.

Methods
A space-for-time approach was used to obtain data on
storage of carbon as riparian forests develop from agri-
cultural fields to shrub/saplings to mature forest. Ripar-
ian ecosystems in Coastal Plain North Carolina are
naturally vegetated by forest, and so mature forest is the
endpoint in vegetation development. However, riparian
zones along most headwater portions of stream net-
works have been converted to other uses (mostly agri-
culture) and are thus in varying stages of development.
After extensive surveys of headwater riparian zones, it
was found that riparian vegetation could be partitioned
into one of eight easily-recognizable age and cover-
related condition types, which correspond to a chrono-
sequence from agriculture to mature forest: (1) Annual
Rowcrop (corn, soybean, cotton), (2) Perennial Herb
(usually fallow field of grasses and perennial forbs), (3)
Shrub/Sapling, (4) Recently Clearcut Forest (< 5 y since
last clearcut), (5) Regenerating Forest (5-25 y old), (6)
Young Forest (26-50 y old), and (7) Mature Forest (> 50
y old). Biomass was determined for these condition
types, by biomass category (roots excluded), in 30-m
long by 10-m wide belt transects along 18 stream
reaches in agricultural, Coastal Plain North Carolina.
Each sampled reach consisted of one to several condi-
tion classes (Figure 1). Detailed methods for determining
biomass by condition type, further partitioned by living
and detrital biomass categories, are explained in compa-
nion studies [20,27]. Assuming that dry plant biomass

Table 2 Carbon stored in headwater riparian reaches of sampled riparian zones and extrapolated to the entire Coastal
Plain network

Location (n = no.
of reaches)

Watershed
size (km2)

Stream
network

length (km)

MgC/ha
(30-m-
wide
zone)

MgC/ha
(60-m-
wide
zone)

MgC/km stream
length (30-m-
wide zone)

MgC/km stream
length (60-m-
wide zone)

Total MgC
stored in (30-
m-wide zone)

Total MgC
stored in (60-
m-wide zone)

Cow Swamp (40) 44.5 47.5 94.2 92.3 283 554 13,427 26,299

Crisp Creek (37) 45.9 41.2 84.0 87.0 252 522 10,380 21,514

Lumber (66) 73.7 74.8 104.4 100.5 313 603 23,415 45,070

Current condition
of Coastal Plain
riparian zones

56,772 57,227 96.3 94.7 289 568 16,529,285 32,512,359

Potential condition
of Coastal Plain
riparian zones

56,772 57,227 241.7 241.7 0.725 1.450 41,495,029 82,990,058

Difference 24,965,744 50,477,700

Carbon is estimated to be 0.5 times organic matter [25]. Data for Coastal Plain riparian zones based on the weighted average of the three sampled watersheds.
Potential carbon storage based on carbon estimated in Mature Forest. Current and potential carbon values of Coastal Plain riparian zones based on extrapolation
from sampled networks. Riparian zone widths: 30-m-wide zone includes the 0-15 m bands on both sides of stream; the 60-m-wide zone includes the 0-30 m
bands on both sides of stream. “Difference” represents the amount of additional carbon that could potentially be stored in Coastal Plain headwater networks.
Total carbon pool would be about 10-15% more than indicated values if large roots (not sampled) were also included [23].
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and soil organic matter is about 50% organic carbon
[28,25], biomass was converted to carbon content for
each of the sampled compartments.
After carbon was quantified for each condition class,

100-m long reaches (n = 143) were randomly chosen in
three rural Coastal Plain stream networks, all embedded
in agricultural drainage basins, ranging in size from 44.5
to 73.7 km2. Sampled reaches constituted about 10% of
stream network length [29]. However, before defining
the stream network, it was necessary to ensure that all
intermittent streams in the network were included. This
was a challenge because most headward, first order
streams are often not even depicted as streams on Uni-
ted States Geologic Survey (USGS) 1:24 K topographic
maps and associated digital files, even some that flow
year-round during wet years. Considering that many
headwater streams are missing on USGS maps, addi-
tional headward portions of intermittent, groundwater-
driven reaches in the three sampled stream networks
were manually mapped, using hydrogeomorphic criteria.
Detailed methods of this mapping exercise are provided
in [29].
After mapping condition classes along a 100-m reach,

the cover of condition classes were estimated for each
side of the stream separately with respect to two ripar-
ian zone bands, extending perpendicular from the
stream edge: a 0-15 m band and a 15-30 m band on
each side [20]. Sometimes more than one condition type
occurred within one of the two riparian bands. When
this occurred, the types were apportioned to the band in
approximate proportion to their relative cover. Condi-
tion-type data for each 100-m reach within a band were
then converted to total stored carbon. Carbon storage
data from both sides of the stream reach were com-
bined: inner bands combined to provide carbon storage
data for a 30-m-wide zone, and all data combined to
obtain data for a 60-m-wide zone. Since the reaches
were 100 m long, the data for the two riparian zones

were for 1/3 ha (for the 30-m-wide zone) and 2/3 ha
(for the 60-m-wide zone).
Assuming that the three sampled headwater networks

represented the condition of all Coastal Plain riparian
zones, the carbon content of the sampled riparian zones
was extrapolated to the entire North Carolina Coastal
Plain headwater network. Potential carbon content was
then estimated by calculating the amount of carbon that
could be stored if all riparian zones were allowed to
regenerate to mature forest. Thus, the difference
between potential and current carbon content of ripar-
ian zones represents the amount of additional carbon
that could potentially be stored in Coastal Plain riparian
zones.
The main assumption of this approach is that the

sampled stream networks represent the condition of the
entire Coastal Plain headwater network. Even though
the sampled watersheds had been identified a priori by
the state of North Carolina as being watersheds with
impaired water quality (sensu Clean Water Act, Section
303d), based on the authors’ considerable field experi-
ence in the Coastal Plain, it did not appear that riparian
zone condition in the sampled stream networks differed
substantially from other headwater stream networks.
The main limitation of this study is that the sampled

watersheds represent only the rural (agricultural) and
headwater portions of the Coastal Plain, i.e., urban por-
tions of networks and portions of networks larger than
4th order were not included in this analysis. However,
the headwater reaches of mapped 1st-4th order steams
represent > 90% of all stream length in Coastal Plain
North Carolina (Rheinhardt, unpublished data), most
higher order stream reaches (> 4th order) are adequately
buffered by forest (although not everywhere by mature
forest), and the proportion of urban stream length is
rather small in relation to rural stream length.
Hydrologic conditions are known to affect rates of

carbon sequestration. Net primary production has been
found to significantly differ between wet sites (perma-
nently to semi-permanently saturated) and drier sites
(seasonally saturated to upland sites), but not between
seasonally saturated and upland sites [30]. Hydrologic
conditions of the riparian zones of this study ranged
from seasonally saturated to upland and so no differ-
ences were expected in sequestration rates across the
moisture gradient, i.e., carbon storage in similarly-aged
forest stands would not be expected to significantly dif-
fer between the wetland portion of the riparian zone
and the upland portion of the zone. Further, any differ-
ences in carbon sequestration that could be attributable
to soil moisture differences would be incorporated in
the species-specific allometric and regression equations
that were used to estimate biomass, since each species
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Figure 1 Layout of 10 × 30 m belt transects for sampling
biomass of riparian condition types. Locations of imbedded 0.25
m quadrats are small squares (n = 6) within belt transects. Diagram
illustrates a hypothetical juxtaposition of four condition types.
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tends to be concentrated along certain portions of the
moisture gradient from wetland to upland.
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